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Summary

� Nutrient imbalances cause the deterioration of tree health in European forests, but the

underlying physiological mechanisms are unknown. Here, we investigated the consequences

of decreasing root carbohydrate reserves for phosphorus (P) mobilisation and uptake by forest

trees.
� In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were gir-

dled and used to determine root, ectomycorrhizal and microbial activities related to P mobili-

sation in the organic layer and mineral topsoil in comparison with those in nongirdled trees.
� After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate carboxy-

lase activities linking carbon and P metabolism increased. Root and ectomycorrhizal phos-

phatase activities and the abundances of bacterial genes catalysing major steps in P turnover

increased, but soil enzymes involved in P mobilisation were unaffected. The physiological

responses to girdling were stronger in P-poor than in P-rich forests. P uptake was decreased

after girdling. The soluble and total P concentrations in roots were stable, but fine root

biomass declined after girdling.
� Our results support that carbohydrate depletion results in reduced P uptake, enhanced

internal P remobilisation and root biomass trade-off to compensate for the P shortage. As

reductions in root biomass render trees more susceptible to drought, our results link tree

deterioration with disturbances in the P supply as a consequence of decreased belowground

carbohydrate allocation.

Introduction

Large-scale surveys across the European continent detected
declining forest productivity and deterioration of tree mineral
nutrition in the past two decades (Wardle, 2004; Ilg et al., 2009;
Trichet et al., 2009; Jonard et al., 2015; Talkner et al., 2015).
Changes in tree nutrition were particularly pronounced for phos-
phorus (P) (Duquesnay et al., 2000; Ilg et al., 2009; Talkner
et al., 2015). At the ecosystem level, increasing constraints on
forest P nutrition have been related to anthropogenic pollution
and climate change (Duquesnay et al., 2000; Prietzel & Stetter,
2010; Lang et al., 2016; Augusto et al., 2017) via low P minerali-
sation and mobility in dry soil (Schachtman et al., 1998; Schimel
et al., 2007; Kreuzwieser & Gessler, 2010), soil acidification, and
N deposition (Vitousek & Howarth, 1991; Pe~nuelas et al.,
2013). However, the physiological processes that regulate tree P
supply along the soil–root continuum of forest trees are not fully
understood.

In forest soil, bioavailable P (inorganic P, Pi) is scarce because
Pi has low solubility, is bound by soil minerals and is replenished
slowly from recalcitrant P pools (Holford, 1997). P mobilisation
can be achieved by ion exchange and by the recycling of organi-
cally bound P (Lambers et al., 2015; Lang et al., 2017). Common
physiological mechanisms used to increase P bioavailability are
the exudation of organic acids and extracellular acid phosphatases
by plant roots, root-associated mycorrhizal fungi, and soil
microbes (Kandeler, 1990; Schneider et al., 2001; Uroz et al.,
2007; Kluber et al., 2010; Nannipieri et al., 2011; Pritsch & Gar-
baye, 2011; Spohn et al., 2013).

Trees engage two processes to cope with P shortage: they
enhance soil P mobilisation and uptake capacity (Desai et al.,
2014; Kavka & Polle, 2016), and they tighten internal P cycling
by growth adjustment and internal P mobilisation (Netzer et al.,
2018; Zavi�si�c & Polle, 2018). At the molecular level, P depriva-
tion results in the increased expression of P-related enzymes and
of enzymes involved in carbohydrate and energy metabolism
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(Misson et al., 2004, 2005; Gan et al., 2016; Kavka & Polle,
2017; Png et al., 2017). The enzyme phosphoenolpyruvate car-
boxylase (PEPC) is a hub for P and carbon metabolism,
catalysing the release of P and the production of oxaloacetate
from phosphoenolpyruvate and bicarbonate (L�opez-Arredondo
et al., 2014). Oxaloacetate is the precursor of malate, a main
compound in root exudates used for P mobilisation (Richardson
et al., 2011; Meier et al., 2020). PEPC activity is strongly
induced by P starvation (Pe~naloza et al., 2004; Shane et al.,
2013), thereby driving internal P recycling and the production of
organic acids.

The activities of soil microbes, which are key to nutrient
mobilisation for plants (Bucher, 2007; Jacoby et al., 2017; Bargaz
et al., 2018; Nehls & Plassard, 2018), crucially depend on their
supply of photoassimilates via root exudates (Heinonsalo et al.,
2004; Cairney, 2011; Becquer et al., 2014; Johri et al., 2015;
Kaiser et al., 2015; Nehls & Plassard, 2018). A shortage of labile
carbon in the soil caused by the girdling of trees, for example,
results in decreased soil respiration, the altered composition of
mycorrhizal and microbial communities, and changed soil
enzyme activities (Heinonsalo et al., 2004; Pena et al., 2010;
Kaiser et al., 2015). By contrast, enhanced carbon availability
after the addition of glucose to soil increases microbial phos-
phatase activities (H€ogberg et al., 2003; Spohn et al., 2013).
Despite the tight links between the belowground allocation of
plant assimilates and the activities of soil microbiota, on the one
hand, and the importance of microbes for P mobilisation, on the
other hand, it is unknown whether the P acquisition abilities of
trees depend on their carbohydrate resources. As ectomycorrhizal
fungi are crucial to the plant P supply (Lambers et al., 2008;
Nehls & Plassard, 2018) and thrive on plant-derived carbohy-
drates, we expected to observe a relationship between carbohy-
drate availability and P nutrition.

Here, we investigated whether plant carbohydrate resources are
important for P nutrition in temperate beech (Fagus sylvatica)
forests. We interrupted the belowground allocation of photoas-
similates by girdling. By comparing the processes in nongirdled
controls and girdled trees, we disentangled the effects of below-
ground plant-derived carbohydrates on P uptake, P concentra-
tions and enzyme activities related to P mobilisation in roots,
ectomycorrhizas and soil as well as the abundance of bacterial
functional genes important for P cycling. Root soil exploration,
as well as microbial and mycorrhizal activities, are vertically strati-
fied, with strong differences between P-rich and P-poor forest
ecosystems (e.g. lower root biomass and lower ectomycorrhizal
activities in the organic layer than in the mineral layer in P-rich
forests compared with those in P-poor forests, Jonard et al., 2009;
Zavi�si�c et al., 2016; Lang et al., 2017; Clausing & Polle, 2020).
Furthermore, young beech trees growing in P-poor forest soils
show lower photosynthesis rates compared with those growing in
P-rich forest soils (Yang et al., 2016). Therefore, we expected
stronger negative effects of carbon starvation on root metabolism
and associated soil processes in P-poor than in P-rich soil. Here,
we studied the consequences of carbon starvation on P
metabolism and root biomass in the forest floor and in the min-
eral topsoil in two well characterised forest ecosystems that

differed strongly in P stocks (Lang et al., 2017). We addressed
the following specific hypotheses:
(1) Carbohydrate depletion leads to a decrease in root P concen-
trations and an increase in the enzyme activities required for
internal P mobilisation in roots (PEPC, phosphatase) as well as
for P mobilisation from soil (mycorrhizal phosphatases).
(2) As soil microbes are not directly reliant on root carbohydrates
(Kaiser et al., 2010), microbial phosphatases are unaffected by
girdling.
(3) The consequences of root carbon starvation on P nutrition
are stronger in soils with low P availabilities than in soils with
high P availabilities because the mobilisation of scarce P requires
higher resource investment than that of sufficient P.

Materials and Methods

Site characteristics and study plots

The study was conducted in two beech (F. sylvatica L.) forests,
both stocking on silicate rock but differing in total P stocks (160
and 900 g P m�2 in P-poor and P-rich forests, respectively,
down to 1 m soil depth). The P-rich (HP) site Bad Br€uckenau is
located in the biosphere reserve ‘Bayerische Rh€on’ (50°21′7.2′′N
9°55044.5′′E, 801–850 m above sea level (asl)). The mean long-
term sum of annual precipitation is 950 mm, and the long-term
mean annual temperature (1981–2010) is 6.1°C. The average
tree age at this beech stand is 137 yr (LWF, 2016). The soil is a
Dystric Skeletic Cambisol (Hyperhumic, Loamic) (WRB, 2015)
derived from basalt. The P-poor (LP) forest site is situated in the
district Celle in Lower Saxony (52°50021.7′′N 10°1602.3′′E,
115 m asl) and is stocked with c. 120-yr-old beech trees (BMEL,
2016). The mean annual temperature (1981–2010) at this site is
8.6°C, and the mean annual sum of precipitation is 899 mm
(BMEL, 2016). The soil is a Hyperdystric Folic Cambisol (Areni,
Loamic, Nechic, Protospodic) derived from sandy till substrate.
Further details have been reported by Lang et al. (2017).

For this study, three girdling plots were installed in the HP
and four in the LP forest (HP: 12 May 2017, LP: 5 May 2017)
in gaps with a minimum distance of 5 m between large trees.
Each plot had an area of 4 m2 and was separated from the sur-
rounding soil by a 0.25-m-deep trench to prevent the roots of the
mature beech trees from affecting the study. Each plot was
divided into two equally sized subplots by inserting a lawn edge
into the soil. The understory was removed. The HP plots con-
tained 0.9 mg Ptot g

�1 dry mass in both the organic layer and the
mineral topsoil and had pH values ranging from 3.9 to 4.3
(Table 1). The LP plots contained 0.2 mg and 0.02 mg Ptot g

�1

dry mass in the organic layer and mineral topsoil, respectively,
and had pH values ranging from 3.3 to 3.5 (Table 1). Additional
information on soil and plant nutrient concentrations is provided
in Supporting Information Table S1.

The young, naturally regenerated beech trees stocking on the
plots had an average height of 2 m and an average diameter of
24 mm in HP and a height of c. 4 m and a diameter of 16 mm in
LP. The mean number of trees per plot ranged from 15 to 25. In
July 2017, all trees on one-half of the plots were girdled by
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removal of a 20-mm-wide strip of bark at a height of 0.4 m from
the ground (HP: 18 July, LP: 17 July). The other half of each
plot was used as an untreated control.

Harvest and processing of soil cores

In each subplot, eight soil cores (diameter 55 mm, depth 0.21 m)
were sampled 1 wk (HP: 25 July 2017, LP: 24 July 2017) and 8
wk (HP: 27 September 2017, LP: 20 September 2017) after
girdling. A schematic overview on the sampling procedure is pro-
vided in Fig. S1. The soil cores were separated into organic and
mineral topsoil layers. The average depth of the organic layer was
60 mm in the LP and 30 mm in the HP forest. Each sample was
further fractionated into bulk soil, rhizosphere soil, fine roots
(< 2 mm) and coarse roots (> 2 mm) in the field. We defined rhi-
zosphere soil as soil adhering to roots. The rhizosphere soil was
collected by streaking the adhering soil from the roots with a
paintbrush. All fractions were immediately weighed. Bulk soil,
rhizosphere soil and roots were divided into three aliquots
directly in the field: a fresh aliquot that was kept cool at 4°C until
use, an aliquot that was immediately frozen in liquid nitrogen
and stored at �80°C (roots) or � 20°C (soil), and an aliquot that
was dried (40°C, 14 d). Bulk soil was sieved (mesh width: 4 mm)
before the aliquots were prepared.

Ectomycorrhizal (EMF) morphotyping, species
identification and extracellular phosphatase activities

The beech roots were gently washed using 4°C precooled tap
water, spread in water in a glass dish, and examined under a stere-
omicroscope (Leica M205 FA, Wetzlar, Germany). The root tips
were classified as either vital EMF, vital nonmycorrhizal or dead
root tips.

The EMF root tips were categorised into morphotypes using
the identification keys of Agerer (1987–2012). We collected the
morphotypes, which were present on at least three root tips per
sample. Mycorrhizal species identities were determined after
DNA extraction and ITS sequencing (Pena et al., 2017). The
sequences were analysed with the STADEN package (http://staden.
sourceforge.net), BLASTed against the NCBI GenBank (www.ncb
i.nlm.nih.gov) and UNITE (unite.ut.ee) databases and deposited
in the NCBI GenBank under numbers MN970515 to
MN970525 (Fig. S2). Species richness, Shannon index and even-
ness were determined with PAST 4.03 (https://folk.uio.no/oha
mmer/past/) (Hammer et al., 2001).

Individual EMF root tips, each assigned to a morphotype,
were collected, and the extracellular acid phosphatase (EC
3.1.3.2) activity was determined with fluorescent 4-methy-
lumbelliferone (MUF) phosphate at pH 4.5 using a high-
throughput microplate fluorometric assay (Pritsch et al.,
2011). Afterwards, the root tips were scanned, and the activ-
ity was related to the tip surface. The root tip collection
and enzyme activity measurements were performed within
48 h of sampling time. A detailed description of fungal
species identification and enzyme activity measurements can
be found in Methods S1.

Quantitative real-time PCR assays of P cycle-related genes
in bulk soil

For nucleic acid extraction, a phenol–chloroform-based pro-
tocol, modified according to Stempfhuber et al. (2017), was
used to extract total genomic DNA from 0.5 g frozen bulk
soil. The extracts were used to determine the abundance of
seven bacterial genes that code for enzymes catalysing impor-
tant steps in P turnover, including pitA, a constitutively
expressed P transporter, pstS, a P transporter involved in the
P starvation response, four genes (phoD, phoN, phnX, appA)
that encode enzymes with phosphatase activities, and gcd,
which solubilises P by the oxidation of glucose and aldose
sugars (Table S2) using the primers described by Bergkemper
et al. (2016). The genes phoD, phoN, appA and phnX
encode extracellular enzymes, while the transporters pitA, pstS
and gcd are periplasmic. The 16S rRNA gene served as a
proxy for the overall bacterial biomass (Bach et al., 2002). A
detailed description of the methods, including the thermal
profiles of the PCR, the source of the standard, and the
primers used, is shown in Methods S1.

Enzymatic activities in fine roots, bulk soil and rhizosphere
soil

Frozen fine roots were milled and used for the preparation of pro-
tein extracts and the analysis of potential enzymes (Methods S1).
Acid phosphatase (EC 3.1.3.2) and phosphoenolpyruvate car-
boxylase (PEPC) (EC 4.1.1.31) activities in root extracts were
measured spectrophotometrically (Bergmeyer, 2014). A detailed
description can be found in Methods S1.

The rhizosphere and soil enzymes were extracted from
fresh soil that had been stored frozen at �20°C (Methods
S1). Enzyme activities in the soil and rhizosphere (using
MES buffer at pH 6.1 for L-leucine peptidase, a-D-glucosi-
dase, b-D-glucosidase, xylosidase, N-acetyl-glucosaminidase,
acid phosphomonoesterase and phosphodiesterase; MUB
buffer at pH 6.1 for acid phosphomonoesterase; and MUB
buffer at pH 11 for alkaline phosphomonoesterase) were
determined with fluorescent 4-methylumbelliferone (4-MUF)
and L-leucine peptidase with 7-amino-4-methylcoumarin-
linked substrates (Sigma Aldrich, St Louis, MO, USA) (Marx
et al., 2001) in soil suspensions (for details, see Methods S1).
The phosphomonoesterases activities were determined in both
MES buffer at pH 6.1 and MUB buffer at pH 6.1 to
account for potential differences caused by the buffer system,
but no effects were observed. Phosphomonoesterases (MES
pH 6.1) are, from this point forward, called acid phos-
phatases.

Phenoloxidase and peroxidase activities were determined
using 2,20-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)
with MUB buffer at pH 3 in soil and rhizosphere suspen-
sions (Floch et al., 2007; Bach et al., 2013). A detailed
description can be found in Methods S1. Using the dry-to-
mass ratio of soil, the enzyme activities were expressed on
the basis of the dry mass.
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Total and soluble phosphorus in roots and soil

Dry soil and root samples were milled in a ball mill (Retsch)
to a fine powder. For determination of total P (Ptot), 50 mg
powder was weighed and extracted in 25 ml 65% HNO3 at
160°C for 12 h (Heinrichs et al., 1986). For determination
of soluble P (Psol), 100 mg of powder was extracted in
150 ml Bray-1 solution (0.03 N NH4F, 0.025 N HCl) for
60 min on a shaker at 180 rpm (Bray & Kurtz, 1945). The
extracts were filtered using phosphate-free filter paper (MN
280¼, Macherey-Nagel, D€uren, Germany) and used for ele-
mental analysis by inductively coupled plasma–optical emis-
sion spectroscopy (ICP–OES) (iCAP 7000 Series ICP–OES;
Thermo Fisher Scientific, Dreieich, Germany) (Clausing &
Polle, 2020).

The P stocks in the soils (depth 0.21 m) were determined by
multiplying the soil P concentrations with the total soil dry mass
of the soil cores. The P stocks in the fine roots in the soil cores
were calculated by multiplying the P root concentrations with the
total fine root dry mass in the soil cores. To derive P stocks per
area, cross-sections of the soil cores (0.152 m�2 for eight soil
cores) were used.

Microbial phosphorus

For microbial P (Pmic) determination, the soil samples were
divided into three subsamples. Two subsamples were extracted by
hexanol fumigation (with and without spiking with a P stan-
dard). The third subsample was extracted by deionised water to
obtain soluble Pi (Kouno et al., 1995). Pmic was obtained by the
subtraction of water-soluble Pi and correction for the recovery, as
described in detail in Methods S1.

Carbohydrate concentrations in roots

Frozen fine root powder (described above) was extracted in
dimethylsulfoxide 25% HCl (80% : 20%) and then used for
enzymatic carbohydrate analyses (Bergmeyer, 2014), in a spec-
trophotometer at 340 nm and 25°C. The analysis is based on
the subsequent enzymatic conversions of fructose, sucrose and
starch into glucose, the concentration of which is determined
by the formation of NADPH. The details are described in
Methods S1.

Soil pH and water-extractable organic carbon

The pH values were measured by suspending field-moist, sieved
soil in 0.01M CaCl2 (1 : 5 soil : solution ratio) after 16 h of equi-
libration (ISO10390, 2005). For determination of water-ex-
tractable organic carbon (WEOC) field-moist, sieved samples
were suspended in deionised water (EC < 0.06 lS cm�1) at a
soil : solution ratio of 1 : 5. After 16 h of equilibration, the sus-
pensions were filtered through a 0.45 μm membrane (cellulose-
nitrate, Sartorius, G€ottingen, Germany), and WEOC was mea-
sured using a TOC analyser (multi N/C® 2100S; Analytik Jena,
Jena, Germany).

Microbial biomass by fatty acid determination

Fatty acid methyl esters (FAMEs) were extracted using the proto-
col of Frosteg�ard et al. (1993). We used the following PLFAs as
specific biomarkers for microbial groups: i15:0, a15:0, i16:0 and
i17:0 for Gram-positive bacteria; cy17:0 and cy19:0 for Gram-
negative bacteria (Frosteg�ard et al., 1993); and 18:2x6,9 for
fungi (Frosteg�ard & B�a�ath, 1996). The sum of these markers plus
16:1x7 was used as a proxy for the total microbial biomass
(Frosteg�ard & B�a�ath, 1996). A detailed description can be found
in Methods S1.

Phosphorus uptake of fine roots determined by radioactive
labelling

To determine the P uptake of fine roots, a radioactive labelling
experiment with H3

33PO4 (Hartmann Analytic GmbH, Braun-
schweig, Germany) was conducted under laboratory conditions.
To test our hypothesis with an independent experiment, we col-
lected 20 young beech trees (height: 0.5 m, stem diameter 5 mm,
measured 0.1 m above ground) with an intact soil core (tube:
height: 0.2 m9 diameter: 0.12 m) from another beech forest
(Billingsh€auser Schlucht, coordinates: 51°34043.8′′N 9°59004.8′′
E, 308 m asl, G€ottingen, Germany). The mineral topsoil texture
consisted of 59% silt, 38% clay and 3% sand (Brumme &
Khana, 2009). The average pHKCl of the organic layer was 5.16
and that of the mineral topsoil was 5.54, with a P concentration
of 0.53 mg g�1 in the organic layer and 0.63 mg g�1 in the min-
eral topsoil (Brumme & Khana, 2009). The plants were left in
the tubes with intact soil cores and were transported to the exper-
imental garden at the University of Goettingen. The plants were
acclimated for 1 month under field conditions and watered regu-
larly before the uptake experiments started (collection: 13 May
2019, labelling experiments from 13 June 2019 to 25 June
2019). Half of the trees were girdled as described above; the other
half remained untreated. The trees were used for uptake experi-
ments 1 wk after girdling. For this purpose, a beech tree with an
intact root system was cautiously removed from its pot and
washed carefully to rinse off all soil particles. Then, a selected
root was exposed for 3 h in 2 ml artificial soil solution (after
Gessler et al., 2005) containing 1 kBq 33PO4 (Hartmann Ana-
lytic GmbH, Braunschweig, Germany). Thereafter, the sub-
mersed part of the root (exposure part) and the subsequent root
segment of c. 10 mm (transport part), which was not in contact
with the uptake solution, were separately cut off, washed with
artificial soil solution, dried, combusted, mixed with scintillation
cocktail (Rotiszint eco plus, Roth, Karlsruhe, Germany), and
used to measure the radioactivity of the 33P. In total, seven gir-
dled and seven untreated trees were analysed using three fine
roots per tree. The details of the exposure experiments are
described in Methods S1.

Statistical analyses

Statistical analyses were performed with R v.3.6.0 (R Core Team,
2012). The normal distribution and homogeneity of variances
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were tested by analysing the residuals of the models and perform-
ing a Shapiro–Wilk test. Data were logarithmically or square-root
transformed when necessary to meet the criteria of the normal
distribution and homogeneity of variances. As the plots were sep-
arated into girdled and nongirdled subplots, we used a paired test
to determine the girdling effect. The test was conducted with the
originally measured data. The graphs show response ratios calcu-
lated as the means of plotx(girdled)/ plotx(nongirdled). To determine
the effects of the forest type, soil layer, sampling dates and treat-
ment, linear mixed effects models (‘lmer’, R package LME4) were
used with plot as random factor. Pairwise comparisons of the
sample means were conducted using Tukey’s honest significant
difference (HSD) test (package: MULTCOMP). Means were consid-
ered to be significantly different from each other when P ≤ 0.05,
and differences with P ≤ 0.1 were considered to indicate a trend.
Data are shown as the means (HP: n = 3; LP: n = 4) and standard
errors (� SE), if not indicated otherwise. The function anosim
from the VEGAN package (Oksanen et al., 2019) was used to test
differences among the community composition of mycorrhizal
fungi for the following factors: forest type, treatment and harvest
time point.

Results

Girdling decreases root carbohydrate status and activates
PEPC

Nonstructural carbohydrate concentrations (determined as sum
of starch, glucose, fructose and sucrose) in fine roots declined
after girdling (Fig. 1). Overall, roots in the organic layer already
showed significant decreases in carbohydrate concentrations 1 wk
after girdling (F = 48.19, P < 0.001); this decline was particularly
strong in the HP forest (Interaction F = 15.99, P = 0.002,
Fig. 1a). The decreases were less pronounced in the mineral layer
(F = 4.74, P = 0.064, Fig. 1b). At 8 wk after girdling, roots in
both soil layers from both the HP and LP forests contained

significantly lower carbohydrate concentrations than did the
roots of nongirdled trees (Fig. 1a,b).

In general, the fine root carbohydrate concentrations were
higher in roots from the organic layer of the HP than in those
from the LP forest (F = 70.20, P < 0.001), whereas no significant
differences were found between HP and LP roots in the mineral
topsoil (F = 0.05, P = 0.822). The carbohydrate concentrations
were not affected by season (organic layer: F = 3.14, P = 0.088,
mineral topsoil: F = 0.12, P = 0.730, that is sampling 1 wk and 8
wk after girdling corresponding to summer (July) and early
autumn (September), respectively, with the exception of the min-
eral layer in the HP forest.

As girdling showed the strongest effects after 8 wk, we used
this time point to test the effect of carbon depletion on PEPC
activity in roots. We found significant increases in PEPC activi-
ties in roots of girdled trees compared with control trees in both
soil layers and at both study sites (means across all site condi-
tions +26� 4%, F = 37.36, P < 0.001; Fig. 2).

Girdling stimulates acid phosphatase activities in roots and
ectomycorrhizal fungi but has a moderate impact on
microbial P mobilisation in soil

To test whether girdling affected P mobilisation in beech roots or
from soil, we determined the intrinsic acid phosphatase activities
in fine roots, the extracellular phosphatase activities on the myc-
orrhizal hyphal mantle surfaces and the soil-residing acid phos-
phatase activities. We also determined the gene abundances of P-
related enzymes in soil microbes. As most of these variables dif-
fered between the HP and LP forests and between different soil
layers and time points of harvest, we focused on the girdling
effects by investigating the response ratios of girdled/control
treatments (the means of the original data and statistical informa-
tion can be seen in Table S3).

After girdling, the response ratios of root phosphatase activities
were consistently enhanced at the LP site, regardless of soil layer

(a) (b)

Fig. 1 Carbohydrate concentrations (mg g�1 DW) in fine roots of beech trees (Fagus sylvatica) after girdling (G, light colours) and of untreated control
plants (C, dark colours) in phosphorus (P)-rich (HP) and P-poor (LP) forests. Roots from the organic layer (a) and the mineral topsoil (b) were analysed
separately 1 wk and 8 wk after girdling. Data indicate means (HP: n = 3, LP: n = 4) � SE. To determine the effects of forest type, sampling date, treatment
their interaction linear mixed effects models (‘lmer’) were used with a plot as random factor and a post hoc Tukey HSD was performed to detect
differences between means. Different letters indicate significant differences at P ≤ 0.05. Colours of bars refer to starch (turquoise), glucose (red), fructose
(green) and sucrose (orange).
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or time point, whereas the HP roots from the organic layer
showed a strong enhancement only 1 wk after girdling and the
HP roots from the mineral topsoil showed a moderate enhance-
ment 8 wk after girdling (Fig. 3).

Girdling further caused the strong enhancement of the extra-
cellular phosphatase response ratio for ectomycorrhizal root tips
in both soil layers in the LP forest (Fig. 3b,d) but not in the HP
forest (Fig. 3a,c). The ectomycorrhizal colonisation of root tips
and the community composition of the ectomycorrhizal fungi
were unaffected by girdling (ANOSIM: R2 = 0.418, P > 0.05,
Fig. S2), with the exception of the LP mineral topsoil, where
mycorrhizal species richness significantly decreased from an aver-
age of 10 to 5 species 8 wk after girdling (Table S4). The mycor-
rhizal fungal species composition differed between the HP and
LP forests (ANOSIM: R2 = 0.135 P ≤ 0.05) and between the two
harvest time points (ANOSIM: R2 = 0.988, P < 0.05, Fig. S2).

Unlike phosphatases in roots and mycorrhizas, the response
ratios of acid phosphatase activities in the rhizosphere and bulk soil
were unaffected by girdling (Fig. 3). Similarly, acid phosphodi-
esterase (pH 6.1) and alkaline phosphatase activities (monophos-
phoesterase pH 11) did not increase in response to girdling
(Fig. S3). In agreement with these results, no changes in the abun-
dance of genes for microbial P mobilisation were detected in the
HP organic layer or in the mineral topsoil (Fig. 4a,c). Only for gcd
and for pitA were late responses to girdling in the HP soil observed
(Fig. 4a). In contrast with the results of the HP soils, the response
ratio of gene copy numbers for P transporters and P mineralisation
of soil microbes (pitA, pstS, phoD, phoN, phnX) showed a transient
increase 1 wk after girdling in the LP forest (Fig. 4b). This response
was confined to the organic layer, whereas none of those genes in
the mineral soil was significantly affected by girdling (Fig. 4d). In
general, the HP and LP forest soils differed strongly in the abun-
dance of the analysed genes (pitA, pstS, appA, phnX, phoD, phoN,
gcd) with higher copy numbers in both soil layers (organic layer:
F = 58.84, P < 0.001, mineral topsoil: F = 9.93, P = 0.005) of the
HP than the LP forest.

We did not find any significant effects of girdling on PLFA
biomarkers for bacterial and fungal biomass (Fig. S4), but in

agreement with the higher copy numbers for genes driving P
turnover in HP than in LP soils the microbial biomass was also
higher in HP than LP soils (Table S3).

We also measured soil enzyme activities involved in carbon or
nitrogen mineralisation (Table S5). We found no significant
increases in response to girdling (Fig. S3). However, many of the
carbon-related enzymes in the rhizosphere (organic layer) showed
trends towards increased activities 8 wk after girdling (Fig. S3e).

P concentrations are stable in roots and soil, while root
biomass and P uptake decline

Girdling did not affect the P concentrations (Ptot, Psol) in bulk
soil, in the rhizosphere or in microbes (Pmic) (Table 1). The root
P concentrations were also unaffected by girdling, with the excep-
tion of soluble P in fine roots in the organic layer of the HP forest
(Table 1). One wk after girdling, a c. two-fold decline occurred
(F = 25.26, P = 0.037), but the resulting P concentration was still
higher than that of the fine roots in the LP forest
(0.18� 0.02 mg Psol g

�1 dry mass, Table 1) and recovered after
8 wk.

We found that root biomass decreased in response to girdling,
especially in the LP forest (Table S4). Consequently, the stock of
P present in roots was strongly reduced by girdling (Fig. 5). In
the HP forest, the initial decline was moderate and significant
after 8 wk, whereas in the LP forest, a strong decline was already
apparent 1 wk after girdling (Fig. 5). While the fine root biomass
decreased in response to girdling, the fraction of vital root tips of
the remaining roots was unaffected at the early time point and
only slightly decreased (�7%) 8 wk after girdling (Table S4). In
contrast to roots, the stock of P in soil and the stock of Pmic were
unaffected by girdling (Table S6).

To test whether root P uptake was affected by girdling, we
conducted an independent labelling experiment with young
beech trees under controlled conditions. At 1 wk after girdling,
roots attached to beech trees were exposed to 33Pi in artificial soil
solution. The 33Pi uptake of girdled plants was only half that of
the roots of the nongirdled trees (Fig. 6). In both girdled and

(a) (b)

Fig. 2 PEPC activity (μmol g�1 FW h�1) of fine roots of beech trees (Fagus sylvatica) after girdling (G, light colour) and of untreated controls (C, dark
colour) in phosphorus (P)-rich (HP) and P-poor (LP) forests. Roots from the organic layer (a) and the mineral topsoil (b) were analysed separately. Data
indicate means (HP: n = 3, LP: n = 4) � SE. To determine the effects of forest type, treatment and their interaction linear mixed effect models (‘lmer’) were
used with plot as random factor and a post hoc Tukey HSD was performed to detect differences between means. Different letters indicate significant
differences of the means at P ≤ 0.05.
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nongirdled plants, c. 20% of the total measured 33P uptake was
present in the transport segment (not in contact with the labelling
solution), showing that girdling reduces P uptake but not translo-
cation (Fig. 6).

Discussion

Carbohydrate depletion affects P mobilisation and the plant
P supply

In this study, we investigated the links between root carbohydrate
resources, P uptake and P mobilisation in forest soils. In agree-
ment with previous studies (Druebert et al., 2009; Pena et al.,
2010; Krause et al., 2013; Jing et al., 2015), girdling caused a
strong reduction in soluble sugars, particularly starch, in fine
roots. Girdling blocks the carbon supply from the canopy almost
completely, therefore fine root metabolism must rely on stored
compounds. An important novel result of our study was that
these responses occurred relatively fast, within 1 wk after girdling
in the upper soil layer, and were stronger in roots with higher
starch contents than in those containing less starch. This finding
suggested compensatory resource use in trees from the HP
forests, which was precluded in the LP forest due to low resource
availability. Consequently, the young trees at LP, which

contained lower carbohydrate reserves and P stocks in their root
systems, suffered from greater root biomass loss than did those in
the HP forest. In our earlier studies, we found that the photosyn-
thesis rates of trees in LP soil is suppressed (Yang et al., 2016)
and can be rescued by P fertilisation (Zavi�si�c et al., 2018), sup-
porting the idea that the lower availability of photoassimilates in
LP than in HP trees is caused by P limitation. To cope with low
P availability, LP beech trees rely on internal P recycling and
adjust their growth accordingly (Netzer et al., 2018; Zavi�si�c &
Polle, 2018). Therefore, the decline of sugars along with the dras-
tic loss of root biomass observed in our girdling study emphasises
the critical situation of young trees grown under P-limiting con-
ditions. Environmental stresses such as drought and defoliation
impede the allocation of photoassimilates to the roots and cause
decreases in carbohydrate reserves and losses in root biomass
(Ruehr et al., 2009; Jing et al., 2015; Hesse et al., 2019); these
effects are similar to those of girdling (Jordan et al., 1998; Kaiser
et al., 2010; Krause et al., 2013). In light of these observations,
our results supported the idea that P shortage is likely to aggra-
vate other environmental stresses.

According to our initial hypothesis, we expected that the
depletion of carbohydrates in response to girdling would lead to
a decrease in root P concentrations in beech trees because molec-
ular studies with model plants such as Populus or Arabidopsis

(a) (b)

(c) (d)

Fig. 3 Response ratio of acid phosphatase activities after girdling in relation to nongirdled controls. Bars indicate the response ratio of phosphatase activities
(μmol g�1 FW h�1) for girdled/control determined in fine roots (Root) of Fagus sylvatica, mycorrhiza (EMF), rhizosphere (Rhizo) and bulk soil (Bulk) 1 wk
(black bars) and 8 wk after girdling (white bars). The response ratios were determined for phosphatase activities in the organic layer of a phosphorus (P)-
rich (a) and a P-poor forest (b) and in the mineral topsoil of a P-rich (c) and a P-poor forest (d). Data indicate means of the response ratios (HP: n = 3, LP:
n = 4) � SE. Differences between means of girdled and nongirdled treatments were tested using Student’s paired t-test and indicated by asterisks (*,
P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). Black squares above bars indicate a marginal difference (trend with P ≤ 0.10). Controls are marked with the dashed
line. nd, not determined.
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identified sucrose as a central regulator of P starvation responses,
orchestrating the expression of P-related genes (Lei et al., 2011).
At the onset of P starvation, phloem loading and sucrose translo-
cation to roots is enhanced (Hermans et al., 2006). In addition to
increasing P transport and intracellular acid phosphatase activi-
ties, P starvation increases the transcription of genes encoding
enzymes for anaplerotic reactions (Wang et al., 2002; M€uller
et al., 2007; Kavka & Polle, 2016; Kavka & Polle, 2017). For
example, in poplar trees suffering from P shortage, PEPC is
strongly enhanced at the levels of transcript abundances (Kavka
& Polle, 2017) and enzyme activities (Gan et al., 2016). PEPC is
a tightly regulated enzyme of primary carbon metabolism that
replenishes the tricarboxylic acid cycle. In Arabidopsis thaliana,
PEPC upregulation results in starch depletion (Rademacher
et al., 2002), whereas knockdown mutants accumulate starch (Shi
et al., 2015). In our girdling study, the decrease in starch and the
increase in PEPC, together with increases in acid phosphatases,
suggest energy depletion and metabolic P shortage signals, similar
to the P starvation response described by Plaxton & Tran (2011).
This notion is also supported by the strong decrease in P uptake
seen after girdling. The uptake of Pi is achieved by H+:Pi sym-
porters, requiring a pH gradient across the plasma membrane,
which is generated by ATP-dependent proton pumps (Plassard
et al., 2019). Similar to plants, Basidiomycota, which form the

major clade of fungi that colonised the beech roots in our study,
depend on pH-driven H+:Pi symporters (Plassard et al., 2019).
Therefore, it is likely that carbohydrate depletion of the roots
caused an energy limitation of P uptake and might have inter-
rupted sucrose signalling that is required for regulation of P
uptake.

It was puzzling that the P concentrations in root tissues
were relatively stable despite decreased P uptake. Tissue nutri-
ent concentrations are the result of import and export.
Translocation to aboveground tissues requires the functioning
of photosynthesis and transpiration. Previous girdling studies
have shown that these processes decline very slowly over
months (Druebert et al., 2009; L�opez et al., 2015). For
instance, Druebert et al. (2009) found no difference in photo-
synthesis 10 wk after girdling compared with nongirdled
beech trees. Therefore, it is reasonable to assume that photo-
synthesis was still unaffected in the current study. Moreover,
we demonstrated that similar fractions of the newly taken-up
P were translocated upstream in girdled and nongirdled young
trees. Therefore, it is unlikely that the stability of the root P
concentrations was the result of lower export from below-
ground to aboveground tissues. Our results suggested that P
homeostasis was achieved by a combination of biomass trade-
off and P resorption from declining roots.

(a) (b)

(c) (d)

Fig. 4 Response ratios of gene abundances for phosphorus (P) transporters (pitA, pstS), P mineralisation (phoD, phoN, phnX, appA) and Pi solubilisation
(gcd) of soil microbes after girdling in relation to nongirdled controls. Bars indicate the response ratio for girdled/control of young Fagus sylvatica trees
determined 1 wk (black bars) and 8 wk after girdling (white bars). The response ratios were determined in the organic layer of a P-rich (a) and a P-poor
forest (b) and in the mineral topsoil of a P-rich (c) and a P-poor forest (d). Data indicate means (HP: n = 3, LP: n = 4, � SE). Differences between means of
girdled and nongirdled treatments were tested using Student’s paired t-test and indicated by asterisks (*, P ≤ 0.05). Black squares above bars indicate a
marginal difference (P ≤ 0.10). Controls are marked with the dashed line. bt, below threshold.
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Girdling has little effect on the soil P availability of beech

The interruption of carbohydrate transport to roots affects soil
processes by decreasing rhizodeposition (Zeller et al., 2008).
Labile carbon in soil and microbial activities fluctuate strongly
with changing environmental conditions, seasons, distances from
the root and durations of girdling (Giesler et al., 2007; Dannen-
mann et al., 2009; Kaiser et al., 2010; Koranda et al., 2011) and
are therefore difficult to compare among different studies. Some
studies observed a decline in labile carbon shortly after girdling
or found transient changes (Giesler et al., 2007; Dannenmann
et al., 2009; Koranda et al., 2011). Kaiser et al. (2010) reported
enhanced activities of biomass-degrading enzymes in the second
year after girdling but not in the first year. Therefore, it may also
not be surprising that we found only marginal or no girdling
effects on labile P, on water-extractable carbon in soil nor on
enzymes related to litter degradation.

A notable result was that Ptot and Psol were consistently higher
in the rhizosphere than in the bulk soil and may have precluded
responses of microbial phosphatase activities to girdling. How-
ever, in the organic layer of the LP forest, where the Psol concen-
tration was lower by almost a factor of 10 than in the HP forest,
girdling transiently affected bacterial P mobilisation, indicated by
increased abundances of bacteria, which catalyse major steps in P
transformation. We speculate that this activation might be related
to a strong competition with roots and to high mycorrhizal P
uptake efficiency present in the organic layer under P-limiting
conditions (Clausing & Polle, 2020). As gene abundances
depend on the composition of microbial communities, which are
strongly influenced by plant carbon (Koranda et al., 2011; Rasche
et al., 2011), it is conceivable that, initially, the resident microbes
responded to girdling, and that, subsequently, the community
composition changed to adapt to girdling conditions.

In our study, we focused on the structure of the mycorrhizal
fungal community composition associated with roots. In agree-
ment with previous investigations (Zavi�si�c et al., 2016; Clausing
& Polle, 2020), we found a strong difference between the HP
and the LP forest but not between the fungal assemblages in the
organic and mineral topsoil layers per forest ecosystem. The myc-
orrhizal fungal community structures showed seasonal turnover,
as in previous studies (Bu�ee et al., 2005; Courty et al., 2008; Pena
et al., 2010). Girdling resulted in mycorrhizal fungal species loss
in the early autumn in the mineral soil of the LP forest, which
contained the lowest root tip density and contributed least to the
plant P supply (Hauenstein et al., 2018; Clausing & Polle, 2020).
Pena et al. (2010) demonstrated that abundant mycorrhizal fun-
gal species were retained after girdling of mature beech trees,
whereas mainly the rare species colonising only a small portion of
the root tips were lost. However, very rare species were excluded
by our sampling design as we included only mycorrhizal species
that colonised more than three root tips.

Ectomycorrhizal fungi are important producers of enzymes in
soils (Courty et al., 2005; Pritsch & Garbaye, 2011). The high
abundance of ectomycorrhizal fungi in temperate forest soils
(Awad et al., 2019; M€uller et al., 2020) and their stable composi-
tion during the early phase after girdling may be a reason for the
relatively stable enzyme activities found here. These results agree
with previous studies that showed little or no change initially but
showed significant increases in enzyme activities for the degrada-
tion of organic matter with a delay of c. 1 yr after girdling (Wein-
traub et al., 2007; Kaiser et al., 2010). Significant decreases in
root carbohydrates were, however, already observed within the
first year after girdling mature beech trees (Pena et al., 2010).
Therefore, it is likely that, despite a large buffer of carbohydrate
reserves in the root system, extended periods of drought that

Fig. 5 Phosphorus (P) stocks in fine roots (mg m�2) in the soil beneath
girdled (G, light colours) and nongirdled control (C, dark colours) trees
(Fagus sylvatica). Trees were investigated in P-rich (HP) and P-poor (LP)
forests. Fine roots from the organic layer (turquoise bars) and the mineral
topsoil (orange bars) were analysed separately 1 wk and 8 wk after
girdling. Data indicate means (HP: n = 3, LP: n = 4) � SE. To determine the
effects of forest type, harvest time point, treatment and their interaction
linear mixed effects models ‘lmer’ were used to plot as random factor and
a post hoc Tukey honest significant difference (HSD) test was performed
to detect differences between means. Different letters above the bars
indicate significant differences at P ≤ 0.05.

Fig. 6 33P uptake (Bq mg�1 DW h�1) of beech (Fagus sylvatica) roots 1 wk
after girdling (G, light colour) and of nongirdled control plants (C, dark
colour). Uptake was determined for the root part which was exposed to the
labelling solution (exposure) and the upstream part of the roots to which P
was transported (transport). Data indicate means (n = 7)� SE. To determine
the effects of treatment and root fraction, linear mixed effect models ‘lmer’
were used with root number as random factor. A post hoc Tukey honest
significant difference (HSD) test was performed to detect differences
between means. Different letters indicate significant differences at P ≤ 0.05.
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restrict production and belowground allocation of carbohydrates
(Hartmann et al., 2013; Klein et al., 2014; Chuste et al., 2020; Ji
et al., 2020) will also decrease the P uptake of mature trees. In
conclusion, our study emphasises that P uptake and metabolism
in young forest trees and associated ectomycorrhizas are more
vulnerable to a shortage of carbohydrates than the associated soil-
residing processes. Neither soil, microbial, rhizosphere nor root P
levels changed. However, girdling, which caused carbohydrate
depletion, resulted in a decrease in P uptake into roots, implying
that stable root P levels were maintained by P recycling from the
degradation of root biomass. The negative consequences of car-
bohydrate depletion were massive under P limitation. These
results are important because they highlight the higher suscepti-
bility of P-deficient trees compared with well nourished trees to
stress. Consequently, our results have critical implications for
forest carbon and P cycling in future climates that will be warmer
and drier than the current climate and suggest the aggravation of
nutrient imbalances imposed by high nitrogen deposition
(Vitousek et al., 2010; Pe~nuelas et al., 2013; Huang et al., 2016).
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