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Abstract

Motivation: While generative models have shown great success in sampling high-dimensional samples conditional on
low-dimensional descriptors (stroke thickness in MNIST, hair color in CelebA, speaker identity in WaveNet), their gener-
ation out-of-distribution poses fundamental problems due to the difficulty of learning compact joint distribution across
conditions. The canonical example of the conditional variational autoencoder (CVAE), for instance, does not explicitly re-
late conditions during training and, hence, has no explicit incentive of learning such a compact representation.

Results: We overcome the limitation of the CVAE by matching distributions across conditions using maximum
mean discrepancy in the decoder layer that follows the bottleneck. This introduces a strong regularization both for
reconstructing samples within the same condition and for transforming samples across conditions, resulting in
much improved generalization. As this amount to solving a style-transfer problem, we refer to the model as transfer
VAE (trVAE). Benchmarking trVAE on high-dimensional image and single-cell RNA-seq, we demonstrate higher ro-
bustness and higher accuracy than existing approaches. We also show qualitatively improved predictions by tack-
ling previously problematic minority classes and multiple conditions in the context of cellular perturbation response
to treatment and disease based on high-dimensional single-cell gene expression data. For generic tasks, we improve
Pearson correlations of high-dimensional estimated means and variances with their ground truths from 0.89 to 0.97
and 0.75 to 0.87, respectively. We further demonstrate that trVAE learns cell-type-specific responses after perturb-
ation and improves the prediction of most cell-type-specific genes by 65%.

Availability and implementation: The trVAE implementation is available via github.com/theislab/trvae. The results
of this article can be reproduced via github.com/theislab/trvae_reproducibility.

Contact: fabian.theis@helmholtz-muenchen.de or alex.wolf@helmholtz-muenchen.de

1 Introduction

The task of generating high-dimensional samples x conditional on a
latent random vector z and a categorical variable s has established sol-
utions (Mirza and Osindero, 2014; Ren et al., 2016). The situation
becomes more complicated if the support of z is divided into domains
d that come with different meanings: say d 2 fcat; dogg and one is
interested in out-of-distribution (OOD) generation of samples x in a
domain and condition (d, s) that are not part of the training data.
Now, predicting how a given brown dog would look like with black
fur becomes an OOD problem if the training data does not have
observations of black dogs. To still have a chance of solving it, we as-
sume training data with brown dogs, and brown and black cats. In an
application with higher relevance, there is strong interest in how un-
treated humans (s ¼ 0; d ¼ 0) respond to drug treatment (s¼1) based
on training data from human in vitro (d¼1) and in vivo mouse
(d¼2) experiments. Hence, the target domain of interest (d¼0) does
not offer training data for s¼1, but only for s¼0.

In this article, we suggest to address the challenge of generating
samples OOD by regularizing the joint distribution across the cat-
egorical variable s using maximum mean discrepancy (MMD) in the
framework of a conditional variational autoencoder (CVAE) (Sohn
et al., 2015). This produces a more compact representation of a
cross-condition distribution that would otherwise display high vari-
ance in the standard CVAE. We will show that this leads to more ac-
curate OOD prediction. MMD has proven successful in a variety of
tasks. In particular, matching distributions with MMD in variation-
al autoencoders (VAEs) (Kingma and Welling, 2013) has been sug-
gested for unsupervised domain adaptation (Louizos et al., 2015) or
for learning statistically independent latent dimensions (Lopez et al.,
2018b). In supervised domain adaptation approaches, MMD-based
regularization has been shown to be a viable strategy of learning
label-predictive features that are stripped off of domain-specific in-
formation (Long et al., 2015; Tzeng et al., 2014). In these instances,
however, MMD was used at the bottleneck layer, where it leads to
different properties.
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Matching distributions across perturbed and control populations
has also been studied in the context of causal inference (Johansson
et al., 2016), albeit not in the context of generative modeling and
OOD generation. Johansson et al. (2016) showed how to improve
counterfactual inference by learning representations that enforce
similarity between perturbed and control using a linear discrepancy
measure, mentioning MMD as an alternative metric.

In further related work, the OOD generation problem was
addressed via hard-coded latent space vector arithmetics (Lotfollahi
et al., 2019) and histogram matching (Amodio et al., 2018). The ap-
proach of this article, however, introduces a data-driven end-to-end
approach, which does not involve hard-coded elements and general-
izes to more than one condition. We hope this work further stimu-
lates the recent success of generative models in single-cell biology
(Eraslan et al., 2019; Lopez et al., 2018a).

2 Materials and methods

2.1 Variational autoencoder
The motivation of the VAE (Kingma and Welling, 2013) is to pro-
vide a neural-network based parametrization for maximizing the
likelihood

phðXjSÞ ¼
ð

phðXjZ; SÞphðZjSÞdZ; (1)

where X denotes a high-dimensional random variable, S a random
variable representing conditions, h the model parameters and
phðXjZ; SÞ the generative distribution that decodes Z into X. Here
and in the following, we adapt the notation of Lopez et al. (2018b)
while adapting the presentation of Doersch (2016).

To assign probability mass to values of Z that are likely to pro-
duce actually observed values of X, one introduces an encoding dis-
tribution q/, which can be related to ph via

log phðXjSÞ � ðq/ðZjX; SÞjjphðZjX; SÞÞ

¼ Eq/ðZjX;SÞ½log phðXjZ; SÞ� � ðq/ðZjX; SÞjjphðZjSÞÞ:

The right hand side of this equation provides the cost function
‘VAE for optimizing neural-network based parametrizations of ph

and q/. The left-hand side describes the likelihood subtracted by an
error term.

The case in which S 6¼ / is referred to as the CVAE (Sohn et al.,
2015), and a straight-forward extension of the original framework
(Kingma and Welling, 2013), which treated S � /.

2.2 Maximum-mean discrepancy
Let ðX;F ;PÞ be a probability space, X a separable metric space, x :
X! X a random variable and k : X � X ! R a continuous,
bounded, positive semi-definite kernel with a corresponding repro-
ducing kernel Hilbert space (RKHS) H. Consider the kernel-based
estimate of a distance between two distributions p and q over the
random variables X and X0. Such a distance, defined via the canonic-
al distance between their H-embeddings, is called the MMD
(Gretton et al., 2012) and denoted lMMDðp;qÞ, with an explicit
expression:

‘MMDðX;X0Þ ¼
1

n2
0

X
n;m

kðxn; xmÞ þ
1

n2
1

X
n;m

kðx0n; x0mÞ

� 2

n0n1

X
n;m

kðxn;x
0
mÞ;

(2)

where the sums run over the number of samples n0 and n1 for x and
x0, respectively. Asymptotically, for a universal kernel such as the
Gaussian kernel kðx; x0Þ ¼ e�cjjx�x0jj2 ; ‘MMDðX;X0Þ is 0 if and only if
p � q. For the implementation, we use multi-scale RBF kernels
defined as:

kðx;x0Þ ¼
Xl

i¼1

kðx; x0; ciÞ (3)

where kðx; x0; ciÞ ¼ e�ci jjx�x0jj2 and ci is a hyper-parameter.
Addressing the domain adaptation problem, the ‘Variational

Fair Autoencoder’ (VFAE) (Louizos et al., 2015) uses MMD to
match latent distributions q/ðZjs ¼ 0Þ and q/ðZjs ¼ 1Þ—where s
denotes a domain—by adapting the standard VAE cost function
‘VAE according to

LVFAEð/; h; X;X0; S; S0Þ ¼ LVAEð/; h; X; SÞ
þLVAEð/; h; X0; S0Þ
�b‘MMDðZs¼0;Z

0
s0¼1Þ;

(4)

where X and X0 are two high-dimensional observations with their
respective conditions S and S0.

In contrast to GANs (Goodfellow et al., 2014) whose training
procedure is notoriously hard due to the minmax optimization prob-
lem, training models using MMD or Wasserstein distance metrics is
comparatively simple (Arjovsky et al., 2017; Dziugaite et al., 2015a;
Li et al., 2015) as only a direct minimization of a single loss is
involved. It has been shown that MMD-based GANs have some
advantages over Wasserstein GANs resulting in a simpler and faster-
training algorithm with matching performance (Bi�nkowski et al.,
2018). This motivated us to choose MMD as a metric for imple-
menting distribution matching as a regularization of a CVAE.

2.3 Transfer VAE
Let us adapt the following notation for the transformation within a
standard CVAE: High-dimensional observations x and a scalar or
low-dimensional condition s are transformed using f (encoder, corre-
sponding to distribution q/) and g (decoder, corresponding to distri-
bution ph), which are parametrized by weight-sharing neural
networks, and give rise to predictors ẑ; ŷ and x̂:

ẑ ¼ f ðx; sÞ (5a)

ŷ ¼ g1ðẑ; sÞ (5b)

x̂ ¼ g2ðŷÞ (5c)

where we distinguished the first (g1) and the remaining layers (g2) of
the decoder g ¼ g2

�g1 (Fig. 1). While z formally depends on s, it is
commonly empirically observed Z??S, that is, the representation z is
disentangled from the condition information s. By contrast, the ori-
ginal representation typically strongly covaries with S: X 6??S. The
observation can be explained by admitting that an efficient z-repre-
sentation, suitable for minimizing reconstruction and regularization
losses, should be as free as possible from information about s.
Information about s is directly and explicitly available to the
decoder Equation 5b, and hence, there is an incentive to optimize
the parameters of f to only explain the variation in x that is
not explained by s. Experiments below demonstrate that indeed,
MMD regularization on the bottleneck layer z does not improve
performance.

However, even if z is completely free of variation from s, the y
representation has a strong s component, Y 6??S, which leads to a
separation of ys¼1 and ys¼0 into different regions of their support Y.
In the standard CVAE, without any regularization of this y represen-
tation, a highly varying, non-compact distribution emerges across
different values of s (Fig. 2). To compactify the distribution so
that it displays only subtle, controlled differences, we impose
MMD Equation 2 in the first layer of the decoder (Fig. 1). We as-
sume that modeling y in the same region of the support of Y across
s forces learning common features across s where possible. The
more of these common features are learned, the more accurately the
transformation task will performed and the higher are chances of
successful OOD generation. Using one of the benchmark datasets
introduced, below, we qualitatively illustrate the effect (Fig. 2).
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During training time, all samples are passed to the model with
their corresponding condition labels ðxs; sÞ. At prediction time, we
pass ðxs¼0; s ¼ 0Þ to the encoder f to obtain the latent representation
ẑs¼0. In the decoder g, we pass ðẑs¼0; s ¼ 1Þ and through that, let the
model transform data to x̂s¼1.

The cost function of trVAE derives directly from the standard
CVAE cost function, as introduced in the backgrounds section,

LCVAEð/; h; X; S; a; gÞ ¼ gEqhðZjX;SÞ log ðp/ðXjZ; SÞÞ
�aDKLðqhðZjX; SÞjjp/ðZjX; SÞÞ:

(6)

Consistent with the above, let ŷs¼0 ¼ g1ðf ðx; s ¼ 0Þ; s ¼ 0Þ
and ŷs¼1 ¼ g1ðf ðx0; s ¼ 1Þ; s ¼ 1Þ. Through duplicating the cost
function for X0 and adding an MMD term, the loss of trVAE
becomes:

Fig. 1. Transfer VAE (trVAE) is an MMD-regularized conditional VAE. It receives randomized batches of data (x) and condition (s) as input during training, stratified for ap-

proximately equal proportions of s. In contrast to a standard CVAE, we regularize the effect of s on the representation obtained after the first-layer g1ðẑ; sÞ of the decoder g.

During prediction time, we transform batches of the source condition xs¼0 to the target condition xs¼1 by encoding ẑ0 ¼ f ðx0; s ¼ 0Þ and decoding gðẑ0; s ¼ 1Þ

Fig. 2. Comparison of representations for MMD-layer in trVAE and the corresponding layer in the standard CVAE using UMAP (McInnes et al., 2018). The MMD regulariza-

tion incentivizes the model to learn condition-invariant features resulting in a more compact representation. The figure shows the qualitative effect for the ‘PBMC data’ intro-

duced in experiments section. Both representations show the same number of samples
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LtrVAEð/; h; X;X0; S; S0; a; g; bÞ ¼ LCVAEð/; h; X; S; a; gÞ
þLCVAEð/; h; X0; S0; a; gÞ
�b‘MMDðŶ s¼0; Ŷ s0¼1Þ:

(7)

4 Results

We demonstrate the advantages of an MMD-regularized first layer
of the decoder by benchmarking versus a variety of existing methods
and alternatives:

• Standard CVAE (Sohn et al., 2015)
• CVAE with MMD on bottleneck (MMD-CVAE), similar to

VFAE (Louizos et al., 2015)
• MMD-regularized autoencoder (Amodio et al., 2019; Dziugaite

et al., 2015b)
• CycleGAN (Zhu et al., 2017)
• scGen, a VAE combined with vector arithmetics (Lotfollahi

et al., 2019)
• scVI, a CVAE with a negative binomial output distribution

(Lopez et al., 2018a).

First, we demonstrate trVAE’s basic OOD style transfer capacity
on two established image datasets, on a qualitative level. We then
address quantitative comparisons of challenging benchmarks with
clear ground truth, predicting the effects of biological perturbation
based on high-dimensional structured data. We used convolutional
layers for imaging examples in section and fully connected layers for
single-cell gene expression datasets in sections and. The optimal
hyper-parameters for each application were chosen by using a par-
ameter gird-search for each model.

4.1 MNIST and CelebA style transformation
Here, we use Morpho-MNIST (Castro et al., 2018), which contains
60 000 images each of ‘normal’ and ‘transformed’ digits, which are
drawn with a thinner and thicker stroke. For training, we used all
normal-stroke data. Hence, the training data covers all domains
(d 2 f0; 1; 2; . . . ; 9g) in the normal stroke condition (s¼0). In the
transformed conditions (thin and thick strokes, s 2 f1; 2g), we only
kept domains d 2 f1; 3; 6;7g.

We train a convolutional trVAE in which we first encode the
stroke width via two fully connected layers with 128 and 784 fea-
tures, respectively. Next, we reshape the 784-dimensional into
28*28*1 images and add them as another channel in the image.
Such trained trVAE faithfully transforms digits of normal stroke to
digits of thin and thicker stroke to the OOD domains (Fig. 3).

Next, we apply trVAE to CelebA (Liu et al., 2015), which con-
tains 202 599 images of celebrity faces with 40 binary attributes for
each image. We focus on the task of learning a transformation that
turns a non-smiling face into a smiling face. We kept the smiling (s)
and gender (d) attributes and trained the model with images from
both smiling and non-smiling men but only with non-smiling
women.

In this case, we trained a deep convolutional trVAE with a U-
Net-like architecture (Ronneberger et al., 2015). We encoded the
binary condition labels as in the Morpho-MNIST example and fed
them as an additional channel in the input.

Predicting OOD, trVAE successfully transforms non-smiling
faces of women to smiling faces while preserving most aspects of the
original image (Fig. 4). In addition to showing the model’s capacity
to handle more complex data, this example demonstrates the flexi-
bility of the model adapting to well-known architectures like U-Net
in the field.

4.2 Infection response
Accurately modeling cell response to perturbations is a key question
in computational biology. Recently, neural network models have
been proposed for OOD predictions of high-dimensional tabular

data that quantifies gene expression of single-cells (Amodio et al.,
2018; Lotfollahi et al., 2019). However, these models are not
trained on the task relying instead on hard-coded transformations
and cannot handle more than two conditions.

We evaluate trVAE on a single-cell gene expression dataset that
characterizes the gut (Haber et al., 2017) after Salmonella or
Heligmosomoides polygyrus (H. poly) infections, respectively. For
this, we closely follow the benchmark as introduced in Lotfollahi
et al. (2019). The dataset contains eight different cell types in four
conditions: control or healthy cells (n¼3240), H.Poly infection a
after three days (H.Poly.Day3, n¼2121), H.poly infection after
10 days (H.Poly.Day10, n¼2711) and salmonella infection
(n¼1770) (Fig. 5a). The normalized gene expression data has 1000
dimensions corresponding to 1000 genes. Since three of the bench-
mark models are only able to handle two conditions, we only
included the control and H.Poly.Day10 conditions for model com-
parisons. In this setting, we hold out Tuft infected cells for training
and validation, as these constitute the hardest case for OOD general-
ization (least shared features, few training data).

Figure 5b and c shows trVAE accurately predicts the mean and
variance for high-dimensional gene expression in Tuft cells. We
compared the distribution of Defa24, the gene with the highest
change after H.poly infection in Tuft cells, which shows trVAE pro-
vides better estimates for mean and variance compared to other
models. Moreover, trVAE outperforms other models also when
quantifying the correlation of the predicted 1000 dimensional x
with its ground truth (Fig. 5e). In particular, we note that the MMD
regularization on the bottleneck layer of the CVAE does not im-
prove performance, as argued above.

In contrast to existing approaches, trVAE can handle multiple
perturbations at the same time. To illustrate this, we performed an-
other experiment by training eight different models holding out each
of the eight cell types form all three conditions. trVAE accurately
predicts all cell types across different perturbations (Fig. 5f). The
ability to handle multiple perturbations enables analysis and predic-
tion for large drug screening studies.

4.3 Stimulation response
Similar to modeling infection response as above, we benchmark
on another single-cell gene expression dataset consisting of 7217
IFN-b stimulated and 6359 control peripheral blood mono-
nuclear cells (PBMCs) from eight different human Lupus patients

Fig. 3. OOD style transfer for Morpho-MNIST dataset containing normal, thin and

thick digits. trVAE successfully transforms normal digits to thin (a) and thick (b) for

digits not seen during training (OOD)
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(Kang et al., 2018). The stimulation with IFN-b induces dramatic
changes in the transcriptional profiles of immune cells, which
causes big shifts between control and stimulated cells (Fig. 6a).
We studied the OOD prediction of natural killer (NK) cells held
out during the training of the model.

trVAE accurately predicts mean (Fig. 6b) and variance (Fig. 6c)
for all genes in the held out NK cells. In particular, genes strongly
responding to IFN-b (highlighted in red in Fig. 6b and c) are well
captured. An effect of applying IFN-b is an increase in ISG15 for
NK cells, which the model never sees during training. trVAE

Fig. 4. CelebA dataset with images in two conditions: celebrities without a smile and with a smile on their face. trVAE successfully adds a smile on faces of women without a

smile despite these samples completely lacking from the training data (OOD). The training data only comprises non-smiling women and smiling and non-smiling men

Fig. 5. (a) UMAP visualization of conditions and cell type for gut cells. (b and c) Mean and variance expression of 1000 genes comparing trVAE-predicted and real infected

Tuft cells together with the top 10 differentially expressed genes highlighted in red (R2 denotes Pearson correlation between ground truth and predicted values). (d)

Distribution of Defa24: the top response gene to H.poly.Day10 infection between control, predicted and real stimulated cells for different models. Vertical axis: expression dis-

tribution for Defa24. Horizontal axis: control, real and predicted distribution by different models. (e) Comparison of Pearson’s R2 values for mean and variance gene expres-

sion between real and predicted cells for different models. Center values show the mean of R2 values estimated using n¼100 random subsamples for the prediction of each

model and error bars depict standard deviation. (f) Comparison of R2 values for mean and variance gene expression between real and predicted cells by trVAE for the eight dif-

ferent cell types and three conditions. Center values show the mean of R2 values estimated using n¼ 100 random subsamples for each cell type and error bars depict standard

deviation
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predicts this change by increasing the expression of ISG15 as
observed in real NK cells (Fig. 6d). A cycle GAN and an MMD-
regularized auto-encoder (SAUCIE) and other models yield less ac-
curate results than our model. Comparing the correlation of pre-
dicted mean and variance of gene expression for all dimensions of
the data, we find trVAE performs best (Fig. 6e). To demonstrate the
generality of our method we trained seven other models, removing
stimulated cells for each of seven different cell types in the study.
Our model robustly predicted all other seven cell types (Fig. 6f).

The specificity of perturbation responses of cells depends on
many factors leading to changes in gene expression levels that are ei-
ther shared across all types or specific to some. Predicting both
groups of responses is necessary to address questions such as which
cell types are most responsive to a perturbation, and successful drug
dose prediction (Hu et al., 2020; Srivatsan et al., 2020).

trVAE can capture specific responses after IFN-b when any of
the cell types is absent from training and afterward predicted. To
demonstrate this, we scored the specificity of differently expressed
genes (DEGs) after IFN-b stimulation using a median-based score
(see Supplementary Methods). trVAE successfully predicts top 10
most cell-type-specific responding genes (Fig. 7a). Specifically, our
model predicted the up-regulation of CCL8, a CD14-Mono specific
response gene after IFN-b. As another example, trVAE not only pre-
dicted the up-regulation of ISG15 as a shared response gene but also
captured the specific expression pattern of this gene across different
cell types. Next, we compared our approach with the state-of-the-
art model (scGen) for this task using the top 250 most cell-type-
specific DEGs. Our model improves the mean error on the first and
the second top 50 specific DEGs by 65% and 44%, respectively
(Fig. 7b and c). Further comparison demonstrated that trVAE not
only outperforms scGen but also all other benchmarked methods
(Supplementary Figs S1 and S2).

5 Discussion

By arguing that the standard CVAE yields representations in the first
layer following the bottleneck that vary strongly across categorical
conditions, we introduced an MMD regularization that forces these
representations to be similar across conditions. The resulting model
(trVAE) outperforms existing modeling approaches on benchmark
and real-world datasets.

Within the bottleneck layer, CVAEs already display a well-
controlled behavior and regularization does not improve perform-
ance. Further regularization at later layers might be beneficial but is
numerically costly and unstable as representations become high-
dimensional. However, we have not yet systematically investigated
this and leave it for future studies.

We have evaluated the predictive power of trVAE by leaving out
one cell type and trying to predict it in cases in which the training
data contains cell types that are rather similar to the targeted OOD
cells (Lotfollahi et al., 2019). Further evaluation is needed when
OOD samples are very different from the training data. Also, further
studies are required to understand the uncertainty quantification in-
herent to the probabilistic nature of the model. Finally, we note that
architectures related to Gaussian mixture VAEs or GANs may be
considered as alternatives to the MMD regularization.

The ability to analyze and predict multiple perturbations allow
trVAE to be applied to experiments with many biological condi-
tions. Specifically, recent advances in massive single-cell compounds
screening (Srivatsan et al., 2020) provide great potential to exploit
our model for further experimental design and the study of inter-
action effects among different drugs. Future conceptual investiga-
tions concern establishing connections to causal-inference-inspired
models beyond (Johansson et al., 2016) such as CEVAE (Louizos
et al., 2017), establishing further that faithful modeling of an

Fig. 6. (a) UMAP visualization of peripheral blood mononuclear cells (PBMCs). (b and c) Mean and variance per 2000 dimensions between trVAE-predicted and real natural

killer cells (NK) together with the top 10 differentially expressed genes highlighted in red. (d) Distribution of ISG15: the most strongly changing gene after IFN-b perturbation

among control, real and predicted stimulated cells for different models. Vertical axis: expression distribution for ISG15. Horizontal axis: control, real and predicted distribu-

tion by different models. (e) Comparison of R2 values for mean and variance gene expression between real and predicted cells for different models. Center values show the

mean of R2 values estimated using n¼100 random subsamples for the prediction of each model and error bars depict standard deviation. (f) Comparison of R2 values for

mean and variance gene expression between real and predicted cells by trVAE for eight different cells in the study. Center values show the mean of R2 values estimated using

n¼100 random subsamples for each cell type and error bars depict standard deviation
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interventional distribution can be re-framed as successful perturb-
ation effect prediction across domains.
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