
The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. XX, No. XX, 1–13
doi:10.1210/clinem/dgaa953

Clinical Research Article

ISSN Print 0021-972X  ISSN Online 1945-7197
Printed in USA

https://academic.oup.com/jcem      1This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence  
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is 
not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

© The Author(s) 2020. Published by Oxford University Press on behalf of the Endocrine Society.

Clinical Research Article

A Panel of 6 Biomarkers Significantly Improves 
the Prediction of Type 2 Diabetes in the 
MONICA/KORA Study Population
Barbara  Thorand,1,2 Astrid  Zierer,1 Mustafa  Büyüközkan,3,4 Jan  Krum
siek,3,4 Alina  Bauer,1 Florian  Schederecker,1 Julie  Sudduth-Klinger,5  
Christa  Meisinger,2,6,7 Harald  Grallert,1,2 Wolfgang  Rathmann,2,8 
Michael  Roden,2,9,10 Annette  Peters,1,2,11 Wolfgang  Koenig,11,12,13 
Christian Herder,2,9,10,* and Cornelia Huth1,2,*

1Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental 
Health, 85764 Neuherberg, Germany; 2German Center for Diabetes Research (DZD), 85764 München-
Neuherberg, Germany; 3Institute of Computational Biology, Helmholtz Zentrum München-German 
Research Center for Environmental Health, 85764 Neuherberg, Germany; 4Institute for Computational 
Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill 
Cornell Medicine, New York, NY 10065, USA; 5Tethys Bioscience Inc, Emeryville, CA 94608, USA; 6Chair of 
Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, 86156 Augsburg, Germany; 
7Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München—German Research 
Center for Environmental Health, 85764 Neuherberg, Germany; 8Institute for Biometrics and Epidemiology, 
German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 
40225 Düsseldorf, Germany; 9Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center 
for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; 10Division of 
Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, 
Germany; 11German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80802 
Munich, Germany; 12Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, 
Germany; and 13Institute of Epidemiology and Medical Biometry, University of Ulm, 89081 Ulm, Germany

ORCiD numbers: 0000-0002-8416-6440 (B. Thorand); 0000-0002-9026-6544 (C. Meisinger); 0000-0001-7804-1740 (W. Rathmann); 
0000-0001-8200-6382 (M. Roden); 0000-0001-6645-0985 (A. Peters); 0000-0002-2064-9603 (W. Koenig); 0000-0002-2050-093X 
(C. Herder); 0000-0003-2421-433X (C. Huth).

*Cornelia Huth and Christian Herder contributed equally to this work.

Abbreviations: BMI, body mass index; cfNRI, category-free net reclassification index; CRP, C-reactive protein;  GDRS, 
German Diabetes Risk Score; HbA1c, glycated hemoglobin A1c; HDL, high-density lipoprotein; Hsp70, heat shock protein 
70;  IGFBP-2, insulin-like growth factor binding protein 2; IL-1RA, interleukin-1 receptor antagonist; IL-6, interleukin-6; IL-18, 
interleukin-18;  LDL, low-density lipoprotein; MONICA/KORA, Monitoring of Trends and Determinants in Cardiovascular 
Diseases/Cooperative Health Research in the Region of Augsburg; NT-proBNP, N-terminal pro B-type natriuretic peptide; 
OPN, osteopontin; ox-LDL, oxidized LDL; sE-selectin, soluble E-selectin; SHBG, sex hormone binding globulin; sICAM-1, soluble 
intercellular adhesion molecule-1; tPA, tissue plasminogen activator; VEGF-R2, vascular endothelial growth factor receptor 2.

Received: 27 August 2020; Editorial Decision: 13 December 2020; First Published Online: 31 December 2020; Corrected and 
Typeset: 22 January 2021. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa953/6056474 by G

SF H
aem

atologikum
 user on 19 February 2021

http://orcid.org/0000-0002-8416-6440
http://orcid.org/0000-0002-9026-6544
http://orcid.org/0000-0001-7804-1740
http://orcid.org/0000-0001-8200-6382
http://orcid.org/0000-0001-6645-0985
http://orcid.org/0000-0002-2064-9603
http://orcid.org/0000-0002-2050-093X
http://orcid.org/0000-0003-2421-433X
http://orcid.org/0000-0002-8416-6440
http://orcid.org/0000-0002-9026-6544
http://orcid.org/0000-0001-7804-1740
http://orcid.org/0000-0001-8200-6382
http://orcid.org/0000-0001-6645-0985
http://orcid.org/0000-0002-2064-9603
http://orcid.org/0000-0002-2050-093X
http://orcid.org/0000-0003-2421-433X


2 � The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. XX, No. XX

Abstract 

Context:  Improved strategies to identify persons at high risk of type 2 diabetes are 
important to target costly preventive efforts to those who will benefit most.
Objective: This work aimed to assess whether novel biomarkers improve the prediction of 
type 2 diabetes beyond noninvasive standard clinical risk factors alone or in combination 
with glycated hemoglobin A1c (HbA1c).
Methods: We used a population-based case-cohort study for discovery (689 incident 
cases and 1850 noncases) and an independent cohort study (262 incident cases, 
2549 noncases) for validation. An L1-penalized (lasso) Cox model was used to select the 
most predictive set among 47 serum biomarkers from multiple etiological pathways. 
All variables available from the noninvasive German Diabetes Risk Score (GDRSadapted) 
were forced into the models. The C index and the category-free net reclassification index 
(cfNRI) were used to evaluate the predictive performance of the selected biomarkers 
beyond the GDRSadapted model (plus HbA1c).
Results:  Interleukin-1 receptor antagonist, insulin-like growth factor binding protein 2, 
soluble E-selectin, decorin, adiponectin, and high-density lipoprotein cholesterol 
were selected as the most relevant biomarkers. The simultaneous addition of these 6 
biomarkers significantly improved the predictive performance both in the discovery 
(C index [95%  CI], 0.053 [0.039-0.066]; cfNRI [95% CI], 67.4% [57.3%-79.5%]) and the 
validation study (0.034 [0.019-0.053]; 48.4% [35.6%-60.8%]). Significant improvements 
by these biomarkers were also seen on top of the GDRSadapted model plus HbA1c in both 
studies.
Conclusion: The addition of 6 biomarkers significantly improved the prediction of type 2 
diabetes when added to a noninvasive clinical model or to a clinical model plus HbA1c.

Key Words: type 2 diabetes, risk prediction model, biomarkers, cohort analysis

The onset of type 2 diabetes can be delayed or prevented 
by lifestyle or pharmacologic interventions (1). Therefore, 
improved strategies to identify individuals at high risk of 
type 2 diabetes are important to target costly measures 
to those who will benefit most. To date, a number of pre-
diction models have been developed based on major clin-
ical risk factors for type 2 diabetes (2). Although some of 
these models, for instance the German Diabetes Risk Score 
(GDRS), have already been incorporated into clinical pre-
vention guidelines (3, 4), there is no universally accepted 
prediction model and the performance is only moderate 
(5). During recent years, attempts have been made to im-
prove available prediction algorithms by novel biomarkers 
for type 2 diabetes such as proteins, metabolites, or lipids 
(6-16). Although some studies yielded promising first re-
sults (6, 7, 11-13, 15, 16), other studies did not observe 
any improvement of type 2 diabetes risk prediction and a 
recent review concluded that the utility of most biomarkers 
associated with type 2 diabetes remains largely unknown in 
clinical prediction (17).

Therefore, we aimed to further elucidate the potential 
of novel biomarkers for improved type 2 diabetes pre-
diction. Specifically, the objective of the present study 

was to assess whether any single novel biomarker or 
a combination of several biomarkers, selected among 
a set of 47 biomarkers from multiple etiological path-
ways, improves type  2 diabetes prediction beyond the 
noninvasive clinical variables contained in the GDRS and 
beyond the GDRS variables plus glycated hemoglobin A

1c 
(HbA1c). We used a large population-based case-cohort 
study to identify the most predictive set of biomarkers 
and validated the best predictors in an independent  
cohort study.

Materials and Methods

Study populations

As the discovery sample, we used data from a prospective 
case-cohort study embedded within the Monitoring of 
Trends and Determinants in Cardiovascular Diseases/
Cooperative Health Research in the Region of Augsburg 
(MONICA/KORA) study. The original cohort study has 
been built on 3 independent cross-sectional population-
based surveys, S1 to S3, conducted between 1984 and 1995 
in Augsburg and 2 adjacent counties in Southern Germany. 
Altogether, 13 427 participants (6725 men, 6702 women) 
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aged 25 to 64 (S1) or 74 (S2 and S3) years were investi-
gated at baseline (7).

For validation, we used data from the population-based 
KORA S4 cohort study. The baseline examination was 
conducted from 1999 to 2001 in the same study region 
as the MONICA/KORA case-cohort study. In total 4261 
men and women out of 6417 eligible individuals aged 25 
to 74 years participated at baseline (18).

For the present analyses, we excluded individuals 
younger than 35 years, those with missing blood samples, 
individuals who withdrew their consent, those with preva-
lent diabetes, and individuals without diabetes follow-up 
information or self-reported other incident diabetes types 
than type 2, or with an observation time of less than 
1 year in both studies (Supplementary Figure S1) (19). The 
follow-up period was restricted to a maximum of 14 years 
(MONICA/KORA case-cohort study: median: 14.0, 
25th percentile: 11.2, 75th percentile: 14.0 years; KORA 
S4 cohort study: median: 14.0, 25th percentile: 11.7, 75th 
percentile: 14.0) because the maximum follow-up time for 
the S3 participants was 14 to 15 years. The final discovery 
case-cohort study included a randomly drawn subcohort of 
1991 participants, including 141 individuals with incident 
type 2 diabetes and an additional 548 incident cases from 
the full cohort of interest (n = 8469), yielding a total of 689 
incident cases and 1850 noncases. The final validation co-
hort study included a total of 262 incident cases and 2549 
noncases.

Informed consent was provided by all participants, and 
the ethics committee of the Bavarian Chamber of Physicians 
approved the study protocols. The studies comply with the 
principles outlined in the Declaration of Helsinki.

Assessment of prevalent and incident  
type 2 diabetes

Prevalent or incident type 2 diabetes was defined as self-
reported, clinically diagnosed diabetes that could be valid-
ated by the responsible physician or medical chart review, 
or by self-reported use of glucose-lowering medication. 
To assess incidence, follow-up questionnaires were sent to 
all MONICA/KORA S1 to S3 study participants in 1997 
to 1998, 2002 to 2003, and 2008 to 2009. Additionally, 
all participants from S1 were invited to participate in a 
follow-up examination conducted in 1987 to 1988. For 
incident cases, the self-reported date of diagnosis was as-
sessed and generally verified by contacting the treating 
physician or by medical chart review. Information on date 
of diagnosis was used to calculate follow-up times em-
ployed in the survival analyses as described later. Similar 
procedures were applied in the KORA S4 cohort study 
with follow-up questionnaires sent out in 2008 to 2009 

and 2016. In addition, 2 follow-up examinations were 
conducted in 2006 to 2008 and 2013 to 2014. Changes 
in the diagnostic criteria for type 2 diabetes during the 
follow-up period could have had an impact on the clas-
sification of cases. The greatest changes occurred around 
1999 when the World Health Organization lowered the cut 
point for the diagnosis of diabetes based on fasting glucose 
from 140 mg/dL or greater to 126 mg/dL or greater (20). 
Measurement of HbA

1c has become more important during 
recent years, but in Germany is not generally recommended 
as a single measure for a clinical diagnosis because of the 
lack of standardization and a number of other potential 
influencing factors (4).

Assessment of type 2 diabetes risk factors used 
for benchmarking

Sociodemographic, clinical, and lifestyle parameters, as well 
as parental history of diabetes, were assessed as previously 
described (18, 21). As a benchmark clinical model, we used 
a model fitted to the MONICA/KORA case-cohort study, 
which included all available variables contained in the up-
dated GDRS (3) with some adaptations because of limited 
data availability. In our GDRSadapted model, we used body 
mass index (BMI) (continuous) and sex to replace waist 
circumference and height. History of hypertension was de-
fined based on blood pressure measurements (≥ 140/90 mm 
Hg) or self-reported use of antihypertensive medication, 
given that the participants were aware of having hyperten-
sion. Information on physical activity included time spent 
on sports activities during the summer and winter, but not 
on biking and gardening as in the original GDRS, and was 
coded into 2 categories as active and inactive (21) instead 
of hours per week. Smoking status was categorized into 
5 categories as in the original GDRS (never, former < 20 
cigarettes/day, former ≥ 20 cigarettes/day, current < 20 cig-
arettes/day, current ≥ 20 cigarettes/day). Coffee consump-
tion was assessed as cups per day instead of per 150 g/day. 
Intake of red meat as well as whole-grain bread and muesli 
(original variables per 150 and 50 g/day, respectively) were 
assessed by a food frequency questionnaire and analyzed as 
frequency of daily intake. Parental history of diabetes was 
classified into 4 categories: both parents with diabetes, one 
parent with diabetes, unknown parental diabetes status, 
and no parental history. We included the additional cat-
egory “unknown” because previous analyses had shown 
that this group incorporates a higher type 2 diabetes risk, 
separately from the category “no parental history” (13). 
Sibling history of diabetes, which was included as a sep-
arate variable in the original GDRS, was not available in 
the MONICA/KORA database. Our GDRS

adapted model in 
addition included a survey  indicator to take into account 
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that the MONICA/KORA case-cohort data were derived 
from 3 surveys conducted 5 years apart.

HbA1c was measured using the turbidimetric inhib-
ition immunoassay Tina-Quant HBA1C in the MONICA 
S3 study (Boehringer Mannheim) and the Tina-Quant 
HBA1C II in the KORA S4 study (Roche Diagnostics) on 
Hitachi 717 instruments.

Biomarker measurements

Nonfasting venous blood samples were collected while sit-
ting at baseline. Details regarding sample handling have 
been previously described (22). High-density lipoprotein 
(HDL) cholesterol, total cholesterol, and uric acid were 
measured in fresh serum. All other 44 biomarkers were 
measured in serum stored at –80  °C until analysis. The 
biomarkers were selected for their potential importance 
for either type 2 diabetes or coronary heart disease patho-
physiology based on prior knowledge from experimental 
and epidemiological studies.

In the MONICA/KORA case-cohort study, on average 
16% of the biomarker data were missing. To enable un-
biased analyses and to use the available data most effi-
ciently, missing biomarkers and covariates were replaced 
using 20-fold multiple imputation by chained equations 
(MICE) (R version 3.2.3 and R package MICE version 
2.25) (23, 24). Owing to the small number of missing 
values in the KORA S4 cohort, participants with missing 
values were excluded from the S4 analyses (Supplementary 
Figure S1) (19).

Biomarker measurements with a right-skewed dis-
tribution were ln-transformed and all biomarkers were 
(0,1)-standardized. Measurement methods, coefficients 
of variation, proportions of missing values before imput-
ation, and decisions on ln-transformations are described in 
Supplementary Table S1 for all 47 biomarkers (19).

Statistical analysis

Descriptive analyses of baseline characteristics were com-
puted for cases and noncases separately. For the case-
cohort study, weighting was incorporated using the 
survey- and sex-specific sampling weights to account for 
the design. Multiple results of the 20  imputations were 
summed up as medians for percentiles and arithmetic 
means for proportions. Correlations between the age-, sex-, 
and survey-adjusted biomarker residuals were investigated 
in the subcohort of the MONICA/KORA case-cohort study 
and the KORA S4 cohort study by Pearson's coefficients. 
Fisher's Z  transformation and retransformation was used 
to compute average correlation coefficients over the 20 im-
puted data sets in the subcohort (22).

To assess the association of different biomarkers with 
incident type 2 diabetes, Cox proportional hazard re-
gression was applied. For the case-cohort design, correc-
tion of the variance estimation based on the sampling 
weights was required. To yield robust SE estimates for the  
parameter estimates, correction was made using the method 
by Barlow (25). Incorporation of the additional variation 
due to imputation was performed using Rubin’s rules for 
multiple imputation (26). The Cox models were adjusted 
for (1) age, sex, BMI, and survey, and (2) all variables 
from the GDRS

adapted model described earlier. Results are 
presented as hazard ratios (HRs) together with their 95% 
CI per SD. Correction for multiple testing was performed 
using Bonferroni adjustment to control for the familywise 
error rate.

Selection of biomarkers for prediction modeling 
was conducted with L1-penalized (lasso) estimation in 
Cox proportional hazard models (27) adapted for the 
case-cohort design. Penalization was applied only to 
biomarkers, whereas GDRSadapted variables were kept un-
penalized to force them into the model. A pipeline similar 
to Laimighofer et al (28) but tailored to the case-cohort de-
sign was used, with an inner cross-validation to determine 
the optimal number of features within the training data 
sets (Supplementary Figure S2) (19). The biomarkers were 
ranked with respect to first occurrence on the lasso path. 
The selection frequency among 100 bootstrap training-test 
samples revealed the final set of most predictive biomarkers 
composed of all biomarkers with a selection frequency of 
20% or greater. To yield more parsimonious models, the 
1SE rule (29) was extended to a 2SE model after evaluating 
parsimony-performance trade-off between different de-
grees of SE ranges (1SE, 2SE, ..., 5SE) and the best per-
forming model (0SE).

The accuracy of the different models to assess 14-year 
event risk was evaluated by 2 performance measures: (1) the 
C index and accordingly the difference between the base-
line and the biomarker-extended C indices (ΔC index) (30, 
31); (2) the category-free net reclassification index (cfNRI) 
overall and calculated separately for cases and noncases 
(32). Parameters of model accuracy were calculated for the 
GDRS

adapted model in both studies and for the GDRSadapted 
model plus HbA1c in the validation KORA S4 cohort.

Performance measures in the MONICA/KORA case-
cohort study were calculated applying methods appropriate 
for survival data and case-cohort design (32, 33). To yield 
valid estimates, 1000 bootstrap samples were drawn from 
the original case-cohort study and missing values were sep-
arately imputed in each sample using MICE as described 
for the original sample discussed earlier. A bootstrap-based 
approach by Jiang et  al (34, 35) was used to calculate 
95% CI.
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Performance measures in the validation data  set of 
the KORA S4 cohort study were calculated based on the 
prognostic index derived from the case-cohort data (see 
Supplementary Material [19]). For models including HbA1c 
(measured in S3 and S4 only, coded as a continuous vari-
able), a revised prediction model, adding an S3-derived 
prediction estimate for this new variable to the GDRSadapted 
prediction estimates from the full case-cohort study (S1-
S3), was calculated according to van Houwelingen (36). 
Methods appropriate for survival data were used, including 
calculations of 95% CI via bootstrap percentile CIs of 1000 
samples. Receiver operating characteristic curves were used 
to visualize the performance of model predictions in S4.

For all analyses, test results with 2-sided P values less 
than .05 were considered statistically significant. Most 
statistical analyses were performed with SAS (version 9.4, 
SAS Institute Inc) and R (version 3.6.1) using the packages 
metafor, survival, and glmnet for biomarker selection and 
graphics. Calculations of performance measures were im-
plemented using SAS macros by Cook et al (37).

Results

Baseline characteristics

Baseline characteristics including the HbA1c of both study 
populations stratified by incident type 2 diabetes status at 
follow-up are shown in Table  1. For BMI, hypertension, 
parental history of diabetes, and physical activity, we ob-
served the expected differences between incident cases and 
noncases. Smoking status, meat, and whole-grain bread/
muesli as well as coffee consumption were similar between 
the 2 groups in both studies.

Median (25th; 75th percentiles) levels of the 47 bio-
markers measured in the MONICA/KORA case-cohort 
study are shown in Supplementary Table S2 for the total 
study population and stratified by sex (19). Pairwise 
Pearson correlation coefficients between the biomarkers 
ranged from –0.44 to 0.75 (Supplementary Figure S3) (19).

Associations of single biomarkers with incident 
type 2 diabetes

In Cox proportional hazards models adjusted for the 
GDRSadapted variables, out of the 47 examined biomarkers, 
6 biomarkers (insulin-like growth factor binding protein 
2 [IGFBP-2], adiponectin, sex hormone binding globulin 
[SHBG], HDL cholesterol, N-terminal pro B-type natri-
uretic peptide [NT-proBNP], osteopontin [OPN]) were 
significantly inversely and another 16 biomarkers (tissue 
plasminogen activator [tPA], soluble E-selectin [sE-selectin], 
interleukin-1 receptor antagonist [IL-1RA], leptin, decorin, C
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oxidized LDL [ox-LDL], uric acid, ferritin, vascular endo-
thelial growth factor receptor 2 [VEGF-R2], soluble inter-
cellular adhesion molecule-1 [sICAM-1], interleukin-18 
[IL-18], C-reactive protein  [CRP], interleukin-6  [IL-6], 
C3b, fetuin-A, heat shock protein 70 [Hsp70]) were sig-
nificantly positively associated with incident type 2 dia-
betes (Supplementary Figure S4) (19) in the MONICA/
KORA case-cohort study. After correction for multiple 
testing, IGFBP-2, adiponectin, SHBG, and HDL cholesterol 
remained inversely and tPA, sE-selectin, IL-1RA, leptin, 
decorin, ox-LDL, uric acid, and VEGF-R2 remained posi-
tively associated with incident type 2 diabetes. HRs with 
95% CI for age-, sex-, survey-, and BMI-adjusted models 
are shown in Supplementary Table S3 (19).

Prediction of type 2 diabetes

Using a feature selection approach with the GDRSadapted 
variables as fixed variables, IL-1RA, IGFBP-2, sE-selectin, 
adiponectin, HDL cholesterol, and decorin were identified 
as the most important biomarkers for type 2 diabetes pre-
diction (Supplementary Figure  S5) (19) in the discovery 
MONICA/KORA case-cohort study. These 6  biomarkers 
were measured in the KORA S4 cohort study for validation.

Median (25th; 75th percentiles) concentrations of the 
6 selected biomarkers are shown in Table 1 for both study 
populations. Absolute values of all markers except for 
HDL cholesterol varied between the 2 study populations 
because of different laboratory methods and the lack of 
standardization of different assays. Therefore, biomarker 
concentrations were standardized to compare results be-
tween studies.

As shown in Fig. 1, the associations with incident type 
2 diabetes in the KORA S4 validation study were similar 
to the results in the discovery study for the 3 inversely as-
sociated markers (IGFBP-2, adiponectin, and HDL choles-
terol) but were weaker, albeit statistically significant, for 
the 3 positively associated markers (sE-selectin, IL-1RA, 
and decorin) after controlling for GDRSadapted risk factors.

In the discovery study, the basic GDRSadapted model pre-
dicted 14-year risk of type 2 diabetes reasonably well (C 
index [95% CI], 0.775 [0.755-0.790]). All 6 selected bio-
markers individually significantly improved the C index on 
top of the GDRSadapted model (Table 2). The Δ of the C in-
dices ranged from 0.010 for decorin to 0.024 for IL-1RA. 
In combination, the 6 biomarkers strongly improved the 
Δ of C indices by 0.053 (0.039-0.066) (see Table 2). The 
overall cfNRI and the cfNRI calculated separately in cases 
and noncases were also significantly improved by all 6 
biomarkers when they were individually added to the 
GDRSadapted model. The cfNRI, which describes the pro-
portion of individuals for whom the change in calculated 
risk was in the desired direction (higher for cases, lower 
for noncases), ranged from 19.4% for decorin to 43.2% 
for IL-1RA. CfNRI improvements were seen both in cases 
and noncases, with stronger improvements in the cases. 
The simultaneous addition of all 6 biomarkers to the 
GDRSadapted model improved the cfNRI by 67.4% overall 
and by 43.9% and 23.5% in cases and noncases, respect-
ively (see Table 2). Supplementary Table S4 shows the C 
index and the Δ of the C indices for all 47 biomarkers (19).

In the validation KORA S4 cohort, the C index was sig-
nificantly improved when all 6 biomarkers were added sim-
ultaneously to the GDRSadapted model (Δ of C indices: 0.034 
[0.019-0.053]) and the GDRSadapted plus HbA1c model (Δ 
C index: 0.023 [0.009-0.039]; see Table  2, Fig.  2). Only 
IGFBP-2, adiponectin, and HDL cholesterol individually 
significantly improved the C index on top of the GDRSadapted 
model and only IGFBP-2 and adiponectin on top of the 
GDRSadapted plus HbA1c model (Supplementary Table S5) 
(19).

When added to the GDRSadapted model, the addition of all 
6 biomarkers in combination and the individual addition 
of IGFBP-2 improved the overall cfNRI and the cfNRI in 
cases and noncases significantly, whereas the individual add-
ition of IL-1RA, adiponectin, HDL cholesterol, and decorin 

Figure 1.  Black squares: Monitoring of Trends and Determinants in 
Cardiovascular Diseases/Cooperative Health Research in the Region of 
Augsburg (MONICA/KORA) case-cohort study. White squares: KORA S4 
cohort study. Hazard ratios (HRs) are adjusted for the adapted German 
Diabetes Risk Score variables (age, sex, body mass index, survey, 
hypertension, physical activity, smoking status, coffee consumption, 
red meat consumption, whole-grain bread/muesli consumption, par-
ental history of diabetes). The biomarkers are sorted by size of HR esti-
mates in the MONICA/KORA case-cohort study.
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improved the overall cfNRI and the cfNRI only in noncases. 
Results were relatively similar (except for decorin) when bio-
markers were added individually and in combination to the 
GDRSadapted plus HbA1c model (Supplementary Table S5) (19).

We also investigated whether the traditional type 2 diabetes 
risk factors from the GDRSadapted model increased the predictive 
performance beyond a basic model including age, sex, BMI, 
survey, and the 6 selected biomarkers. Whereas the addition of 
parental history of diabetes, smoking, and hypertension led to 
small improvements in model performance in terms of the Δ C 
index and cfNRI, the addition of physical activity, coffee, meat, 
and whole-grain bread/muesli consumption did not confer an 
additional benefit (Supplementary Table S6) (19).

Supplementary Figure S6 shows the calibration of the 
prediction models developed in the MONICA/KORA case-
cohort study applied to the validation KORA S4 cohort 
study (19). Both the GDRSadapted plus 6 biomarkers as well 
as the GDRSadapted plus HbA1c plus 6 biomarkers models 
were well calibrated in 90% of the participants. In the 
highest-risk decile, the predicted 14-year-risk of type 2 dia-
betes was overestimated.

Correlation coefficients between the 6 selected biomarkers 
ranged from –0.23 to 0.40 in the MONICA/KORA case-
cohort study and were similar in the KORA S4 cohort study 
(Supplementary Figure S7) (19). Correlation coefficients be-
tween HbA1c and the 6  selected biomarkers ranged from 
–0.14 for adiponectin to 0.09 for decorin in the S3 subcohort 
of the MONICA/KORA case-cohort study, and from –0.13 
for IGFBP-2 to 0.04 for decorin in the KORA S4 cohort.

The prognostic index for the “GDRSadapted + 6  bio-
marker” model developed in the MONICA/KORA case-
cohort study and validated in the KORA S4 cohort study is 
shown in the Supplementary Material (19).

Discussion

In our discovery population-based case-cohort study, 
we selected a panel of 6 biomarkers (IL-1RA, IGFBP-2, 
sE-selectin, adiponectin, HDL cholesterol, decorin) out of 
47  candidate biomarkers that, based on the parsimony 
trade-off, best predicted the development of type 2 dia-
betes over a period of 14 years on top of a standard clin-
ical model. This panel of 6 biomarkers was validated in 
an independent cohort study from the same study region. 
In both studies, the combination of the 6 biomarkers im-
proved the C  index beyond the basic clinical models and 
improved net reclassification both in cases and noncases. 
Further analyses demonstrated that clinical and lifestyle 
data may not be necessary for optimal type 2 diabetes pre-
diction if selected biomarkers are used.

Three of the 6 selected biomarkers have consistently been 
shown to be inversely (adiponectin, HDL cholesterol) or 
positively (sE-selectin) associated with incident type 2 dia-
betes in large-scale studies as reviewed by Abbasi et al (17). 
Whereas IL-1RA levels were associated with incident type 2 
diabetes in a few previous studies (6, 10, 38), IGFBP-2 has 
only recently emerged as novel biomarker candidate for type 
2 diabetes (14, 39, 40). For decorin, very limited data are 
available. One small study found elevated levels of decorin 
in individuals with type 2 diabetes compared to those with 
normal glucose tolerance in Mauritius, but results were 
cross-sectional and not adjusted for other type 2 diabetes 
risk factors (41). However, animal studies indicated that 
decorin supports glucose tolerance (42). Therefore, higher 
levels of decorin before the onset of type 2 diabetes may 
be part of a counterregulation similar to higher levels of 
IL-1RA preceding the onset of type 2 diabetes (38).

Figure 2.  The adapted German Diabetes Risk Score (GDRSadapted) model includes the covariates age, sex, body mass index, survey, hypertension, phys-
ical activity, smoking status, coffee consumption, red meat consumption, whole-grain bread/muesli consumption, and parental history of diabetes.
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In addition to the 6 biomarkers selected for type 2 dia-
betes prediction, another 6  biomarkers were significantly 
associated with incident type 2 diabetes after correction for 
multiple testing in multivariable adjusted models. For some 
of these markers (SHBG, tPA, and leptin) the strength of as-
sociation was even stronger than for some of the 6 selected 
predictors. This demonstrates the need for appropriate 
selection algorithms, taking into account complex correl-
ation structures between biomarkers to identify the best 
biomarker combination for risk prediction.

The fact that adipose tissue is one of the major sources 
of several of the type 2 diabetes–related biomarkers 
(adiponectin, leptin, IGFBP-2, decorin, sE-selectin, tPA, 
VEGF-R2) underscores the interaction between adipose 
dysfunction, inflammation, and insulin resistance in the de-
velopment of type 2 diabetes (43).

During the last decade, several attempts have been 
made to improve risk prediction of type 2 diabetes 
using panels of proteins (7, 8, 10, 13, 14), metabolites 
(11), lipids (12), plasma protein N-glycan profiling (44), 
and mixed panels of several biomarker types (6, 45-
47). Earlier reports, including data from the MONICA/
KORA case-cohort study (7), have been limited by rela-
tively few biomarker measurements (7, 8, 13, 45, 47), 
lack of independent validation (7, 8, 13, 14, 45, 47), or 
lack of direct assessment of the predictive value on top 
of standard noninvasive clinical models (46) and clinical 
models that included glycemic markers such as fasting 
glucose or HbA

1c (7, 45). Overall, conclusions have been 
inconsistent. Whereas some studies saw hardly any im-
provement in risk prediction (8, 10, 14, 47), others con-
cluded that their newly developed prediction algorithms 
were useful for risk stratification of future type 2 diabetes 
(6, 7, 11-13, 45). The present analysis adds to the current 
discussion by overcoming some of these limitations. We 
investigated a relatively large panel of 47 biomarkers that 
included not only proteins, but also other biomarkers 
shown to be relevant for type 2 diabetes development, 
such as lipids, steroids (25-hydroxy-cholecalciferol), 
and uric acid. In addition to the large discovery study 
with almost 700 incident type 2 diabetes cases, in which 
we employed an internal cross-validation approach, we 
tested the predictive potential of the selected biomarker 
panel in an independent validation study with about 
250 incident cases. Furthermore, we assessed the pre-
dictive value of the selected panel on top of a standard 
noninvasive clinical model and on top of a clinical model 
that also contained HbA1c. In summary, we observed that 
the 6 selected biomarkers improved model performance 
yielding better reclassification (higher cfNRI) as well 
as discrimination (higher C indices). The Δ C indices 
of 0.034 and 0.023 observed in the validation cohort 

when the 6 biomarkers were added to the basic clinical 
model and the basic clinical model + HbA1c, respect-
ively, exceeded the range of improvement seen in other 
proteomics studies that employed a similarly rigorous 
discovery-validation approach to avoid overfitting (6, 
16). Furthermore, to put our findings into perspective: 
The well-established cardiovascular biomarker troponin 
I improved the C index for a prognostic model of cardio-
vascular death by 0.007 when added to a clinical model 
(48). However, when interpreting our results, one has to 
keep in mind that most of the benefit in the validation 
cohort (ie, difference in the receiver operating character-
istic curves) was seen in a range of performance between 
about 50% and 80% sensitivity. Thus, the biomarkers 
would only marginally improve the prediction of type 2 
diabetes in a model with greater than 80% sensitivity. In 
addition, we demonstrated that the developed model is 
well calibrated and can be used to accurately predict ab-
solute risk in 90% of the investigated population.

Our study has a few limitations that should also be 
mentioned. Although the number of biomarkers ana-
lyzed is reasonably large, new emerging technologies (eg, 
proteomics profiling with proximity extension assay tech-
nology [10] or aptamer-based techniques [16, 40]) allow 
the simultaneous measurement of even larger biomarker 
panels in small amounts of samples. Most likely, upcoming 
novel biomarkers could further improve risk prediction. 
We were able to assess the predictive potential of the 
selected biomarker panel on top of HbA

1c in our valid-
ation cohort. However, the markers were initially selected 
without taking HbA1c into account, since HbA1c measure-
ments were available only in a subsample of the discovery 
case-cohort study. Furthermore, we were not able to assess 
the predictive value in addition to fasting glucose concen-
trations, since the discovery case-cohort study and parts 
of the validation cohort study did not include fasting glu-
cose measurements. Although the discovery and the valid-
ation study were conducted in the same study region and 
used similar methods to assess type 2 diabetes and its risk 
factors, there was one important difference between both 
studies that could have influenced our results. In the KORA 
S4 cohort an oral glucose tolerance test was performed at 
baseline in those aged 55 to 74 years and in all partici-
pants at the follow-up examinations in 2007 to 2008 and 
2013 to 2014. The results of these tests were communi-
cated to the participants and those with fasting glucose, 
2-hour glucose, or HbA1c levels in the diabetic range were 
advised to consult their general practitioners. Therefore, 
clinical diagnoses of type 2 diabetes (which have been used 
for the present analysis regardless of oral glucose toler-
ance test results) might have been pushed forward in some 
cases leading to an earlier diagnosis at a less severe stage 
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compared to regular circumstances due to a screening 
effect. Alternatively, knowledge about the presence of early 
derangements in glucose metabolism might have motiv-
ated some participants to change their lifestyle and thereby 
might have postponed the development of type 2 diabetes. 
Because our analysis considered only cases with clinically 
diagnosed type 2 diabetes, there may be some degree of 
misclassification. The potential misclassification is most 
likely nondifferential and thus may have biased our results 
toward the null. Furthermore, changes in the diagnostic 
criteria for type 2 diabetes over the course of the study, 
especially the more stringent criteria for fasting glucose re-
commended since 1999 may, to some extent, explain the 
differences in results seen between the discovery and valid-
ation studies. However, the results of our validation study, 
which was conducted between 1999 to 2016, should be 
generalizable to current clinical practice. Because study 
participants were mainly White, results are not, however, 
generalizable to other ethnic groups.

Conclusions

We demonstrated that a panel of 6 biomarkers including 
IL-1RA, IGFBP-2, sE-selectin, adiponectin, HDL choles-
terol, and decorin improved the prediction of type 2 dia-
betes on top of a noninvasive standard clinical model and 
on top of a standard clinical model plus HbA1c. Thus, risk 
prediction models including these markers may help to im-
prove identification of individuals at high risk of developing 
type 2 diabetes to effectively target preventive efforts to 
those who are most in need.
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