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Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/
American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic sig-
natures of adherence to these guidelines and tested their associations with colorectal cancer
risk in the European Prospective Investigation into Cancer cohort.
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METHODS:
 Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1–5) were calculated

from participant data on weight maintenance, physical activity, diet, and alcohol among a
r: BMI, body mass index; EPIC, European
ancer and Nutrition; OCFA, odd chain fatty
hatidylcholine; PLSR, partial least-squares
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discovery set of 5738 cancer-free European Prospective Investigation into Cancer participants
with metabolomics data. Partial least-squares regression was used to derive fatty acid and
endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set
of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were
calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corre-
sponding change in metabolic signatures using multivariable conditional logistic regression.
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RESULTS:
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Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain
fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely asso-
ciated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI,
0.29–0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50–0.78) than the
WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86–1.00) overall. Signature associations
were stronger in male compared with female participants.
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CONCLUSIONS:
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Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or
biological risk factors were associated with colorectal cancer. Measuring a specific panel of
metabolites representative of a healthy or unhealthy lifestyle may identify strata of the popu-
lation at higher risk of colorectal cancer.
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Colorectal cancer is one of the most common neo-
plasms, with approximately 1.8 million new cases

and 860,000 deaths reported worldwide in 2018.1

Established risk factors for colorectal cancer include
adiposity, smoking, adult attained height, and high intake
of alcohol and red and processed meat, whereas physical
activity and high intakes of whole grains, fish, and dairy
products may protect against the disease.2 Therefore,
individuals may be able to minimize their risk of colo-
rectal cancer by following a healthy lifestyle and many
thousands of cases per year could be avoided.

The World Cancer Research Fund and American
Institute for Cancer Research (WCRF/AICR) issues
continuously updated recommendations on diet, physical
activity, and weight management for the prevention of
cancer, based on all available evidence.3 At their core are
healthy behaviors in relation to weight maintenance,
physical activity, and intakes of red and processed meat,
fruit and vegetables, fiber, and alcohol. A summary score
has been developed to measure individual adherence to
recommendations.4 Higher scores have since been found
to be associated with colorectal cancer risk4–8 and
cancer-specific and overall mortality.6

Unhealthy lifestyle behaviors and low WCRF/AICR
scores may increase the risk of colorectal cancer through
adverse effects upon systemic metabolism. Although
tumorigenesis is promoted by adiposity, hyper-
insulinemia, and chronic inflammation,9 the systemic
metabolic changes that precede or precipitate these
physiological states remain unclear. To identify specific
metabolite patterns associated with lifestyle factors and
then to investigate whether they may play a role in
colorectal cancer development, we used an extensive set
of participants for whom targeted metabolomics and
fatty acid data had been acquired within the European
Prospective Investigation into Cancer and Nutrition
A 5.6.0 DTD � YJCGH57637_proof � 28
cohort (EPIC). The objective of this analysis was first to
characterize metabolic signatures of the WCRF/AICR
score in a large group of cancer-free controls and to
identify which compounds contributed to these signa-
tures, and, second, to determine whether these metabolic
signatures in prediagnostic blood samples were associ-
ated with subsequent colorectal cancer development.
Materials and Methods

The European Prospective Investigation Into
Cancer Cohort and Collection of Data and
Samples

EPIC is a multicenter prospective cohort that was
established to investigate risk factors for cancer and
other chronic diseases. More than 520,000 healthy sub-
jects were enrolled between 1992 and 2000 from 23
EPIC administrative centers in 10 European countries.
The collection of participant data and biospecimens has
been described previously.10 WCRF/AICR scores were
calculated for all participants from recommendations on
weight maintenance, physical activity, intake of food and
drinks that promote weight gain, intake of plant-based
foods, intake of animal-based foods, alcohol intake, and
breastfeeding (Supplementary Table 1). Although the
recommendations were updated in 2018,11 we retained
the scores previously calculated in EPIC.4 These ranged
from 0 to 6 for men and from 0 to 7 for women and were
grouped into quintiles for statistical modeling. The data
and samples used were from all EPIC countries except
Greece. Approval for the study was obtained from the
International Agency for Research on Cancer and the
ethical review boards of the participating institutes. All
participants provided written informed consent.
December 2020 � 11:48 pm � ce DVC
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What You Need to Know

Background
The World Cancer Research Fund/American Insti-
tute for Cancer Research (WCRF/AICR) score is a
composite of diet and lifestyle variables and has
been found to be associated inversely with colorectal
cancer risk in previous studies.

Findings
Blood fatty acid and endogenous metabolite signa-
tures of the WCRF/AICR score derived from a dis-
covery set 5738 of cancer-free participants were
associated more strongly with colorectal cancer risk
than the WCRF/AICR score as calculated from
baseline participant data in a study of 1608 colo-
rectal cancer cases and 1608 matched controls.

Implications for patient care
Metabolic signatures of the WCRF/AICR score may
capture etiologic risk factors for colorectal cancer
beyond the score itself and provide insight into
metabolic changes that precede cancer development.
If replicated, measurement of these metabolite sig-
natures could help identify strata of the population
at higher risk of colorectal cancer.
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Metabolomics Study Design

This analysis used a discovery set of 5738 cancer-free
control participants, originating from several non-
colorectal case–control studies nested within the EPIC
cohort, to derive metabolic signatures of the WCRF/AICR
score (ie, the linear combination of metabolites optimally
related to the score). Fasted plasma and serum samples
from the discovery set of controls were analyzed for
either 34 fatty acids extracted from phospholipid frac-
tions (n ¼ 4239) or 155 endogenous metabolites assayed
by the Biocrates AbsoluteIDQ P150/P180 Kit (n ¼ 1741;
Biocrates Life Sciences AG, Innsbruck, Austria). These 2
analyses are referred to as fatty acids and endogenous
metabolites throughout this article. Metabolic signatures
were determined separately for the 2 analyses by
multivariate partial least-square regression (PLSR)
models. Metabolite-predicted scores then were deter-
mined for each participant in the nested colorectal
case–control study (n ¼ 1608 cases and 1608 matched
controls) for whom fatty acid or endogenous data were
available, and these were regarded as the magnitude of
the metabolic signature. All case–control participants
had been analyzed for endogenous metabolites, while a
subset of 438 cases and 438 matched controls addi-
tionally were analyzed for fatty acids. Associations be-
tween colorectal cancer risk and fatty acid signature,
endogenous metabolic signature, and WCRF/AICR score
then were tested separately in multivariable-adjusted
models. The study design is illustrated in Figure 1.

Follow-Up Evaluation for Colorectal Cancer
Incidence

Incident cases of colorectal cancer were identified
from health insurance records, contact with cancer and
pathology registries, and the active follow-up evaluation
of participants. Cases were defined using the Interna-
tional Classification of Diseases, 10th revision, and the
International Classification of Diseases for Oncology, 2nd
revision. Cases were incidence-density matched to
cancer-free controls by age and year of sampling, sex,
study center, follow-up time since blood collection,
fasting status, and, when relevant, menopausal status
and phase of menstrual cycle at blood collection.

Acquisition of Metabolomics Data

Saturated fatty acids (SFAs), monounsaturated fatty
acids, polyunsaturated fatty acids, industrial trans fatty
acids, and natural trans fatty acids were extracted from
plasma phospholipid fractions and quantified by gas
chromatography.12 For endogenous metabolites, the
Biocrates AbsoluteIDQ p150 or p180 Kits were used to
measure concentrations of amino acids, biogenic amines,
hexose sugars, acylcarnitines, sphingolipids
(sphingomyelins), phosphatidylcholines (PC), and
FLA 5.6.0 DTD � YJCGH57637_proof � 28
lysophosphatidylcholines in serum or plasma, following
the recommended procedure.13,14 See the
Supplementary Methods section for further details of
analytical methodology.
Statistical Analysis

Determination of metabolic signatures. Discovery set
metabolite data were log2 transformed, scaled, and
missing values were imputed with minimum values. The
resulting matrices were transformed to the residuals of a
linear model on sex, batch, center (fixed effects), and
study (random effects). Metabolic signatures were
derived as the loadings (coefficients) on the first latent
variable of a PLSR model, denoted pLV1, with metabolites
as predictors and WCRF/AICR score as the response. The
validated PLSR models then were used to predict WCRF/
AICR scores in the case–control study on a continuous
scale of 1 to 5. Pearson correlations between metabolite
concentrations also were calculated in a subset of par-
ticipants. See the Supplementary Methods section for
further details.

Association of metabolic signatures of World Cancer
Research Fund/American Institute for Cancer Research
score with adherence to recommendations and colorectal
cancer risk. Partial Pearson correlations were calculated
between metabolic signatures and adherence to the 6
individual components of the WCRF/AICR score (as
given earlier, each on a scale of 0, 0.5, or 1), adjusting for
height, highest education level attained, and smoking
December 2020 � 11:48 pm � ce DVC
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Sample selection 
and matching

Laboratory analysis of 
plasma or serum

Determination of 
signatures by PLSR

Measurement of 
signature (prediction 

of score from 
metabolite data)

Conditional logistic 
regression models

Metabolic signature 
discovery

Odds ratios for 
colorectal cancer 
and subsites

EPIC Prospective 
Cohort 
n > 520,000

WCRF/AICR 
score from 
participant data 
(scale 1-5)

Discovery set of 
participants (from 
non-colorectal nested 
case-control studies) 
n = 5,738

Fatty acid 
signatures 
(scale 1-5)

Endogenous 
metabolite 
signatures 
(scale 1-5)

Endogenous 
metabolite 
model of 
WCRF/AICR 
score (128 
compounds)

Fatty acid 
model of 
WCRF/AICR 
score (30 
compounds)

Incident colorectal 
cancer cases 
n = 6,241

Endogenous 
metabolite data 
(fasting) 
n = 1,741

Fatty acid 
data (fasting) 
n = 4,239

Subset with 
fatty acid data 
n = 876

Subset with 
endogenous 
metabolite
data n = 3,216

Nested 
metabolomics 
case-control A, 
matched 1:1 
n = 3,216

WCRF/AICR 
score from 
participant data 
(scale 1-5)

Figure 1.Overview of the
study design. An inde-
pendent set of healthy
controls (left) was used to
derive metabolic signa-
tures of the WCRF/AICR
score, which then were
used to predict score cat-
egories in the nested
case–control study (right).
EPIC, European Prospec-
tive Investigation into
Nutrition and Cancer;
PLSR, partial least-
squares regression;
WCRF/AICR, World Can-
cer Research Fund/Amer-
ican Institute for Cancer
Research.
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status and intensity. Odds ratios and 95% CIs were
calculated for risk of colorectal cancer and subsites with
a metabolic signature or WCRF/AICR score as the main
explanatory variable in multivariable conditional logistic
regression models. Additional models were fit for indi-
vidual WCRF/AICR components. Sensitivity analyses also
were performed, additionally adjusting for smoking
duration, intake of dairy products, or, in signature
models only, WCRF/AICR score. Extra analyses were
performed for strata of follow-up time and, for signature
only, body mass index (BMI) and WCRF/AICR score. All
analyses were performed using R statistical software,
version 3.6.2.
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Results

Characteristics of Nested Case–Control Study
Participants

Participant characteristics for the nested case–control
study are shown in Table 1. Cases were followed up for
an average of 7.7 years before a colorectal cancer diag-
nosis. Cases had a higher BMI and larger waist circum-
ference than controls at baseline, were taller, and
attained lower WCRF/AICR scores. Participant charac-
teristics for the discovery set are shown in
Supplementary Table 2.
FLA 5.6.0 DTD � YJCGH57637_proof � 28
Metabolomics Data and Metabolic Signatures
of World Cancer Research Fund/American
Institute for Cancer Research Score

A total of 155 endogenous metabolites and 34 fatty
acids were measured in both discovery and case–control
data sets (Supplementary Table 3). Many high correla-
tions (r > 0.9) were noted within metabolite classes
(Supplementary Figure 1), but fewer were noted be-
tween compounds from fatty acid and endogenous
metabolite platforms, with r greater than 0.6 for only 25
of 4964 possible correlations (Figure 2A and
Supplementary Table 4). In the discovery set, the
case–control study of origin contributed most variability
to endogenous metabolite profiles (Rpartial

2 ¼ 20.3%)
(Supplementary Figure 2), while the study center
explained most variability in fatty acid profiles
(Rpartial

2 ¼ 3.0%).
After exclusion of compounds with insufficient

detection rates or high coefficient of variations, 128
endogenous compounds and 30 fatty acids remained for
the derivation of metabolic signatures. Of these, SFAs
17:0 and SFAs 15:0 (pLV1 ¼ 0.149 and 0.076, respec-
tively) were increased most markedly in the fatty acid
signature of high WCRF/AICR scores (Table 2 and
Figure 2B), while monounsaturated fatty acids 16:1n-7/
n-9 and SFAs 16:0 were most diminished (pLV1 ¼ -0.058
and -0.043, respectively). The endogenous metabolic
December 2020 � 11:48 pm � ce DVC
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Table 1. Characteristics of the Colorectal Cancer Cases and
Matched Controls in EPIC

Controls Cases P valuea

N 1608 1608

Sex
Male 730 (45.4) 730 (45.4) –

Female 878 (54.6) 878 (54.6)

Age at blood collection, y 56.8 � 7.5 56.9 � 7.5 .74

Time to diagnosis, y – 7.7 � 4.4 –

Country
France 52 (3.2) 52 (3.2) –

Italy 387 (24.1) 387 (24.1)
Spain 317 (19.7) 317 (19.7)
United Kingdom 243 (15.1) 243 (15.1)
The Netherlands 139 (8.6) 139 (8.6)
Germany 163 (10.1) 163 (10.1)
Denmark 307 (19.1) 307 (19.1)

Tumor site
Proximal colon – 599 (37.7) –

Distal colon – 657 (41.3)
Rectum – 233 (14.7)
Other – 100 (6.3)
Unknown – 19 (1.2)

Confirmed histologic
verification
Yes – 1387 (86.3) –

No – 221 (13.7)

Smoking status .06
Nonsmoker 759 (47.2) 683 (42.5)
Never smoker 480 (29.9) 519 (32.3)
Smoker 353 (22.0) 390 (24.3)

Height, cm 165.6 � 9.3 166.1 � 9.3 .008

BMI, kg/m2 26.4 � 3.9 27.0 � 4.4 <.001

Waist circumference, cm 88.0 � 12.2 90.4 � 13.2 <.001

Total energy intake, kcal 2177 � 643 2160 � 702 .41

Physical activity, MET 87.7 � 52.7 84.3 � 52.6 .66

Alcohol intake, g/d 15.0 � 18.9 16.7 � 21.5 .09

WCRF/AICR score 2.54 � 1.02 2.46 � 1.02 .03

Fatty acid metabolic
signature

2.64 � 0.41 2.59 � 0.42 <.001

Endogenous metabolic
signature

2.51 � 0.27 2.47 � 0.30 .015

NOTE. Means and SD or frequency and percentage are shown unless stated
otherwise.
BMI, body mass index; EPIC, European Prospective Investigation into Cancer
and Nutrition cohort; MET, metabolic equivalent of task; WCRF/AICR, World
Cancer Research Fund/American Institute for Cancer Research.
aP value for paired t test, Wilcoxon signed-rank test, or chi-squared test.
Matching factors were age, sex, study center, follow-up time since blood
collection, fasting status, menopausal status, and phase of menstrual cycle at
blood collection.
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signature of the WCRF/AICR score was dominated by
phosphatidylcholines (PCs). Lysophosphatidylcholines a
17:0, PC ae 40:6 and PC ae C36:2 were most increased
for high scores (pLV1 ¼ 0.035, 0.032, and 0.032,
FLA 5.6.0 DTD � YJCGH57637_proof � 28
respectively), while PC aa C32:1 and PC aa C38:4 were
most diminished (pLV1 ¼ -0.037 and -0.034,
respectively).

Association Between Metabolic Signatures,
World Cancer Research Fund/American
Institute for Cancer Research Score
Components and Colorectal Cancer Risk

Both metabolic signatures were correlated signifi-
cantly with adherence to the weight maintenance and
alcohol avoidance recommendations (Figure 2C). Fatty
acid signatures captured the alcohol guideline to the
greatest extent (r ¼ 0.43) and endogenous metabolite
weight maintenance (r ¼ 0.33). A 1-unit increase in the
fatty acid signature was associated with a 49% lower
risk of colorectal cancer (odds ratio [OR], 0.51 per unit
increase; 95% CI, 0.29–0.90), while a 1-unit increment in
the endogenous metabolic signature (scale, 1–5) was
associated with a 38% lower risk of colorectal cancer
(OR, 0.62 per unit; 95% CI, 0.50–0.78). In comparison, a
1-unit increase in the WCRF/AICR score was associated
with a 7% lower risk in the whole case–control study
(OR, 0.93 per unit; 95% CI, 0.86–1.00) (Table 3). For
comparison, associations between adherence to individ-
ual WCRF/AICR components and colorectal cancer risk
are shown in Supplementary Table 5. By anatomic sub-
site, a 1-unit increment in the metabolic signature of
endogenous metabolites was associated with a 35%
lower risk of colon cancer (OR, 0.65 per unit; 95% CI,
0.50–0.84) and a 56% lower risk of rectal cancer (OR,
0.44 per unit; 95% CI, 0.25–0.79). As an additional
analysis, when signature models additionally were
adjusted for the WCRF/AICR score, the association be-
tween colorectal cancer risk and the fatty acid signature
lost statistical significance (OR, 0.59 per unit; 95% CI,
0.33–1.07), whereas the association for the endogenous
metabolic signature was not changed appreciably (OR,
0.62 per unit; 95% CI, 0.49–0.79). Sensitivity analyses
are presented in Supplementary Table 6.

Discussion

In this analysis, we have derived fatty acid and
endogenous metabolite signatures associated with the
WCRF/AICR score from a large group of cancer-free
control participants. Signatures were characterized by
specific profiles of odd chain fatty acids (OCFAs), PCs,
and amino acids, and principally captured the weight
management and alcohol avoidance aspects of the
WCRF/AICR guidelines. Both signatures were associated
more strongly with colorectal cancer risk than the
traditional WCRF/AICR score in the same participants.
Measuring these signatures could provide a more sen-
sitive assessment of colorectal cancer risk than ques-
tionnaire data and physical measurements alone because
they may encompass a greater range of lifestyle
December 2020 � 11:48 pm � ce DVC
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Figure 2. (A) Pearson cor-
relations between fatty
acids and endogenous
metabolites in 439 control
participants. Endogenous
metabolites with no cor-
relations greater than 0.25
with fatty acids have been
omitted. (B) Strongest
components of fatty acid
and endogenous metabo-
lite signatures of high
WCRF/AICR scores in or-
der of coefficient magni-
tude in PLSR models. (C)
Partial correlations be-
tween individual WCRF/
AICR recommendation
scores and metabolic sig-
natures in control partici-
pants. Partial correlations
were adjusted for height,
energy intake, highest
educational level attained,
smoking status, and
smoking intensity. lyso
PC, lysophosphatidylcho-
line; PC, phosphatidyl-
choline; PLSR, partial
least-squares regression;
WCRF/AICR, World Can-
cer Research Fund/Amer-
ican Institute for Cancer
Research.
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behaviors and characteristics than captured by the
WCRF/AICR recommendations.

Adherence to the WCRF/AICR guidelines has been
associated with a reduced risk of colorectal cancer in
EPIC and other cohorts. Previous studies have used
custom weightings for score components; for example, to
best capture colorectal cancer–specific risk factors.7 We
weighted score components evenly to characterize the
metabolic profiles that accompany general cancer-
preventing or cancer-promoting lifestyles. In terms of
FLA 5.6.0 DTD � YJCGH57637_proof � 28
individual compounds, OCFA 17:0 and 15:0 were strik-
ingly influential in the fatty acid signature. OCFAs origi-
nate from dairy fat and significant correlations between
total OCFAs and dairy product intakes have been re-
ported previously.15,16 However, adjustment for total
dairy product intake in our analysis changed risk esti-
mates minimally. Other factors also may affect circulating
OCFAs, such as alcohol16 and fiber intake via de novo
formation from propionate.17 OCFAs also have been
associated positively with a lower incidence of type 2
December 2020 � 11:48 pm � ce DVC
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Table 2. Compounds Contributing Most to Metabolic Signatures of WCRF/AICR Score by Coefficient in the First PLSR Latent
Variable

Components of metabolic
signature

Metabolite subclass
or description

Coefficient from first
LV of PLSR model, pLV1

a
OR (95% CI) for association

with colorectal cancerb

Fatty acidsc

Increased for higher WCRF/AICR scores
17:0 Saturated FA (odd chain) 0.149 0.81 (0.71–0.99 Q23)
15:0 Saturated FA (odd chain) 0.076 0.78 (0.65–0.93)
15:1 Monounsaturated FA 0.049 0.99 (0.85–1.16)
22:5n-6 Polyunsaturated FA 0.042 0.95 (0.80–1.13)
18:1n-9c Monounsaturated FA 0.041 1.07 (0.92–1.26)
PC ae C40:3 Phosphatidylcholines, acyl-alkyl 0.022 0.84 (0.65–1.08)

Diminished for higher WCRF/AICR scores
16:1n-7/n-9 Monounsaturated FA -0.058 0.96 (0.80–1.14)
16:0 Saturated FA -0.043 0.92 (0.78–1.09)
20:3n-9 Polyunsaturated FA -0.039 0.99 (0.84–1.17)
22:1n-9 Monounsaturated FA -0.038 1.10 (0.91–1.32)

Endogenous metabolitesd

Increased for higher WCRF/AICR scores
lysoPC a C17:0 Lysophosphatidylcholine 0.035 0.80 (0.62–1.02)
PC ae C40:6 Phosphatidylcholine, acyl-alkyl 0.032 0.90 (0.72–1.14)
PC ae C36:2 Phosphatidylcholine, acyl-alkyl 0.032 0.72 (0.54–0.97)
PC ae C38:2 Phosphatidylcholine, acyl-alkyl 0.027 0.90 (0.70–1.15)
Serine Amino acid 0.023 0.87 (0.63–1.20)
lysoPC a C18:2 Lysophosphatidylcholine 0.023 0.85 (0.66–1.10)
Glycine Amino acid 0.022 0.83 (0.62–1.13)

Diminished for higher WCRF/AICR scores
PC aa C32:1 Phosphatidylcholine, diacyl -0.037 0.94 (0.72–1.23)
PC aa C38:4 Phosphatidylcholine, diacyl -0.034 1.13 (0.89–1.42)
PC aa C36:4 Phosphatidylcholine, diacyl -0.033 1.08 (0.83–1.39)
Glutamate Amino acid -0.031 1.12 (0.64–1.97)
PC aa C34:4 Phosphatidylcholine, diacyl -0.031 0.83 (0.66–1.06)
PC aa C40:4 Phosphatidylcholine, diacyl -0.030 1.04 (0.83–1.30)
PC ae C38:3 Phosphatidylcholine, acyl-alkyl -0.029 0.79 (0.61–1.02)

FA, fatty acid; LV, latent variable; lysoPC, lysophosphatidylcholine; OR, odds ratio; PC, phosphatidylcholine; PLSR, partial least-squares regression; WCRF/AICR,
World Cancer Research Fund/American Institute for Cancer Research.
aAfter adjustment for center, batch, and study using the residuals method. Coefficients for all compounds are shown in Supplementary Table 3.
bFatty acids, odds ratio per SD increase in concentration; endogenous metabolites, odds ratio for fourth vs first quartile of compound concentration. Adjusted for
body mass index, alcohol intake, red and processed meat intake, height, energy intake, highest educational level attained, smoking status, and smoking intensity.
cCompounds with coefficients in the top or bottom quintiles for the first PLSR LV.
dCompounds with coefficients in the top or bottom 5 percentiles for the first PLSR LV.
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diabetes18 and an anti-inflammatory profile of adipo-
kines.19 Fatty acid intake is known to modulate bio-
markers of inflammation.20

Fatty acids obtained from the diet also are incorpo-
rated into PCs, which are components of biological
membranes but also signaling molecules that govern
processes such as gene regulation and homeostatic
control of serum glucose.21 PCs that are influential in the
endogenous metabolite signature have been linked to
individual lifestyle behaviors in previous studies. LysoPC
a C17:0 and PC ae C36:2, increased in the signature of a
high WCRF/AICR score, were associated inversely with
alcohol intake in 3 separate prospective studies.22,23 PC
aa C32:1, conversely, was associated positively with
alcohol intake in the same studies, and associated inde-
pendently with high total meat intake, smoking, and risk
of type 2 diabetes.24–27 Because PCs are perturbed easily
by diet and lifestyle factors and fine differences in
structure impart distinct bioactivities, dedicated studies
FLA 5.6.0 DTD � YJCGH57637_proof � 28
are needed to elucidate their relationship to tumorigen-
esis. Glycine, increased in the endogenous signature of a
high WCRF/AICR score, has been reported to be associ-
ated inversely with total red meat intake28 and type 2
diabetes risk,26 but associated positively with total
weekly physical activity.29 Glutamate, conversely,
appeared in metabolic profiles of a high BMI30 and was
associated with insulin resistance.31 Our observations
regarding amino acids thus largely were consistent with
previous studies.

Both signatures captured weight management and
alcohol avoidance more strongly than other components
of the WCRF/AICR score, despite the orthogonality of the
2 platforms. Alcohol avoidance was captured strikingly
by the fatty acid signature. OCFAs in particular have been
reported to be associated inversely with alcohol
intake,16,32 although ethanol exposure may attenuate
fatty acid absorption and incorporation into phospho-
lipids by diverse mechanisms such as inhibition of
December 2020 � 11:48 pm � ce DVC



Table 3.ORs and 95% CI for Colorectal Cancer Risk and Metabolic Signatures or WCRF/AICR Score by Sex and Anatomic
Subsite

Colorectal OR
(95% CI)

Colon OR
(95% CI)

Proximal colon
OR (95% CI)

Distal colon
OR (95% CI)

Rectal OR
(95% CI)

N ¼ 3216 N ¼ 2504 N ¼ 1190 N ¼ 1314 N ¼ 468

Fatty acids
N, women 876 (530) 792 (486) 358 (226) 434 (260)
WCRF/AICR scorea

All 0.77Q24 (0.66–0.91) 0.75 (0.63–0.89) 0.83 (0.63–1.10) 0.70 (0.55–0.90)
Women 0.78 (0.63–0.98) 0.77 (0.61–0.97) 0.87 (0.58–1.29) 0.73 (0.53–1.01)
Men 0.75 (0.58–0.96) 0.69 (0.52–0.92) 0.74 (0.48–1.15) 0.64 (0.42–0.97)
P het .36 .28 .44 .49

Metabolic signaturea,b

All 0.51 (0.29–0.90) 0.53 (0.29–0.97) 0.78 (0.31–1.97) 0.40 (0.18–0.91)
Women 0.73 (0.34–1.57) 0.77 (0.34–1.71) 0.67 (0.18–2.44) 0.70 (0.24–2.00)
Men 0.31 (0.13–0.75) 0.33 (0.13–0.83) 0.84 (0.18–4.00) 0.23 (0.06–0.83)
P het .072 .11 .43 .18

Metabolic signature adjusted
for WCRF/AICR score
All 0.59 (0.33–1.07) 0.61 (0.33–1.14) 0.79 (0.30–2.02) 0.52 (0.22–1.21)

Endogenous metabolites
N, women 3216 (1752) 2504 (1418) 1190 (712) 1314 (706) 468 (258)
WCRF/AICR scorea

All 0.93 (0.86–1.00) 0.93 (0.85–1.02) 1.00 (0.87–1.14) 0.89 (0.79–1.01) 0.89 (0.72–1.08)
Women 1.01 (0.91–1.12) 1.05 (0.93–1.18) 1.07 (0.90–1.29) 1.04 (0.87–1.23) 0.96 (0.70–1.31)
Men 0.85 (0.76–0.95) 0.80 (0.70–0.92) 0.90 (0.73–1.12) 0.72 (0.59–0.87) 0.83 (0.62–1.11)
P het .022 .002 .12 .005 .83

Metabolic signaturea,b

All 0.62 (0.50–0.78) 0.65 (0.50–0.84) 0.78 (0.53–1.14) 0.57 (0.40–0.82) 0.44 (0.25–0.79)
Women 0.82 (0.59–1.12) 0.89 (0.62–1.26) 0.92 (0.55–1.54) 0.87 (0.52–1.43) 0.60 (0.25–1.46)
Men 0.44 (0.32–0.61) 0.44 (0.25–0.79) 0.59 (0.33–1.06) 0.36 (0.21–0.62) 0.41 (0.19–0.86)
P het .029 .03 .21 .12 .46

Metabolic signature adjusted
for WCRF/AICR score
All 0.62 (0.49–0.79) 0.63 (0.48–0.83) 0.61 (0.42–0.90) 0.67 (0.45–1.00) 0.52 (0.29–0.94)

OR, odds ratio; P het, P heterogeneity; WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research.
aOn a scale of 1 to 5, and after adjustment for height, energy intake, highest educational level attained, and smoking status or intensity.
bMagnitude of the metabolic signature is defined as the metabolite-predicted WCRF/AICR score derived from partial least-squares regression models trained on
endogenous metabolite and fatty acid data from the discovery set.
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enzyme catalysts, disruption of gut microbiota, or phys-
iological changes to hepatocytes.23,33 Weight manage-
ment was captured most strongly by the endogenous
signature, whose amino acid components are implicated
in adiposity and insulin resistance. In sensitivity analysis,
the endogenous signature remained associated strongly
with colorectal cancer risk after additional adjustment
for the WCRF/AICR score, showing a capability to cap-
ture intrinsic or longer-term abnormalities in meta-
bolism related to the disease. The fact that associations
for metabolic signatures were stronger than those of
WCRF/AICR scores suggests that signatures, rather than
acting as biomarker surrogates of score, reflect aspects of
metabolic health that are not measured directly by con-
ventional approaches.34

The association of the metabolic signatures with
colorectal cancer was more apparent in men and the
associations were weaker and nonsignificant in women.
This may reflect sex-specific differences in the
FLA 5.6.0 DTD � YJCGH57637_proof � 28
association of the composite risk factors within the score
such as BMI and alcohol consumption, which are stron-
ger risk factors for colorectal cancer in men than in
women.35 In addition to this heterogeneity, it is known
that colorectal cancer risk factors and associations by sex
may differ by anatomic subsite,36 and in our study as-
sociations for colon cancer were driven disproportion-
ately by distal tumors. Interestingly, rectal cancer,
however, was associated strongly with endogenous
metabolic signatures of the WCRF/AICR score, despite
the influence of biologic, lifestyle, and dietary factors
upon risk being less clear than for colon cancer.37

Overall, these differences require follow-up evaluation
in other cohorts, but if reproduced may point toward
specific biological pathways that deserve mechanistic
investigation.

Our study is unique in deriving metabolic signatures
from a large fasting discovery group on 2 complementary
platforms and measuring their magnitude prospectively
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in a nested case–control study of substantial size. One
limitation is that we have been unable to test these sig-
natures in external cohorts to date. Participants none-
theless were from different combinations of EPIC centers
and samples were analyzed in different laboratories.
Because endogenous metabolite and fatty acid data were
not always available for the same participants, an overall
signature derived from both platforms could not be
determined, and the fatty acid signature was derived
from a data set of mostly female participants and
therefore may have been less applicable to males.
Another drawback was the unavailability of data on
colorectal cancer screening and family history and use of
nonsteroidal anti-inflammatory drugs in some EPIC
centers, meaning we were unable to adjust for these
potential confounders.

In conclusion, the stronger associations of signatures
with colorectal cancer compared with the WCRF/AICR
scores suggest that metabolite profiles reflect a broader
spectrum of behavioral and biological characteristics
than are included in the recommendations and can be
used to better assess colorectal cancer risk or gain
insight into metabolic risk factors. Further studies of
healthy lifestyle patterns and their relationship with
metabolism and cancer are merited.
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Supplementary Methods

Laboratory Methods

Serum and plasma samples were stored at the In-
ternational Agency for Research on Cancer (Lyon,
France) at -196�C in liquid nitrogen, apart from those of
Sweden (-80�C in freezers) and Denmark (-150�C in ni-
trogen vapor). Data and the biospecimens used were
from all EPIC countries except Greece.

Fatty acid profiling was performed at the Interna-
tional Agency for Research on Cancer for both discovery
and case–control samples. SFAs, monounsaturated fatty
acids, polyunsaturated fatty acids, industrial trans fatty
acids, and natural trans fatty acids were extracted from
plasma phospholipid fractions and quantified using an
Agilent 7890 gas chromatograph instrument (Agilent
Technologies, Santa Clara, CA). Concentrations were
expressed as the percentage of total fatty acids. For
endogenous metabolites, analyses were performed at the
International Agency for Research on Cancer (all dis-
covery and approximately one third of case–control
samples), and the Helmholtz Zentrum, München, Ger-
many (all other case–control samples). The AbsoluteIDQ
p150 or p180 Kits were used to measure concentrations
of amino acids, biogenic amines, hexose sugars, acylcar-
nitines, sphingolipids, PCs, and lysoPCs in serum or
plasma, following the recommended procedure. The In-
ternational Agency for Research on Cancer method used
a 1290 Series liquid chromatography instrument with a
Q-Trap 5500 mass spectrometer (Agilent Technologies,
Les Ulis, France). The Helmholtz method was based on a
1200 series liquid chromatography instrument (Agilent,
Böblingen, Germany) with an API 4000
triple–quadrupole mass spectrometer (AB Sciex, Darm-
stadt, Germany). Case–control pairs were analyzed in the
same batch, and coefficients of variation were calculated
for each metabolite. The full details of the laboratory
procedures have been published.1–3
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Statistical Analysis

Determination of metabolic signatures. This analysis
used a discovery set of 5738 cancer-free control partic-
ipants, originating from several noncolorectal
case–control studies nested within the EPIC cohort,1,4–6

to derive metabolic signatures of the WCRF/AICR
score. Discovery set metabolite matrices were prepared
for derivation of metabolic signatures, separately for
fatty acids and endogenous metabolites. Compounds not
measured in both discovery and case–control sets were
excluded, as well as those that were missing (outside the
limits of quantification) for more than 40% of partici-
pants. For the remainder, missing concentrations were
replaced with half the minimum in the whole data set.
The discovery metabolite matrices then were log2
transformed, centered, and unit variance–scaled. Second,
FLA 5.6.0 DTD � YJCGH57637_proof � 28
unwanted variability was removed from the data. The
principal component partial R-squared technique was
used to identify covariates that contributed the most
toward variability in metabolomics data. The principal
component partial R-squared technique combines prin-
cipal component analysis and multivariable regression to
estimate the relative effects of metadata variables upon a
matrix of omics measurements.7 Each metabolite con-
centration then was transformed by the residuals
method8 using models on sex, batch, center (fixed ef-
fects), and study (random effects). Pearson correlations
between concentrations also were calculated in a subset
of participants.

PLSR was used to determine metabolic signatures of
the WCRF/AICR score6 (ie, the linear combination of
metabolite concentrations most correlated with the
score). Models were selected that balanced simplicity
and low root mean square error of cross-validation.
Loadings (coefficients) on the first latent variable of the
PLSR model fit, denoted pLV1, were calculated for each
compound as a measure of contribution to each signa-
ture. ORs and 95% CIs were calculated for colorectal
cancer risk for baseline concentrations of compounds
that contributed the most to these signatures, adjusting
for BMI, height, energy intake, highest educational level
attained, red and processed meat intake, alcohol intake,
smoking status, and smoking intensity in conditional
logistic regression models.

The case–control metabolite matrix was prepared
similarly to that of the discovery set. The validated PLSR
models then were used to predict WCRF/AICR scores,
applying coefficients to metabolites, on a continuous
scale of 1 to 5 for each subject in the case–control study.
These predicted scores were regarded as the magnitude
of the metabolic signature with distributions comparable
with those of WCRF/AICR scores.

Association of metabolic signatures of the World Can-
cer Research Fund/American Institute for Cancer Research
score with adherence to recommendations and colorectal
cancer risk. Partial Pearson correlations were calculated
between metabolic signatures and adherence to the 6
individual components of the WCRF/AICR score (as
described earlier, each on a scale of 0, 0.5, or 1),
adjusting for height, highest education level attained,
smoking status, and intensity. Odds ratios and 95% CIs
were calculated for risk of colorectal cancer and subsites,
with the metabolic signature or the WCRF/AICR score as
the main explanatory variable in multivariable condi-
tional logistic regression models. Heterogeneity by sex
was determined by likelihood ratio test, comparing un-
paired logistic regression models with and without
interaction terms between sex and the WCRF/AICR score
or metabolic signature. Matching factors additionally
were included in these models. Additional models were
fit for individual WCRF/AICR components. Sensitivity
analyses also were performed, additionally adjusting for
smoking duration, intake of dairy products, or, in signa-
ture models only, WCRF/AICR score. Subgroup analyses
December 2020 � 11:48 pm � ce DVC
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were performed for strata of follow-up time and, for
signature only, BMI and WCRF/AICR score. All analyses
were performed using R statistical software, version
3.6.2.
1340
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Supplementary Figure 1. Pearson correlations between 159 endogenous metabolites and 31 fatty acids measured in a subset
of 439 colorectal study control participants. Concentrations were log2 transformed. lysoPC, lysophosphatidylcholine; PC,
phosphatidylcholine; SM, sphingomyelins.
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Supplementary Figure 2.
Variability in discovery
metabolomics data
explained by different met-
adata variables as deter-
mined by the principal
component partial R-
square technique. For
calculation of metabolic
signatures, each column of
the metabolite matrix was
transformed to the re-
siduals of a mixed-effects
model whose explanatory
variables were technical
confounders: (A) 155
endogenous metabolites
(n ¼ 1741), and (B) 34 fatty
acids (n ¼ 4239). Bmi Q26_C,
_____; LABO, ____.
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Supplementary Table 1. Summary of WCRF/AICR Recommendations and Scoring System Used in the Present Study

Characteristic Criteria (operationalization) Score attributed

Maintain a healthy body weight BMI, 18.5–24.9 1

BMI, 25–29.9 0.5

Other BMI 0

Be moderately physically active, equivalent to
brisk walking, for �30 min every day

Manual/heavy manual job, or >2 h/wk of vigorous PA,
or >30 min/d of cycling/sports

1

15–30 min/d of cycling or sport 0.5

<15 min/d of cycling or sport 0

Avoid food and drinks that promote weight gain Energy dense foods: <125 kcal/100 g/d 1

125–175 kcal/100 g/d 0.5

>175 kcal/100 g/d 0

or sugary drink intake: 0 g/d 1

0–250 g/d 0.5

>250 g/d 0

Intake of plant foods Intake of fruits and vegetables: >400 g/d 1

200–400 g/d 0.5

<200 g/d 0

or dietary fiber intake: >25 g/d 1

12.5–25 g/d 0.5

<12.5 g/d 0

Limit intake of animal foods Intake of red and processed meat or processed
meat: <500 g/wk and 3 g/d

1

<500 g/wk and 3–50 g/d 0.5

>500 g/wk and >50 g/d 0

Avoid alcohol Ethanol intake: <20 g/d for men or <10 g/d for women 1

20–30 g/d for men or 10–20 g/d for women 0.5

>30 g/d for men or >20 g/d for women 0

Breastfeeding Cumulative breastfeeding >6 mo 1

0–6 mo 0.5

BMI, body mass index; PA, physical activity; WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research.
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Supplementary Table 2. Baseline Characteristics for the
Discovery Set of EPIC Controls
Used to Determine Metabolic
Signatures of WCRF/AICR Score

Participants with
endogenous

metabolite data

Participants
with fatty
acid data

N 1741 4239

Study of origin
Breast 562 (32.3) 2876 (67.8)
Kidney 213 (12.2) 0 (0.0)
Ovary 0 (0.0) 1060 (25.0)
Pancreas 0 (0.0) 303 (7.1)
Prostate 891 (51.2) 0 (0.0)
Liver 75 (4.3) 0 (0.0)

Sex
Male 1046 (60.1) 118 (2.8)
Female 695 (39.9) 4121 (97.2)

Age at recruitment, y 54.50 � 7.2 53.5 � 8.1

Height, cm 165.6 � 8.4 161.5 � 6.8

BMI, kg/m2 26.8 � 3.9 25.3 � 4.2

Total energy intake, kcal 2328 � 670 1964 � 550

Country
France 53 (3.0) 638 (15.1)
Italy 903 (51.9) 868 (20.5)
Spain 558 (32.1) 425 (10.0)
United Kingdom 36 (2.1) 825 (19.5)
The Netherlands 11 (0.6) 727 (17.2)
Germany 143 (8.2) 601 (14.2)
Sweden 37 (2.1) 0 (0)
Norway 0 (0) 155 (3.7)

Physical activity, MET 81.0 � 53.9 102.7 � 53.0

Alcohol intake, g/d 18.0 � 21.5 8.8 � 12.5

Smoking status
Nonsmoker 740 (42.5) 2383 (56.2)
Never smoker 564 (32.4) 1046 (24.7)
Smoker 426 (24.5) 729 (17.2)
WCRF/AICR score 2.61 � 1.01 2.49 � 1.03

Adherence to individual
WCRF/AICR score
components (full
adherence ¼ 1)
Weight maintenance 0.56 0.68
Physical activity 0.42 0.40
Intake of foods that

promote weight gain
0.59 0.55

Intake of plant foods 0.72 0.60
Intake of animal foods 0.23 0.34
Alcohol intake 0.66 0.79

NOTE. Means and SD or frequency and percentage are shown unless stated
otherwise.
BMI, body mass index; EPIC, European Prospective Investigation into Cancer
and Nutrition cohort; MET, metabolic equivalent of task; WCRF/AICR, World
Cancer Research Fund/American Institute for Cancer Research.
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Supplementary Table 3. Details of 155 Endogenous Metabolites and 34 Fatty Acids Measured in Both the Discovery Set and
the Colorectal Nested Case–Control Studies

Platform and
compound class

Compound
name

Included in
signatures or reason

for exclusion

Coefficient PLS
model (importance

in signature) CV 1a CV 2a

Endogenous metabolites
Acylcarnitines
1 C0 Included -0.017 NA 6.1
2 C10 Excluded missings NA 9.2
3 C10:1 Excluded missings NA 8.3
4 C12 Excluded missings 7.4 10.9
5 C12:1 Excluded missings 7.6 11.8
6 C14 Excluded missings 8.4 16.5
7 C14:1 Included 0.007 7.2 12.3
8 C14:2 Excluded missings 10.4 14.1
9 C16 Included -0.001 8.4 11
10 C16:1 Excluded missings 12.3 9.4
11 C18 Included 0.006 6.8 15.6
12 C18:1 Included 0.003 7 8.9
13 C18:2 Included 0.001 9.5 10.4
14 C2 Included -0.011 4.7 6.8
15 C3 Included 0.001 6.1 8.7
16 C4 Included -0.003 5.5 9.2
17 C5 Included -0.007 6.8 12
18 C8 Excluded missings 5 10.5
19 C3-DC (C4-OH) Excluded missings 9.3 12.7
20 C4:1 Excluded missings 10.8 16.5
21 C5-DC (C6-OH) Excluded missings 8.8 21
22 C5-M-DC Excluded missings 8.6 17.9
23 C7-DC Excluded missings 13.2 16.5
24 C9 Excluded missings 12.8 19.6
25 C5:1-DC Excluded missings 12.3 24.1

Amino acids
26 Alanine Included -0.016 6.3 NA
27 Arginine Included 0.003 5.2 8.1
28 Asparagine Included 0.02 6.4 NA
29 Aspartate Included -0.001 11.5 NA
30 Citrulline Included 0.013 7.2 NA
31 Glutamine Included 0.019 7.6 8
32 Glutamate Included -0.031 5.7 NA
33 Glycine Included 0.022 6.9 7.3
34 Histidine Included 0.005 4.5 7.5
35 Isoleucine Included -0.017 7.1 NA
36 Leucine Included -0.018 6.9 NA
37 Lysine Included -0.008 9.4 NA
38 Methionine Included -0.002 11.4 9.5
39 Ornithine Included -0.003 11.6 7.2
40 Phenylalanine Included -0.011 6.2 8
41 Proline Included -0.009 5 6.8
42 Serine Included 0.023 5 7.3
43 Threonine Included 0.002 6.1 7.3
44 Tryptophan Included 0.001 8 7.1
45 Tyrosine Included -0.024 6.5 8.3
46 Valine Included -0.023 9.1 6.9

Biogenic amines
47 a-AAA Excluded missings 121.2 NA
48 Creatinine Included 0 3.7 NA
49 Kynurenine Included -0.011 7 NA
50 Putrescine Excluded missings 35.9 NA
51 Sarcosine Included -0.011 8.6 NA
52 Serotonin Excluded missings 5.9 NA
53 Spermidine Excluded missings 15.5 NA
54 Spermine Excluded missings 8.8 NA
55 Transhydroxyproline Included -0.019 4.7 NA
56 Taurine Included 0.001 2.9 NA
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Supplementary Table 3.Continued

Platform and
compound class

Compound
name

Included in
signatures or reason

for exclusion

Coefficient PLS
model (importance

in signature) CV 1a CV 2a

57 ADMA Included 0.002 9.3 NA
58 SDMA Included 0.006 12 NA

LysoPCs
59 LysoPC a C16:0 Included -0.003 7.1 6.6
60 LysoPC a C16:1 Included -0.017 6.7 7.7
61 LysoPC a C17:0 Included 0.035 9 8.3
62 LysoPC a C18:0 Included 0.007 7.5 6.6
63 LysoPC a C18:1 Included 0.02 9.4 6.5
64 LysoPC a C18:2 Included 0.023 8.7 7
65 LysoPC a C20:3 Included -0.002 7.9 9
66 LysoPC a C20:4 Included -0.006 9.2 7
67 LysoPC a C28:1 Excluded missings 12.6 31.7
68 LysoPC a C24:0 Excluded missings 13.9 14.4
69 LysoPC a C14:0 Excluded missings 4.7 4.5
70 LysoPC a C28:0 Excluded missings 20 31.7

Monosaccharides
71 Hexoses Included -0.018 4.9 5.5

PCs, diacyl
72 PC aa C28:1 Included -0.004 6.4 8.8
73 PC aa C30:0 Included -0.015 6.1 9.6
74 PC aa C32:0 Included -0.01 5.2 7.4
75 PC aa C32:1 Included -0.037 5.7 10
76 PC aa C32:2 Included -0.024 8.4 11.5
77 PC aa C32:3 Included 0.003 6.8 9.9
78 PC aa C34:1 Included -0.019 5.3 7.7
79 PC aa C34:2 Included -0.009 5.9 6.6
80 PC aa C34:3 Included -0.016 4.9 7.1
81 PC aa C34:4 Included -0.031 7.2 7.9
82 PC aa C36:0 Included 0 9.9 11.4
83 PC aa C36:1 Included -0.015 5.7 7.4
84 PC aa C36:2 Included -0.008 5.3 6.5
85 PC aa C36:3 Included -0.012 5.2 6.1
86 PC aa C36:4 Included -0.033 4.4 5.9
87 PC aa C36:5 Included -0.011 5.3 9.2
88 PC aa C36:6 Included -0.005 8.3 13.5
89 PC aa C38:0 Included 0.018 5.1 8.5
90 PC aa C38:3 Included -0.029 5.1 6.1
91 PC aa C38:4 Included -0.034 4.9 5.9
92 PC aa C38:5 Included -0.013 5.4 6.6
93 PC aa C38:6 Included -0.002 5 8.1
94 PC aa C40:1 Excluded missings 4.8 13.1
95 PC aa C40:2 Included 0.007 6.7 13.4
96 PC aa C40:3 Included 0.007 11.7 11.3
97 PC aa C40:4 Included -0.03 4.5 6.4
98 PC aa C40:5 Included -0.02 6.7 6.5
99 PC aa C40:6 Included -0.004 8.3 8.2
100 PC aa C42:0 Included 0.011 6.2 9.4
101 PC aa C42:1 Included 0.009 10.5 12.1
102 PC aa C42:2 Included 0.015 6.3 12
103 PC aa C42:4 Included 0.003 7.8 12.3
104 PC aa C42:5 Included 0.004 6.1 11
105 PC aa C42:6 Included 0.004 8 13.8
106 PC aa C24:0 Excluded missings Q2736.1 40.3

PCs, acyl-alkyl
107 PC ae C30:0 Included 0.011 6.1 17.3
108 PC ae C30:2 Included 0.004 13.2 10.2
109 PC ae C32:1 Included 0.005 7.1 9.2
110 PC ae C32:2 Included 0.001 4.6 11.5
111 PC ae C34:0 Included 0.005 7.6 11.2
112 PC ae C34:1 Included 0.015 4.7 7.5
113 PC ae C34:2 Included 0.019 5.2 6.6
114 PC ae C34:3 Included 0.009 4.5 6.7
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Supplementary Table 3.Continued

Platform and
compound class

Compound
name

Included in
signatures or reason

for exclusion

Coefficient PLS
model (importance

in signature) CV 1a CV 2a

115 PC ae C36:0 Included -0.009 16.6 13.9
116 PC ae C36:1 Included 0.016 5.8 6.5
117 PC ae C36:2 Included 0.032 5.3 6.6
118 PC ae C36:3 Included 0.015 5.9 6.5
119 PC ae C36:4 Included -0.02 6 5.9
120 PC ae C36:5 Included -0.02 4.7 5.7
121 PC ae C38:0 Included 0.007 7 9
122 PC ae C38:2 Included 0.027 10 8.2
123 PC ae C38:3 Included 0.014 7.3 6.8
124 PC ae C38:4 Included -0.003 5.9 5.8
125 PC ae C38:5 Included -0.005 6.8 5.8
126 PC ae C38:6 Included 0.001 6.1 6.8
127 PC ae C40:1 Included 0.003 7 12
128 PC ae C40:2 Included 0.01 5.2 8
129 PC ae C40:3 Included 0.022 6.6 7.4
130 PC ae C40:4 Included 0.009 5.5 6.9
131 PC ae C40:5 Included 0.017 5.8 6.2
132 PC ae C40:6 Included 0.032 3.9 7.4
133 PC ae C42:1 Included 0.005 7.4 13.8
134 PC ae C42:2 Included 0.007 6.1 11.6
135 PC ae C42:3 Included 0.014 5.4 10.8
136 PC ae C42:4 Included 0.016 7.7 8.8
137 PC ae C42:5 Included 0.018 6.8 5.6
138 PC ae C44:3 Included 0 13.4 15.7
139 PC ae C44:4 Included 0.015 12 11.3
140 PC ae C44:5 Included 0.015 5.7 7.5
141 PC ae C44:6 Included 0.012 4.5 7.2

Sphingolipids
142 SM (OH) C14:1 Included 0.014 5.1 7.5
143 SM (OH) C16:1 Included 0.012 8.2 7.1
144 SM (OH) C22:1 Included 0.004 9.9 7.3
145 SM (OH) C22:2 Included 0.015 7.1 7.9
146 SM (OH) C24:1 Included 0.006 12.7 12.5
147 SM C16:0 Included 0.005 8.1 6.5
148 SM C16:1 Included -0.007 5.2 6.7
149 SM C18:0 Included -0.016 6.2 6.8
150 SM C18:1 Included -0.01 5.7 6.5
151 SM C20:2 Included 0.003 23.1 14.7
152 SM C24:0 Included -0.012 5.9 7
153 SM C24:1 Included 0.001 11.5 7.6
154 SM C26:1 Excluded high CV 13.6 25
155 SM C26:0 Excluded high CV 17.1 50.6

Fatty acids
Industrial trans
1 18:1n-12/9/8t Included 0.037 13.2
2 18:2n-6tt Excluded high CV 22.6

Monounsaturated
3 14:1n-5 Excluded high CV 31.9
4 15:1 Included 0.049 13.7
5 16:1n-7/n-9t Included 0.009 NA
6 16:1n-7/n-9 Included -0.058 NA
7 17:1 Included 0.005 7.3
8 18:1n-9c Included 0.041 2.5
9 18:1n-7c Included -0.004 2.1
10 18:1n-5c Included 0.029 6.6
11 20:1n-9c Included 0.026 2.3
12 22:1n-9 Included -0.038 15.6
13 24:1n-9 Included -0.035 12.1

Natural trans
14 18:1n-7t Excluded high CV 32.7
15 CLA 9t/11c Included -0.016 NA
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Supplementary Table 3.Continued

Platform and
compound class

Compound
name

Included in
signatures or reason

for exclusion

Coefficient PLS
model (importance

in signature) CV 1a CV 2a

Polyunsaturated
16 18:2n-6 Included 0.022 0.7
17 18:3n-6 Included 0.022 8
18 20:2n-6c Included 0.001 1.3
19 20:3n-9 Included -0.039 4.1
20 20:3n-6 Included 0.006 1.4
21 20:4n-6 Included -0.011 1.3
22 22:4n-6 Included 0.014 2.1
23 22:5n-6 Included 0.039 2.9
24 18:3n-3 Included 0.029 7.4
25 20:3n-3 Included -0.021 8
26 20:5n-3 Included -0.02 7
27 22:5n-3 Included 0.042 1.7
28 22:6n-3 Included -0.002 2.7

Saturated
29 14:0 Included 0.011 8.6
30 15:0 Included 0.076 2.7
31 16:0 Included -0.043 1.3
32 17:0 Included 0.149 1.2
33 18:0 Included -0.025 1.4
34 22:0 Excluded high CV 28.2

ADMA, ______; CLA, _____; CV, coefficient of variation; lysoPC, lysophosphatidylcholine; NA, not available; PC, phosphatidylcholine; PLS, partial least-square;
QC, quality control; SDMA, _____; SM, sphingomyelin.
aLaboratory 1: International Agency for Research on Cancer; 13 plates of serum samples with 2 QCs per plate for endogenous compounds, 56 batches of plasma
samples, 2 QCs per batch for fatty acids. Laboratory 2: Helmholtz Zentrum; 29 plates of serum samples with 5 aliquots of a reference serum as a QC.
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Supplementary Table 4. Highest Pearson Correlations
Between 159 Endogenous
Metabolites and 31 Fatty Acids in
439 Colorectal Study Control
Participants

Fatty acid
Endogenous
metabolite

Pearson
correlation r, log2

transformed
concentrations

PUFA 20:5n-3 PC aa C36:5 0.892

PUFA 22:6n-3 PC aa C38:6 0.767

SFA 14:0 PC aa C30:0 0.746

ITFA 18:1n-12/9/8t SM C20:2 0.728

PUFA 22:6n-3 PC aa C38:0 0.696

PUFA 22:6n-3 PC aa C40:6 0.694

MUFA 18:1n-9c PC aa C34:1 0.690

MUFA 16:1n-7/n-9 PC aa C32:1 0.689

PUFA 20:3n-6 PC aa C38:3 0.685

SFA 14:0 PC aa C32:2 0.683

PUFA 20:5n-3 PC aa C36:6 0.669

PUFA 22:4n-6 PC aa C40:4 0.661

PUFA 20:3n-9 PC aa C34:1 0.657

PUFA 20:5n-3 PC ae C38:0 0.653

PUFA 22:6n-3 PC ae C40:6 0.651

PUFA 20:4n-6 PC aa C38:4 0.649

ITFA 18:1n-12/9/8t PC aa C32:3 0.631

SFA 14:0 PC aa C32:1 0.618

MUFA 18:1n-9c PC aa C36:1 0.611

SFA 0.625 PC ae C30:0 0.604

ITFA, industrial trans fatty acid; MUFA, monounsaturated fatty acid; PC,
phosphatidylcholine; PUFA, polyunsaturated fatty acid; SFA, saturated fatty
acid; SM, sphingomyelin.

Supplementary Table 5. Q28Odds Ratios and 95% CI for
Individual WCRF/AICR Score
Components in the Colorectal
Cancer Nested Case–Control
Study

Cancer
subsite

WCRF/AICR
recommendation OR (95% CI)b

Colorectal

N ¼ 3216 Maintain normal body weight 0.68 (0.67–0.93 Q29)

Be physically active 0.87 (0.63–0.99)

Limit foods that promote
weight gain

1.10 (0.59–0.99)

Eat mostly plant foods 0.93 (0.69–1.26)

Limit red and processed meat 1.50 (1.13–1.98)

Avoid alcohol 0.92 (1.77–1.11)

Overall WCRF score 0.92 (0.86–1.00)

Colon

N ¼ 2504 Maintain normal body weight 0.66 (0.51–0.84)

Be physically active 0.85 (0.70–1.04)

Limit foods that promote
weight gain

1.17 (0.77–1.77)

Eat mostly plant foods 0.91 (0.64–1.28)

Limit red and processed meat 1.59 (1.17–2.17)

Avoid alcohol 0.92 (1.74–1.15)

Overall WCRF score 0.92 (0.84–1.01)

Rectal

N ¼ 468 Maintain normal body weight 0.79 (0.45–1.37)

Be physically active 0.91 (0.57–1.46)

Limit foods that promote
weight gain

0.65 (0.22–1.89)

Eat mostly plant foods 0.93 (0.42–2.06)

Limit red and processed meat 1.10 (1.43–2.83)

Avoid alcohol 0.78 (0.49–1.22)

Overall WCRF score 0.89 (0.73–1.09)

OR, odds ratio; WCRF/AICR, World Cancer Research Fund/American Institute
for Cancer Research.
aScored on a scale of 0, 0.5, or 1 according to criteria for individual
components.
bAdjusted for height, energy intake, highest educational level attained, smoking
status, and smoking intensity.
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Supplementary Table 6. Additional Sensitivity and Subgroup Analyses in the Nested Case–Control Study

Metabolite
platform and

anatomic subsite N Modela

Odds ratio (95% CI) for association
per unit increase in the WCRF/

AICR score or change in
metabolic signatureab

WCRF/AICR
scorea

Metabolic
signatureab

Fatty acids
Colorectal 876 Base co-variates only 0.78 (0.66–0.91) 0.48 (0.28–0.83)

876 Base þ smoking intensity 0.77 (0.66–0.91) 0.51 (0.29–0.90)

876 Base þ smoking duration 0.78 (0.66–0.91) 0.49 (0.28–0.85)

876 Base þ dairy product intake 0.78 (0.67–0.92) 0.50 (0.29–0.88)

130 Base þ smoking intensity, normal BMI only – 2.64 (0.25–27.43)

406 Base þ smoking intensity, overweight or obese BMI only – 0.40 (0.17–0.95)

210 Base þ smoking intensity, WCRF/AICR scores 1 or 2 – 0.38 (0.11–1.33)

246 Base þ smoking intensity, WCRF/AICR scores 3, 4 or 5 – 0.82 (0.23–2.93)

768 Base model, cases diagnosed after 2 years of
follow-up only

0.84 (0.71–0.99) 0.54 (0.30–0.97)

Endogenous
Colorectal 3210 Base co-variates only 0.93 (0.85–1.02) 0.61 (0.49–0.77)

3210 Base þ smoking intensity 0.93 (0.85–1.02) 0.62 (0.50–0.78)

3210 Base þ smoking duration 0.93 (0.85–1.02) 0.62 (0.49–0.77)

3210 Base þ dairy product intake 0.94 (0.86–1.03) 0.62 (0.49–0.77)

478 Base þ smoking intensity, normal BMI only – 1.22 (0.63–2.36)

1352 Base þ smoking intensity, overweight or obese BMI only – 0.50 (0.35–0.71)

722 Base þ smoking intensity, WCRF/AICR scores 1 or 2 – 0.56 (0.35–0.90)

848 Base þ smoking intensity, WCRF/AICR scores 3, 4 or 5 – 0.69 (0.43–1.11)

2860 Base model, cases diagnosed after 2 years of
follow-up only

0.94 (0.86–1.03) 0.63 (0.50–0.80)

Colon 2504 Base co-variates only 0.92 (0.84–1.01) 0.63 (0.49–0.81)

2504 Base þ smoking intensity 0.93 (0.85–1.02) 0.65 (0.50–0.84)

2504 Base þ smoking duration 0.93 (0.85–1.01) 0.63 (0.49–0.82)

2504 Base þ dairy product intake 0.93 (0.85–1.01) 0.63 (0.49–0.81)

2274 Base model, cases diagnosed after 2 years of
follow-up only

0.93 (0.85–1.02) 0.64 (0.49–0.84)

Rectal 468 Base co-variates only 0.94 (0.78–1.14) 0.53 (0.31–0.91)

468 Base þ smoking intensity 0.89 (0.72–1.08) 0.44 (0.25–0.79)

468 Base þ smoking duration 0.95 (0.79–1.14) 0.54 (0.32–0.93)

468 Base þ dairy product intake 0.97 (0.80–1.17) 0.55 (0.32–0.95)

366 Base model, cases diagnosed after 2 years of
follow-up only

0.91 (0.74–1.12) 0.48 (0.26–0.89)

BMI, body mass index; WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research.
aBase models were adjusted for height, energy intake, highest educational level attained, and smoking status.
bMeasurement of metabolic signature is defined as the metabolite predicted WCRF/AICR score derived from partial least-square regression models fit with
endogenous metabolite and fatty acid data in the discovery set.
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