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Abstract

Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of
single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization
parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of
standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with
phenotypes or genotypes divergent from the majority of the study population—typically comprised of outliers and
high-leverage observations. Robust methods have been developed to constrain the influence of divergent observations and
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generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association
studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that
utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA
expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the
false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO. Although the two
methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed
standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data.
The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to
standard LASSO in genetic studies of molecular phenotypes.
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Introduction
Regularized regression models

Regularized regression is often applied in genetic studies
of molecular phenotypes to select the most promising set
of variants associated with a phenotype of interest. Several
methods for regularized regression have been proposed.
The basic idea behind regularization consists of adding a
penalty term to the least-squares loss function—the sum of
squared differences between the actual value of the response
variable and the value predicted by the regression model—
which is minimized to find the parameter values for the
model that fits best to the data. A widely applied regular-
ized regression method is the least absolute shrinkage and
selection operator (LASSO), which adds a penalty term for the
shrinkage of the parameter estimates to the least-squares loss
function [1]
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In genetic studies of molecular phenotypes, the response
variable yi represents the level of a particular compound mea-
sured in biological samples of individual i, for example the level
of a given protein measured in urine, the concentration of a
specific metabolite determined in plasma or the abundance
of a particular mRNA in a particular tissue. n represents the
number of individuals; β j is the regression coefficient for a
predictor variable j, e.g. the age, gender or genotype of an indi-
vidual for a particular single-nucleotide polymorphism (SNP).
xij represents the value taken by the predictor variable j in
individual i. The penalty term consists of the regularization
parameter λ multiplied by the sum of the absolute values of
the regression coefficients—the so-called L1 norm. The param-
eter λ controls the extent of shrinkage of the parameter esti-
mates: the higher the value of λ, the stronger the penalty and
the closer to zero the parameter estimates. This penalization
leads to a selection of variables, since the regression coeffi-
cients of explanatory variables with a low effect on the response
variable yi are set to zero. Thus, the fitted regression model
does not include all the predictors in the original dataset but
only those variables with the strongest effect on the molecu-
lar phenotype, circumventing the necessity for explicit multi-
ple testing correction; this leads more interpretable prediction
models and also prevents overfitting of the model. The use of
LASSO is increasingly common in the field of genetic association
studies [2–5].

Robust version of standard LASSO

Regression models that rely on the minimization of a least-
squares loss function are considerably influenced by a small
number of observations departing from the bulk of study data
[6–8]. In the context of genetic studies of molecular phenotypes,
these divergent observations may include both individuals with
a response variable yi that does not follow the general trend
of the study population—i.e. outliers—and also individuals with
extreme values for single predictors (e.g. the individual age)
or unusual predictor combinations (e.g. divergent multi-SNP
genotypes)—so-called high-leverage observations.

The identification of divergent observations is particularly
challenging in high-dimensional molecular studies, and even
if individuals with atypical phenotypes and/or genotypes can
be identified, the definition of criteria for their exclusion is
always arbitrary. A much more promising unbiased and efficient
approach relies on constraining the influence of outlying and
high-leverage observations by means of robust statistical meth-
ods. Robust statistics aim to infer the best prediction model for
the majority of the study population instead of the best model
for any observation.

In this study, as an alternative to the least-squares loss
function of standard LASSO, we consider the Huber loss function
introduced by Rosset and Zhu [9]
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where ρ represents the following function:

ρHuber (ei) =
{

1
2 e2

i if |ei| ≤ c
c |ei| − 1

2 c2 otherwise

with tuning constant 0 < c ∈ R and residual ei:

ei = yi −
∑p

j=1
βjxij.

The tuning constant c regulates the influence of divergent
observations on the prediction model, with smaller c values
translating into more robust results. In this study, we choose in
the first instance a c value equal to 1.345 to ensure 95% efficiency
when the residuals are approximately normally distributed [10].

The derivative of the loss function ρ is called the influence
curve and is represented by Ψ , and the weight function w is
defined by

w (ei) = ψ (ei) /ei
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translating into the following expressions:

ψLeast−squares (ei) = ei wLeast−squares (ei) = 1

ψHuber (ei) =
{

ei if |ei| ≤ c
c sign (ei) otherwise

wHuber (ei) =
{

1 if |ei| ≤ c
c/ |ei| otherwise

.

The weight functions can be interpreted as follows: least-
squares regression assigns the same weight to all observations,
while the more robust Huber regression assigns lower weights
to observations with large residuals. The algorithm for the com-
putation of the robust LASSO estimators utilizing the Huber loss
function was developed by Yi and Huang [11]. For a derivation of
the influence curve taking into account the penalty term of the
robust Huber-LASSO, see for example [12].

In this article, we explore the potential advantage of a robust
version of standard LASSO that primarily utilizes the Huber loss
function—hereinafter, ‘robust Huber-LASSO’—in the context of
genetic studies of molecular phenotypes. We use real protein,
metabolite, gene expression, and SNP data to design a compre-
hensive set of simulations under plausible study scenarios and
compare the results from standard LASSO and robust Huber-
LASSO based on simulated and real data.

Materials and methods
Data simulation

Study population

For the simulations, we used real genotype and protein data
from 3301 individuals, who were randomly selected from the
INTERVAL study, a genomic bioresource of about 50 000 gener-
ally healthy volunteers recruited between 2012 and 2014 at 25
centers of the UK’s NHS Blood and Transplant [data available
through the European Genotype Archive (EGA), accession num-
ber: EGAS00001002555] [13, 14]. Study participants were geno-
typed using the Affymetrix Axiom UK Biobank genotyping array,
which includes approximately 830 000 SNP positions. After qual-
ity control of samples and variants, genotypes were phased
using SHAPEIT3 and imputed using a combined 1000 Genomes
Phase 3-UK10K reference panel, resulting in 87 696 888 imputed
variants in total [14]. An aptamer-based multiplex protein assay
(SOMAscan) was used to measure the levels of 3622 proteins
in plasma in two subcohorts of 2481 and 820 individuals each.
Relative protein abundances were first natural log-transformed
within each subcohort and then adjusted in a linear regres-
sion for age, sex, time from blood draw to processing (binary,
≤1 day/>1 day), and the first three principal components of
ancestry from multi-dimensional scaling.

We used the residuals from the adjusted linear regres-
sion model as the response variable in our simulations. As
potential predictors, we included the genotypes of the SNPs
associated with the response variable in the INTERVAL study
together with 1000 randomly selected, non-associated variants
(reported as non-significantly associated with a probability
value (P) ≥ 1.5 × 10−11) [14].

Simulation of outliers and selection of low-leverage and
high-leverage individuals

We simulated outlying protein levels for individuals with average
genotypes (low-leverage observations) and for individuals with

divergent genotypes (high-leverage points). As shown with more
detail in the Results section, the number of association signals
for each protein in the INTERVAL study ranged from one (1206
proteins) to five (1 protein) [14]. In order to compare standard
and robust Huber-LASSO, we selected proteins with three asso-
ciation signals (47 proteins) and calculated their proportions of
explained variance using the following formula:

Explained variance =
∑m

k=1
2 · MAFk (1 − MAFk) ak,

where m represents the number of association signals (m = 3
for our protein selection), MAFk is the minor allele frequency
for each lead SNP and ak is the effect size for each lead SNP
reported in the INTERVAL study [14, 15]. The median propor-
tion of explained variance for the proteins with three asso-
ciated SNPs in the INTERVAL study was 0.10, and the three
SNPs associated with the protein beta defensin 119 (DEFB119,
aptamer DEFB119.13455.10.3), taken together, also explained 0.10
of the variance, motivating us to use the residuals of the linear
model for the protein DEFB119 as the response variable in our
simulations.

Individuals with low- and high-leverage genotypes were
selected based on the trivariate depth from a genetic principal
component analysis (PCA) of the study population, which was
conducted using the eigenstrat function available at www.po
pgen.dk/software/index.php/Rscripts. The trivariate depth of
an observation relative to a finite set in the three-dimensional
space is defined as the smallest number of observations lying
in any closed half-space determined by a hyperplane through
this observation [16]. The trivariate depth of each individual
genotype was calculated using the R-package ‘depth’ [17].

Comparison of standard and robust Huber-LASSO models

For each of 100 iterations, we randomly chose 500 of the 3301
INTERVAL participants and identified the two of these 500 indi-
viduals with the lowest and highest trivariate depth, represent-
ing a high-leverage and a low-leverage genotype, respectively
(see the right panel of Figure 1A for an intuitive interpretation).
We assigned an artificial residual that ranged from −5 to 5 to
the individual with the low-leverage (scenario 1) or high-leverage
(scenario 2) genotype, fitted the standard and robust Huber-
LASSO models and predicted the residual values for the protein
DEFB119 based on the fitted regression model and the individual
genotypes. The R package ‘hqreg’ was used to fit the standard
and robust Huber-LASSO models using an optimal λ obtained by
tenfold cross-validation [11].

We compared standard LASSO and robust Huber-LASSO
regarding the stability of the penalization parameter, the cross-
iteration concordance of the model, the false-positive rate,
the true-positive rate and the accuracy of predicted protein
residuals. The stability of the penalization parameter assessed
the impact of divergent observations on the regularization
parameter λ. The cross-iteration concordance of the model
was quantified by the average Jaccard similarity coefficient
between the [100 × 99/2] = 4950 pairs of fitted models, calculated
as follows:

Jaccard index = Number of SNPs shared by the two models
Number of SNPs retained in at least one of the two models

A Jaccard index equal to 1 implies identical predictor SNPs
in the two models, and a Jaccard index of 0 means that the
two models share no single predictor. The false-positive rate
was estimated as the average over 100 iterations of the number
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Figure 1. (A) Boxplot of the residuals from the linear model for the protein DEFB119 (left panel) and results from a genetic PCA for 3301 individuals from the INTERVAL

study (right panel). (B) Dependence of the regularization parameter λ on the value assigned to the residual for the individual with the average genotype (left panel);

dependence of the estimated regression coefficient for the SNP most strongly associated with the plasma level of protein DEFB119 (rs9296004) on the value assigned to

the residual for the individual with the average genotype (right panel). (C) Dependence of the regularization parameter λ on the value assigned to the residual for the

individual with the divergent genotype (left panel); dependence of the estimated regression coefficient for the SNP most strongly associated with the plasma level of

protein DEFB119 (rs9296004) on the value assigned to the residual for the individual with the divergent genotype (right panel).
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of selected non-associated SNPs divided by the total number
of non-associated variants (we randomly selected 1000 variants
not associated with the protein residuals). The true-positive
rate was calculated as the number of times an associated SNP
was selected divided by the number of iterations. Confidence
intervals for the estimated regression coefficients were com-
puted based on the empirical distribution of the estimates over
100 iterations. The accuracy of the predicted protein residuals
was assessed by 5-fold cross-validation: out-of-sample predic-
tions were obtained for each individual, and then, the square
of the Fisher-consistent version of Kendall’s correlation between
observed and out-of-sample predicted values was computed as
robust measure of the prediction accuracy [18].

We also examined the potential effects of (i) other values of
the tuning constant for the Huber loss function (c equal to 1.20
and 1.80, which result in 90 and 99% efficiency under normality,
respectively), (ii) the quantile loss function implemented in the
R package ‘hqreg’ as an alternative to the Huber loss function,
and (iii) a larger proportion of outliers (5/500 = 1% of the study
population) instead of only one single outlier.

Real-data applications

KORA

In addition to the above-described simulations based on real
protein plasma data, we also compared standard and robust
Huber-LASSO utilizing metabolite fasting serum data from the
Cooperative Health Research in the Augsburg Region (Kooper-
ative Gesundheitsforschung in der Region Augsburg, KORA) study.
Out of the 4621 KORA S4 samples collected in the Augsburg
region of Germany between 1999 and 2001 which were pro-
filed using liquid-phase chromatography and gas chromatog-
raphy separation coupled with tandem mass spectrometry, we
analyzed 1408 samples with existing metabolite and genotype
data. Association statistics between the SNPs and the serum
metabolite levels were retrieved from a meta-analysis of KORA
and TwinsUK data [19]. The median proportion of explained
variance in the KORA study for metabolites with four associated
SNPs was 0.10, and one metabolite showed associations with
six SNPs (left panel of Figure 3A). As representatives for the
comparison between standard and robust Huber-LASSO based
on real metabolite data, we separately used the two metabolites
L-carnitine (HMDB0000062, four associated SNPs, explained vari-
ance = 0.11) and glutarylcarnitine (HMDB0013130, six associated
SNPs, explained variance = 0.14). For each metabolite the associ-
ated SNPs together with 100 randomly selected, non-associated
variants (P ≥ 1.03 × 10−10 = 5 × 10−8/486 metabolites) were con-
sidered as potential predictors and metabolite levels were pre-
dicted using 5-fold cross-validation [19].

GTEx

In our second real-data application, we compared standard
LASSO and robust Huber-LASSO based on mRNA expression
and genotype data from 621 healthy donors provided by the
Genotype-Tissue Expression (GTEx) project (https://gtexportal.o
rg). We separately used the expression levels of the genes AGA (3
unlinked, associated SNPs, explained variance = 0.06), SNRNP25
(5 unlinked, associated SNPs, explained variance = 0.069) and
XRRA1 (3 unlinked, associated SNPs, explained variance = 0.0004)
as response variables to compare the standard and robust
regularized regression methods under a wide range of different
situations—e.g. a low explained variance for XRRA1 (left panel
of Figure 3B). PrediXcan is a popular software for the prediction

of mRNA expression based on individual genotype data [20].
The SNPs associated with the expression of the corresponding
genes according to PrediXcan (SNPs with estimated regression
coefficients different from zero), together with 2000 randomly
selected, non-associated variants (those with estimated regres-
sion coefficients equal to zero according to PrediXcan), were
considered as potential predictors. In consistency with the
analyses described above, we applied 5-fold cross-validation
to predict the expression levels using standard and robust
Huber-LASSO and compared the prediction accuracies relying
on the square of the Fisher-consistent version of Kendall’s
correlation—hereinafter, ‘squared correlation’.

INTERVAL

The third real-data application considered 500 randomly
selected individuals from the INTERVAL study [14]. The residuals
from the linear models for the proteins DEFB119 (aptamer
DEFB119.13455.10.3) and SLAM family member 7 (SLAMF7,
aptamer SLAMF7.7882.31.3) were used as separate response
variables, because the proportion of variance explained by their
associated SNPs—0.10 and 0.11, respectively—was similar to
the median proportion of explained variance (0.10) for proteins
with three associated SNPs in the INTERVAL study (left panel of
Figure 3C). Moreover, the genetic associations for SLAMF7 have
been replicated in several studies [21]. The three associated SNPs
for each protein, together with 1000 randomly selected, non-
associated variants, were considered as potential predictors.
Once again, we predicted the residuals for each protein based on
the fitted models and the individual genotypes and quantified
the prediction accuracy by the squared correlation between
observed and predicted values, applying 5-fold cross-validation.

Results
Motivating example

Before presenting the simulation results, we illustrate the lack
of robustness of standard LASSO against a single divergent
observation with an example. Figure 1A shows a boxplot of the
residuals from the linear model for the protein DEFB119 (left
panel) and the results from a genetic PCA for 3301 individuals
from the INTERVAL study (right panel). The residuals from the
linear model for the protein DEFB119 varied from −3.5 to 3.5. The
genotypes of the individual depicted in blue in the right panel of
Figure 1A resulted in the highest trivariate depth (low-leverage
genotype). The individuals depicted in orange showed the lowest
trivariate depth, and the individual marked with an arrow was
used in this motivating example as the high-leverage genotype.

To examine the influence of a single outlying observation on
the results from standard and robust Huber-LASSO, we assigned
residual values from −5 to 5 to the individual with the ‘average
genotype’ (low-leverage genotype represented by a blue dot in
Figure 1A). The left panel in Figure 1B shows the dependence of
the regularization parameter λ (y-axis) on the value assigned to
the residual of the individual with the average genotype (x-axis).
The plot clearly shows that the penalization parameter was
more stable for robust Huber-LASSO (blue line, range of λ: 0.036–
0.038, monotonic trend) than for standard LASSO (black line,
range of λ: 0.033–0.050, non-monotonic trend). The right panel
in Figure 1B shows the dependence of the estimated regression
coefficient for the SNP (rs9296004) most strongly associated with
the plasma level of protein DEFB119 on the value assigned to the
residual. The single outlying observation showed a greater influ-
ence on the standard (range of β̂ :0.18–0.30 and non-monotonic
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Table 1. Regularization parameter λ, Jaccard index and false-positive rate from standard and robust Huber-LASSO

Simulated
outlying
phenotype

Genotype Standard LASSO Median λ Robust Huber-LASSO

Median λ Median Jaccard
index

Median
false-positive rate

Median Jaccard
index

Median
false-positive rate

None 0.041 0.125 0.020 0.044 0.111 0.018
5 Low-leverage 0.044 0.115 0.020 0.044 0.109 0.018
−5 (average) 0.043 0.125 0.019 0.046 0.111 0.016
5 High-leverage 0.044 0.119 0.020 0.044 0.111 0.019
−5 (divergent) 0.043 0.123 0.020 0.044 0.111 0.018

trend) than on the robust results (range of β̂ :0.27–0.29, mono-
tonic trend).

We also examined the influence of a single outlying
observation on the results from standard and robust Huber-
LASSO when residuals from −5 to 5 were assigned to the
individual with a ‘divergent genotype’ (the high-leverage
genotype represented by the orange dot marked by an arrow
in Figure 1A). The results are shown in Figure 1C. Again,
a single outlying observation influenced the results from
standard LASSO more strongly than those from robust Huber-
LASSO. Interestingly, the single individual with the average
genotype and the outlying phenotype exhibited a stronger
impact on the results than the individual with the divergent
genotype and the outlying phenotype, as reflected by the larger
variability of λ and β̂in Figure 1B than in Figure 1C. The ratios
between the estimated regression coefficients for the three
SNPs associated with the plasma level of protein DEFB119
are shown in Supplementary Figure 1.II, available online at
https://academic.oup.com/bib. They confirm that results from
standard LASSO can be heavily influenced by a small number of
outliers: in this motivating example, the SNP rs12301299 was not
included in the standard LASSO regression model when negative
residuals were assigned to the individual with an average
genotype (A). In general, the ratios between the regression
coefficients tended to be more stable for robust Huber-LASSO
than for standard LASSO. Supplementary Figure 1.I, available
online at https://academic.oup.com/bib, compares the influence
on λ and β̂of a single outlying residual from −5 to 5 assigned
to individuals with an average (A) or a divergent (B) genotype,
considering also the robust quantile-LASSO.

This example demonstrates that results from standard
LASSO can be heavily influenced by a small number of outlying
observations and that results from the robust Huber-LASSO
and quantile-LASSO tend to be more stable. In the following
simulations, we compare the two methods more thoroughly.

Simulation results

The median value of the regularization parameter over 100
iterations in the absence of outliers, i.e. considering the actual
residuals for the protein DEFB119 for all individuals, was λ = 0.041
for standard and λ = 0.044 for robust Huber-LASSO (Table 1). The
assignment of a single outlying residual equal to ±5 for individ-
uals with an average genotype translated into an λ increase of
0.002–0.003 for standard LASSO compared with 0.000–0.002 for
robust Huber-LASSO. The assignment of a residual equal to ±5
for individuals with a divergent genotype translated into an λ

increase of 0.002–0.003 for standard LASSO, whereas λ did not
change in robust Huber-LASSO.

In the absence of outliers, the standard LASSO model showed
a higher concordance across iterations (Jaccard index = 0.125)
than robust Huber-LASSO (Jaccard index = 0.111); this difference
was due to the stronger penalization and, subsequently, the
lower number of variants selected by robust Huber-LASSO.
The assignment of an outlying residual decreased more
severely the cross-iteration concordance of the model for
standard LASSO (max. reduction of the Jaccard index = 0.010)
than for robust Huber-LASSO (max. reduction of the Jaccard
index = 0.002).

The median false-positive rate over 100 iterations in the
absence of outliers was 0.020 for standard LASSO and 0.018
for robust Huber-LASSO (Table 1). The inclusion of an artificial
outlier influenced these rates only slightly (±0.002).

Supplementary Table 1.I, available online at https://academic.
oup.com/bib, shows the corresponding results for other values of
the tuning constant for the Huber loss function (c = 1.20, 1.80) and
for the quantile loss function. A single outlying residual equal
to ±5 for individuals with an average genotype translated into
an λ increase of 0.000–0.001 for c = 1.20 compared with λ changes
of −0.003 and 0.004 for c = 1.80. The assignment of a residual
equal to ±5 for individuals with a divergent genotype did not
influence λ for c = 1.20, whereas λ increased by 0.001 for c = 1.80.
The median value of λ in the absence of outliers was λ = 0.022
for robust quantile-LASSO. The assignment of a residual equal
to ±5 for individuals with a divergent genotype showed a larger
influence on λ, and on the cross-iteration concordance of the
model, for robust quantile-LASSO than for robust Huber-LASSO
with c = 1.345. The false-positive rates for other values of the
tuning constant of the Huber loss function and for the robust
quantile-LASSO were ≤2.1%.

Supplementary Table 1.II, available online at https://academic.
oup.com/bib, shows the respective results considering five
outliers (1% of the study population). The increase in the
proportion of outliers translated into larger λ increases for
standard LASSO but did not affect λ for robust Huber-LASSO. It
showed a stronger influence on the cross-iteration concordance
of the model for standard LASSO than for robust Huber-LASSO,
and false-positive rates remained ≤2%.

Table 2 shows the explained variance, the MAF and the
reported effect size of the three SNPs associated with the plasma
levels of protein DEFB119, as well as the corresponding true-
positive rate and the estimated regression coefficients from
standard and robust Huber-LASSO. In the absence of outliers,
the true-positive rate for the SNPs rs9296004 and rs11845244
was identical with standard and robust Huber-LASSO; the true-
positive rate for the SNP rs12301299 was higher for standard
than for robust Huber-LASSO. The assignment of an outlying
residual equal to ±5 generally showed a higher impact on the
true-positive rate from standard than from robust Huber-LASSO.
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Table 2. Explained variance, MAF and reported effect size of the three SNPs associated with the plasma levels of protein DEFB119, as well as
the corresponding true-positive rate and the estimated regression coefficients from standard LASSO and robust Huber-LASSO

Associated SNP Explained

variance

MAF Reported

effect size

Standard LASSO Robust Huber-LASSO

True-positive

rate

Estimated coefficient True-positive

rate

Estimated coefficient

Mean 95% CI Mean 95% CI

No simulated outlier

rs9296004 0.055 0.082 0.606 0.970 0.253 0.233 0.273 0.970 0.281 0.253 0.309

rs11845244 0.027 0.354 0.241 0.850 0.094 0.082 0.106 0.850 0.103 0.087 0.118

rs12301299 0.018 0.163 0.254 0.960 0.127 0.114 0.139 0.840 0.095 0.082 0.109

Average genotype

Simulated protein residual = 5

rs9296004 0.055 0.082 0.606 0.930 0.229 0.208 0.250 0.960 0.279 0.251 0.308

rs11845244 0.027 0.354 0.241 0.790 0.078 0.066 0.091 0.840 0.100 0.085 0.116

rs12301299 0.018 0.163 0.254 0.940 0.122 0.109 0.135 0.830 0.096 0.082 0.110

Simulated protein residual = −5

rs9296004 0.055 0.082 0.606 0.950 0.247 0.226 0.269 0.950 0.287 0.258 0.317

rs11845244 0.027 0.354 0.241 0.860 0.095 0.082 0.108 0.860 0.107 0.091 0.123

rs12301299 0.018 0.163 0.254 0.960 0.121 0.108 0.134 0.870 0.096 0.083 0.109

Divergent genotype

Simulated protein residual = 5

rs9296004 0.055 0.082 0.606 0.960 0.230 0.21 0.251 0.960 0.281 0.253 0.310

rs11845244 0.027 0.354 0.241 0.810 0.090 0.078 0.103 0.840 0.104 0.088 0.120

rs12301299 0.018 0.163 0.254 0.950 0.120 0.107 0.133 0.860 0.097 0.084 0.111

Simulated protein residual = −5

rs9296004 0.055 0.082 0.606 0.960 0.247 0.225 0.269 0.950 0.288 0.259 0.316

rs11845244 0.027 0.354 0.241 0.800 0.082 0.070 0.095 0.850 0.103 0.088 0.119

rs12301299 0.018 0.163 0.254 0.970 0.126 0.113 0.138 0.880 0.097 0.084 0.110

The estimated regression coefficients for the SNPs rs9296004
and rs11845244 were similar based on standard and robust
Huber-LASSO (overlapping 95% confidence intervals) when no
artificial outlier was included. In contrast, and consistently
with the true-positive rate, the estimated regression coefficient
for the SNP rs12301299 was higher with standard LASSO than
with robust Huber-LASSO. As with the true-positive rate, the
assignment of an outlying residual generally showed a higher
impact on the estimated coefficients from standard than
from robust Huber-LASSO. Note that the effect sizes reported
by Sun et al. were calculated separately for each SNP, and
the coefficients shown in Table 2 were estimated considering
multiple variants simultaneously. Supplementary Table 2.I,
available online at https://academic.oup.com/bib, shows the
corresponding results for alternative values of the tuning
constant of the Huber loss function (c = 1.20, 1.80) and for the
quantile loss function, and Supplementary Table 2.II, available
online at https://academic.oup.com/bib, shows the results for
an outlier proportion equal to 1%. True-positive rates were quite
close, with the overall ranking: standard LASSO > Huber-LASSO
(c = 1.80) > Huber-LASSO (c = 1.345) > Huber-LASSO (c = 1.20) >
quantile-LASSO. The average true-positive rates for the standard
LASSO were 0.93 (no outlier), 0.91 (one outlier) and 0.81 (five
outliers), compared with 0.89 (no outlier), 0.89 (one outlier) and
0.87 (five outliers) for the robust Huber-LASSO.

The goal of genetic studies on molecular phenotypes often
consists of predicting the phenotype as accurately as possible
relying on individual genotype data. Figure 2 depicts the
boxplots of the squared correlation between the observed and
the predicted protein residuals based on standard LASSO (black)
and robust Huber-LASSO (blue). With and without (simulated
protein residual = 0) outliers for individuals with average (A) or
divergent (B) genotypes, robust Huber-LASSO always resulted
in a higher accuracy of the predicted DEFB119 residuals than

standard LASSO (P from two-sided paired t-tests between
0.00001 and 0.002, Figure 2). More specifically, the median
squared correlation varied from 0.104 to 0.105 for standard
LASSO and was equal to 0.106 for robust Huber-LASSO.
Supplementary Figures 2.I and 2.II, available online at
https://academic.oup.com/bib, show the boxplots of the stan-
dard squared correlation for other values of the tuning constant
of the Huber loss function, for the quantile loss function and
for an outlier proportion equal to 1%. The median standard
squared correlation amounted to 0.096 for robust Huber-
LASSO with c = 1.80 and c = 1.20 and varied from 0.096 to
0.097 for robust quantile-LASSO. Compared with one single
outlier, an outlier proportion equal to 1% hardly affected the
median standard squared correlation. The use of the standard
Pearson’s correlation, and the Fisher-consistent version of
Spearman’s correlation [18], also corroborated the higher
prediction accuracy of robust Huber-LASSO than standard
LASSO (see Supplementary Figure 2.III available online at
https://academic.oup.com/bib).

Recapitulating the simulation results, single outliers showed
a greater influence on the regularization parameter, the cross-
iteration concordance of the model, the true-positive rate and
the estimated regression coefficients for standard LASSO than
for robust Huber-LASSO. The investigated standard and robust
regularized regression methods showed false-positive rates
≤2.1%. A higher prediction accuracy was noticed for robust
Huber-LASSO than for standard LASSO.

Real-data applications

The left panel of Figure 3A shows the distribution of the
explained variance for 169 serum metabolites analyzed in the
KORA study with unlinked, associated SNPs. Note that about
two-thirds (68%) of the 529 investigated metabolites showed no
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Figure 2. Boxplots of the squared correlation between the observed and the predicted DEFB119 protein residuals based on standard LASSO (black) and robust Huber-

LASSO (blue) with simulated protein residuals for individuals with average (A) or divergent (B) genotypes. Probability values from two-sided paired t-tests are shown

in the upper part of each panel.

SNP association and are not represented in this figure. Among
the investigated metabolites, 22% were associated with one SNP,
7% with two SNPs, 2% with three SNPs, 1% with four SNPs and
the metabolite glutarylcarnitine with six SNPs. As expected, on
average, the explained variance increased with the number of
associated SNPs. The explained variance for the metabolites L-
carnitine (0.11, associated with four SNPs) and glutarylcarnitine
(0.14, associated with six SNPs), selected as representatives for
our real-data applications, are indicated with blue arrows in the
figure.

Table 3 shows the explained variance and the median
squared correlation between observed and predicted levels
of the metabolites L-carnitine and glutarylcarnitine, and the
right panel of Figure 3A shows the boxplots of the squared
correlation from standard and robust Huber-LASSO for the
metabolite glutarylcarnitine. Robust Huber-LASSO resulted in
better prediction accuracy than standard LASSO.

The left panel of Figure 3B shows the distribution of
the explained variance in mRNA expression for 5612 genes
investigated in the GTEx project with 1–15 unlinked, associated
SNPs according to PrediXcan. The blue arrows highlight the
three genes (AGA, SNRNP25 and XRRA1) selected for our real-
data applications. Table 3 shows the explained variance and the
median squared correlation between observed and predicted
expression levels for the three selected genes. Robust Huber-
LASSO resulted in higher prediction accuracy than standard
LASSO.

The ability to predict molecular phenotypes based on indi-
vidual genotype data is limited by the explained variance [20].
Weak to null correlations between genetically observed and
predicted expression levels are expected for genes with a small
explained variance—a threshold value equal to 0.01 for the stan-
dard squared correlationhas been proposed [22]. It is especially
important for these genes to check the sign of the correlation
coefficient. As an example, the explained variance in mRNA

expression for XRRA1 was 0.0004. The median correlation coef-
ficient based on standard LASSO was −0.0629, compared with
0.0029 for robust Huber-LASSO. The right panel of Figure 3B
shows the boxplots of the correlation coefficient from standard
and robust Huber-LASSO for this gene.

Finally, the left panel of Figure 3C shows the distribution
of the explained variance for 1561 plasma proteins measured
in the INTERVAL study with unlinked, associated SNPs. The
explained variance for the two representative proteins DEFB119,
which was also used to design the conducted simulations,
and SLAMF7 is indicated with blue arrows. The proteins were
selected to represent the median explained variance by their
number of associated SNPs. In agreement with the simulation
results and with the analyses of real metabolite and gene
expression data, robust Huber-LASSO consistently outperformed
standard LASSO in prediction accuracy. Robust Huber-LASSO
needed a longer computation time than standard LASSO. For
illustration, the analysis of the real protein data took 0.7 min
using one core for standard LASSO compared with 3.2 min for
robust Huber-LASSO. Supplementary Table 3, available online
at https://academic.oup.com/bib, shows the median squared
correlation for other values of the tuning constant for the
Huber loss function and for the quantile loss function. The
different robust regularization methods always showed a higher
prediction accuracy than standard LASSO, with small differences
among the alternative robust techniques.

Discussion
The aim of the present study was to investigate the benefits and
limitations of a modified version of standard LASSO that uses
the Huber loss function instead of the standard least-squares to
cut down the influence of outlying molecular phenotypes, which
can be found in individuals with average or divergent genotypes.
Computer simulations were complemented with the analysis
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Figure 3. (A) Distribution of the explained variance for the serum metabolites analyzed in the KORA study with unlinked, associated SNPs (left panel); boxplots of

the squared correlation from standard and robust Huber-LASSO for the metabolite glutarylcarnitine (right panel). (B) Distribution of the explained variance in mRNA

expression for the genes investigated in the GTEx project with unlinked, associated SNPs according to PrediXcan (left panel). The black arrows show the number of

genes with an explained variance >0.10; boxplots of the correlation coefficient from standard and robust Huber-LASSO for the gene XRRA1 (right panel). (C) Distribution

of the explained variance for the plasma proteins with unlinked, associated SNPs in the INTERVAL study (left panel); boxplots of the squared correlation from standard

and robust Huber-LASSO for the protein DEFB119 (right panel). The blue arrows highlight the metabolites, genes and proteins selected for our real-data applications.
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Table 3. Explained variance and the median squared correlation between observed and predicted levels of the metabolites l-carnitine and
glutarylcarnitine, the three genes AGA, SNRNP25 and XRRA1 and the proteins DEFB119 and SLAMF7

Outcome Explained variance Median squared correlation

Standard LASSO Robust Huber-LASSO

Glutarylcarnitine metabolite level 0.135 0.063 0.067
l-Carnitine metabolite level 0.149 0.040 0.047
AGAexpression level 0.060 0.048 0.052
SNRNP25 expression level 0.069 0.045 0.054
XRRA1 expression level 0.0004 0.004 0.0001
DEFB119 protein level 0.100 0.092 0.094
SLAMF7 protein level 0.108 0.104 0.107

of three real molecular datasets to examine the stability of the
regularization parameter λ, the cross-iteration concordance of
the model, the false-positive rate, the true-positive rate and the
correlation between predicted and observed levels of proteins,
metabolites and gene expression using standard LASSO and
robust Huber-LASSO.

False-positive rates were well controlled by the two meth-
ods. As expected, outlying phenotypes influenced the extent of
penalization, the cross-iteration concordance of the model, the
true-positive rate and the estimated regression coefficients less
for robust Huber-LASSO than for standard LASSO. Interestingly,
from the applied point of view, outlying phenotypes in individ-
uals with average genotypes showed a greater impact on the
results from regularized regression than outlying phenotypes in
combination with divergent genotypes. Our main finding was
that robust Huber-LASSO seems to outperform standard LASSO
in the prediction of protein, metabolite and gene expression
based on individual genotype data.

In the present study, we used the Fisher-consistent version
of Kendall’s correlation between observed and genetically pre-
dicted protein, metabolite and gene expression measurements
to quantify the prediction accuracy [18]. The classical Pearson’s
estimator of correlation may be seriously affected by outliers,
and robust correlation metrics such as the popular Kendall and
Spearman correlations provide a good compromise between
robustness and Gaussian efficiency. We used Kendall’s correla-
tion in our study because it is more robust and slightly more
efficient than the Spearman correlation [18]. The interpreta-
tion of the three correlation measures is similar, and Kendall’s,
Spearman’s and Pearson’s correlation consistently pointed to a
higher prediction accuracy of robust Huber-LASSO than standard
LASSO in this study.

In our analyses of real mRNA expression data from the GTEx
project, we applied 5-fold cross-validation: the standard and
robust Huber-LASSO estimates of the regression coefficients
were computed using four fifths of the data, and the gene
expression levels were predicted in an independent dataset that
contained the remaining one-fifth of the observations. PrediX-
can, a popular software for the prediction of gene expression,
applies a similar approach [20]. LASSO and Elastic Net were
compared in the development of PrediXcan and showed similar
performances, but the released version of PrediXcan utilizes
Elastic Net. The potential improvement in the prediction accu-
racy of gene expression using an updated version of PrediXcan
that incorporates the robust Elastic Net and/or LASSO is left for
future research.

Another potential application of robust LASSO is Mendelian
randomization (MR) [23]. MR uses genetic variants as instrumen-
tal variables to investigate the causal effect of an exposure on an

outcome. The genetic associations must fulfil several assump-
tions for causality testing that are generally difficult to check.
Causal effects are typically estimated by the inverse-variance
weighted (IVW) method. Since the inclusion of just one invalid
genetic variant in the MR analysis yields biased IVW estimators,
the development of MR methods that are robust against invalid
instruments is an active area of research. For example, Slob
and Burgess recently compared MR-LASSO and a robust IVW
version that uses Tukey’s biweight loss function (MR-Robust) [24].
Combination of the two methods (MR-Robust LASSO) could be
advantageous and should also be investigated in the future.

A key limitation of genetic studies on molecular phenotypes
is their dependence on strong associations between the genetic
predictors and the outcome. It is important to note here that
the identified prediction advantage of robust Huber-LASSO over
standard LASSO was relatively small compared with this essen-
tial limitation. The explained variance is the upper limit of the
correlation between predicted and observed phenotypes. The
0.01 cutoff for the squared correlation, previously applied to
select phenotypes that can be genetically predicted, translates
into a correlation coefficient between predicted and observed
phenotypes >0.10 or <−0.10 [20, 22]. In general, the explained
variance was smaller for mRNA expression than for plasma pro-
tein and serum metabolite levels. We found that robust Huber-
LASSO improved the prediction accuracy for molecular pheno-
types with a correlation coefficient >0.10; neither robust Huber-
LASSO nor standard LASSO can accurately predict the outcome
when the association between the genetic variants and the
molecular phenotype is weak.

One of the strengths of our study was the investigation of
the stability of the regularization parameter by means of a data-
driven cross-validation approach instead of fixing the value of λ

[12]. Outliers and high-leverage observations may also have an
indirect effect on the estimated regression coefficients through
the regularization parameter. Other novelties of this study were
the investigation of the influence of outlying molecular pheno-
types in combination with both average and divergent genotypes
on the prediction results, and the examination of the number of
associated genetic variants for three common molecular pheno-
types. On the other hand, limitations of our study comprised the
non-evaluation of alternative molecular markers, for example
methylation and non-coding RNA expression, and the consid-
eration of particular types of regularized regression and robust
methods. There are regularized regression methods other than
LASSO, such as Ridge regression and Elastic Net, which use dis-
tinct penalty terms [25–27]. The penalization of Ridge regression
is based on the L2 norm, whereas Elastic Net combines the L1
and L2 norms in the penalty term. Robust versions of the Elastic
Net using S- and MM-estimation have been proposed and are
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implemented in the R package pense [28]. Furthermore, instead
of using the Huber loss function to limit the influence of outliers
on a particular regularized regression method, other robust loss
functions, such as the quantile, Hampel’s redescending, Tukey’s
biweight and the least trimmed squares loss functions, could
be used [29]. For example, a trimmed version of the LASSO is
implemented in the R package robustHD. The present simu-
lations, real datasets and results may guide the comparison
of other regularized regression methods in conjunction with
distinct robust loss functions in the context of genetic studies
of molecular genotypes in the future.

Data availability

The data underlying this article were kindly provided by EGA
(https://www.ebi.ac.uk/ega/about/access, accession number:
EGAS00001002555), KORA and the GTEx project (https://dbgap.
ncbi.nlm.nih.gov, accession number: phs000424.v8.p2). Original
data can be requested from the EGA or the GTEx project.
The informed consents given by KORA study participants do
not cover data posting in public databases. However, data
are available upon request via the KORA Project Application
Self-Service Tool (https://epi.helmholtz-muenchen.de/). Data
requests can be submitted online and are subject to approval by
the KORA board.

Key Points
• Robust Huber-LASSO outperformed standard LASSO

in the prediction of protein, metabolite and mRNA
expression levels based on individual genotype data.

• Single outliers exerted a greater influence on the regu-
larization parameter, the cross-iteration concordance
of the model, the true-positive rate and the estimated
regression coefficients for the standard than for the
robust Huber-LASSO.

• The two regularized regression methods showed well-
controlled false-positive rates.

Supplementary data

Supplementary data are available online at Briefings in
Bioinformatics.
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