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A B S T R A C T   

Background: A growing number of epidemiological studies show associations between environmental factors and 
impaired cardiometabolic health. However, evidence is scarce concerning these risk factors and their impact on 
metabolic syndrome (MetS). This analysis aims to investigate associations between long-term exposure to air 
pollution, road traffic noise, residential greenness, and MetS. 
Methods: We used data of the first (F4, 2006–2008) and second (FF4, 2013–2014) follow-up of the population- 
based KORA S4 survey in the region of Augsburg, Germany, to investigate associations between exposures and 
MetS prevalence at F4 (N = 2883) and MetS incidence at FF4 (N = 1192; average follow-up: 6.5 years). Resi
dential long-term exposures to air pollution – including particulate matter (PM) with a diameter < 10 µm (PM10), 
PM < 2.5 µm (PM2.5), PM between 2.5 and 10 µm (PMcoarse), absorbance of PM2.5 (PM2.5abs), particle number 
concentration (PNC), nitrogen dioxide (NO2), ozone (O3) – and road traffic noise were modeled by land-use 
regression models and noise maps. For greenness, the Normalized Difference Vegetation Index (NDVI) was ob
tained. We estimated Odds Ratios (OR) for single and multi-exposure models using logistic regression and 
generalized estimating equations adjusted for confounders. Joint Odds Ratios were calculated based on the 
Cumulative Risk Index. Effect modifiers were examined with interaction terms. 
Results: We found positive associations between prevalent MetS and interquartile range (IQR) increases in PM10 
(OR: 1.15; 95% confidence interval [95% CI]: 1.02, 1.29), PM2.5 (OR: 1.14; 95% CI: 1.02, 1.28), PMcoarse (OR: 
1.14; 95% CI: 1.02, 1.27), and PM2.5abs (OR: 1.17; 95% CI: 1.03, 1.32). Results further showed negative, but 
non-significant associations between exposure to greenness and prevalent and incident MetS. No effects were 
seen for exposure to road traffic noise. Joint Odds Ratios from multi-exposure models were higher than ORs from 
models with only one exposure.   
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1. Introduction 

Metabolic syndrome (MetS) is considered to be a severe public health 
problem. The International Diabetes Federation (IDF) estimates that 
20–25% of adults worldwide suffer from MetS (IDF, 2006), with 
increasing prevalence during the last decades (O’Neill and O’Driscoll, 
2015). While various definitions for MetS exist, the internationally most 
accepted one is the consensus definition from 2009. It describes MetS as 
the presence of three or more of the following five criteria: elevated 
waist circumference, elevated fasting glucose, elevated fasting tri
glycerides, elevated systolic blood pressure or diastolic blood pressure, 
and decreased high-density lipoprotein (HDL) cholesterol levels (Alberti 
et al., 2009). 

MetS significantly increases the risk of cardiovascular diseases and 
diabetes mellitus type 2 (Kaur, 2014; Grundy, 2008), two of the main 
causes of death globally (Foreman et al., 2018). This highlights the 
importance of understanding the factors that contribute to the devel
opment of MetS to prevent these diseases. While adiposity and a 
sedentary lifestyle are considered to be major risk factors (O’Neill and 
O’Driscoll, 2015; Alberti et al., 2009), a growing epidemiological evi
dence suggests that environmental risk factors like air pollution, traffic 
noise, and a lack of greenness play a role in the development of MetS and 
its related diseases. Air pollution, mainly particulate matter (PM), has 
been found to be associated with an increased risk of MetS: In the 33 
Communities Chinese Health Study (33CCHS), the Odds Ratio (OR) for 
prevalent MetS per 10 µg/m3 increase in PM10 was 1.13 (95% CI: 1.08; 
1.19) and 1.09 (95% CI: 1.00; 1.18) for PM2.5 (Yang et al., 2018). In 
Germany, the Heinz Nixdorf Recall (HNR) Study observed a significant 
positive association between prevalent MetS and an IQR increase in NO2 
(OR: 1.12; 95% CI: 1.02; 1.24) (Matthiessen et al., 2018). Results from 
other studies support these findings (Lee et al., 2019; Wallwork et al., 
2017; Eze et al., 2015). 

There is also evidence of associations between air pollution and 
adverse health outcomes linked to MetS. These include hypertension 
(Yang et al., 2018; Giorgini et al., 2016), type 2 diabetes mellitus (Eze 
et al., 2015; Liu et al., 2019), and increased cardiovascular mortality 
(Pope et al., 2015). However, it is still uncertain to which amount single 
air pollutants may contribute to the elevated risk of MetS, the impact of 
the exposure mixture, and which subgroups might be more susceptible 
to these effects. 

Studies have found associations between road traffic noise and 
elevated waist circumference (Christensen et al., 2015), diabetes (Sor
ensen et al., 2013) and hypertension (van Kempen and Babisch, 2012). 

However, to our knowledge, evidence is lacking concerning a potential 
association between road traffic noise and MetS itself. Residential 
greenness seems to be linked to various positive health outcomes 
including a decreased risk for type 2 diabetes mellitus, and hyperten
sion, as well as higher HDL cholesterol levels (Twohig-Bennett and 
Jones, 2018). The 33CHS and Whitehall II study found a negative as
sociation between MetS and residential greenness (Yang et al., 2020; de 
Keijzer et al., 2019). Furthermore, in one cross-sectional study higher 
percentages of parks in the neighborhood resulted in a decrease in a 
MetS risk score (Dengel et al., 2009). 

This study aims to investigate the associations between long-term 
exposure to air pollutants, road traffic noise, and residential greenness 
with prevalent and incident MetS. We hypothesized that air pollution, 
road traffic noise, and residential greenness might be associated with 
risk for MetS. We employed multi-exposure models to assess whether the 
effects of the exposures were independent and estimated Joint Odds 
Ratios (JORs) from these models. Furthermore, we did subgroup ana
lyses, investigating potential effect modifiers. 

2. Methods 

2.1. Study population 

We used data from the first (F4) and second (FF4) follow-up of the 
prospective population-based KORA (Cooperative Health Research in 
the Region of Augsburg) baseline survey S4 in the region of Augsburg, 
Germany. KORA S4 took place in 1999–2001. For the survey, 4261 
participants were recruited out of a randomized two-stage cluster sam
ple with equal strata by sex and age from the target population of all 
German residents in the study region aged 25–74 years. KORA F4, the 
first follow-up to S4, was conducted in 2006–2008 and consisted of 3080 
participants. For the second follow-up KORA FF4 in 2013/2014, 2279 
participants were investigated. At baseline and follow-ups, physical 
examination and standardized interviews were performed with partici
pants, and blood samples were collected. Study design, sampling 
methods, and data collection have been described in more detail else
where (Rathmann et al., 2000; Holle et al., 2005). All study participants 
gave written informed consent. KORA S4 and its follow-ups were 
approved by the Ethics Committee of the Bavarian Medical Association. 

As data on triglyceride levels, glucose levels, and MetS were obtained 
only for a subgroup of participants aged 55–74 years at the baseline 
survey S4, we restricted our analysis to the first follow-up F4 for the 
cross-sectional analysis and additionally to the second follow-up FF4 for 

Fig. 1. Selection of study population for prevalent metabolic syndrome in the cross-sectional analysis at KORA F4 (N = 2883) and incident metabolic syndrome in 
the longitudinal analysis from KORA F4 to KORA FF4 (N = 1192). 
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the longitudinal analysis. The process of population selection for the 
main analysis can be found in Fig. 1. Of the 3080 subjects who had 
originally participated at the first follow-up (KORA F4), three had been 
deleted from the data because of revoked consent (N = 3). We excluded 
participants in case of missing data concerning MetS and its components 
(N = 51), at least one of the confounder variables (sex, age, physical 
activity, smoking status, alcohol consumption, family status, employ
ment status, equivalent income, history of myocardial infarction, history 
of stroke; N = 117) or in case of any missing data in one of the exposure 
variables (N = 26). This left a sample of 2883 subjects for the cross- 
sectional analysis (prevalence of MetS). Of these, we selected all par
ticipants who had no prevalent MetS for the longitudinal analysis 
(incidence of MetS, N = 1869). Loss to follow-up for the second follow- 
up KORA FF4 was N = 461. After excluding subjects with missing data 
on outcome (N = 16), exposure (N = 153), and confounding variables 
(N = 47), there were N = 1192 subjects available for the analysis of 
incident MetS. Similarly, for the longitudinal analysis of each single 
component of MetS, we excluded prevalent cases of this single compo
nent at the time of KORA F4. Therefore, we included N = 946 for 
elevated blood pressure, N = 1421 for lowered HDL cholesterol level, N 
= 1339 for elevated triglyceride levels, N = 595 for elevated waist 
circumference and N = 1200 for elevated fasting glucose. 

2.2. Outcome definition 

Metabolic syndrome was defined according to the consensus defi
nition from 2009 as presence of at least three of the following five 
criteria: waist circumference ≥ 94 cm in men or ≥ 80 cm in women; 
fasting glucose ≥ 5.6 mmol/l and/or use of glucose-lowering medica
tion; systolic blood pressure ≥ 130 mmHg and/or diastolic blood pres
sure ≥ 85 mmHg and/or use of antihypertensive medication in a patient 
with a prior history of hypertension; fasting triglycerides ≥ 1.7 mmol/l 
and/or use of fibrates and/or nicotinic acid; high-density lipoprotein 
cholesterol < 1.0 mmol/l in men or < 1.3 mmol/l in women and/or use 
of fibrates and/or nicotinic acid (Alberti et al., 2009). 

Data on outcome variables was gathered by trained investigators 
from 2007 to 2008 for the first follow-up (F4) and 2013–2014 for the 
second follow-up (FF4); blood pressure with a HEM 705 CP ambulatory 
blood pressure unit. Blood samples were taken after an overnight fast of 
at least 8 h. Glucose, HDL cholesterol and triglyceride level measure
ment methods differed between KORA F4 and FF4. In F4, serum glucose 
was analyzed using a hexokinase method (GLU Flex, Dade Behring, 
Deerfield, IL, USA). HDL cholesterol was measured in fresh serum by an 
enzymatic method (CHOL Flex and AHDL Flex, Dade Behring, Marburg, 
Germany). Triglycerides were measured in fresh serum with the GPO- 
PAP method (Dade Behring, Germany). In FF4, glucose concentrations 
were measured in fresh serum by an enzymatic, colorimetric method 
using the GLU assay on a Dimension Vista 1500 instrument (Siemens 
Healthcare Diagnostics Inc., Newark, USA) or using the GLUC3 assay, on 
a Cobas c702 instrument (Roche). HDL cholesterol and triglycerides 
were measured in serum using enzymatic, colorimetric methods from 
either Siemens (Siemens Healthcare Diagnostics Inc., Newark, USA) or 
Cobas (Roche Diagnostics GmbH, Mannheim, Germany), as the assays 
and instruments were changed during the study. A calibration between 
the two methods was performed using 122 samples from KORA FF4. In 
these participants, measurements were made with both instruments, and 
an appropriate formula was developed to calibrate the Roche mea
surements to the Siemens measurements. Further detail on the calibra
tion process has been given elsewhere (Kowall et al., 2017). 

2.3. Exposure measurement 

2.3.1. Air pollution 
Residential annual mean exposure to air pollution was modeled as 

part of the ULTRA III project (Environmental Nanoparticles and Health: 
Exposure, Modeling and Epidemiology of Nanoparticles and their 

Composition). The process has been described in detail elsewhere (Wolf 
et al., 2017). There was a total of 20 measurement locations within the 
study region, twelve being located within the city of Augsburg, eight in 
the two adjacent counties Augsburg and Aichach-Friedberg. Three bi- 
weekly measurements were conducted from March 2014 to April 2015 
to cover the warm, intermediate and cold season. Simultaneously, 
measurements were also taken at a reference site throughout the whole 
measurement period to adjust for temporal variation. Measured air 
pollutants were PM < 10 µm (PM10), PM < 2.5 µm (PM2.5), PM 2.5-10 
µm (PMcoarse), absorbance of PM2.5 (PM2.5abs), particle number con
centration (PNC), nitrogen dioxide (NO2), and ozone (O3). Residential 
annual exposure to air pollution was assigned to the home addresses of 
each study participant as residential mean concentration by land-use 
regression models based on the standardized ESCAPE (European Study 
of Cohorts for Air Pollution Effects) approach (Eeftens et al., 2012). For 
the LUR models, linear regression models were calculated using the 
average concentration at the monitoring sites and potential predictor 
variables. These included local land use, building, population and 
household density, topography and road network data. The model fit of 
these LUR models has been described by Wolf et al. (Eeftens et al., 
2012). R2 values can be found in Supplemental Table 2. 

2.3.2. Road traffic noise 
Long-term road traffic noise was modeled by the company ACCON 

GmbH by drawing noise maps with the noise- and air-pollution in
formation system LLIS (Lärm- und Luftschadstoff-Informationssystem, 
http://www.laermkarten.de/augsburg/), which provides a three- 
dimensional ground level of Augsburg. ACCON used traffic data from 
the year 2009 for the models. Information on ground plan, occupancy, 
height and reflection characteristics of around 87,000 buildings were 
taken into account. Roads were described with width, type, road sur
face and traffic volume including frequency of heavy goods vehicles of 
2.8 metric tons. Noise levels were calculated four meters above the 
ground and were allocated to the home address of the participants. If 
the home address did not correspond to a building available in LLIS, 
the address was assigned to the nearest building. For rural partici
pants, ACCON referred to a network of roads generated using geo- 
referenced pictures form Google earth and open-street map data. 
Data on speed limits and daily traffic counts originated from different 
dates between the years 2000 and 2011. Data were derived from the 
Bavarian Ministry of the Interior, Building, and Transport, the digital 
street map of Augsburg, several traffic censuses, and surveys. Traffic 
counts were estimated in case there was no data available. Maximum 
annual A-weighted equivalent day-evening-night (Lden, 24 h) contin
uous sound pressure levels (dB(A)) were derived at the home address 
of the study participants. 

2.3.3. Residential greenness 
Exposure to residential greenness was calculated via the Normalized 

Difference Vegetation Index (NDVI), an indicator of vegetation density. 
For these calculations, cloud-free Landsat 5 TM, Landsat 7 ETM, and 
Landsat 8 OLI satellite images were used at a resolution of 30 m from the 
Global Visualisation Viewer from the U.S. Geological Survey (htt 
ps://earthexplorer.usgs.gov/). Each NDVI map of the Augsburg area 
for KORA was built by two pictures. The images used for the cross- 
sectional analysis were taken on 26.08.2007, at the time of the KORA 
F4 follow-up. For the longitudinal analysis, we additionally used images 
taken on 10.06.2014 to assess for greenness at the time of KORA FF4. 
Residential or neighborhood surrounding greenness was defined as the 
mean NDVI in a Euclidean 500 m buffer around the place of residence of 
each participant. Negative pixels were excluded from the calculated 
NDVI maps. 

2.4. Covariates 

Based on existing literature (Yang et al., 2018; Lee et al., 2019; 
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Wallwork et al., 2017; Eze et al., 2015), we designed a directed acyclic 
graph (DAG) using the software DaGitty (Textor et al., 2011) to identify 
minimal sufficient sets of covariates. The DAG can be found in Supple
mental Figure 5. As we considered age and sex as relevant confounders 
that should be included into our model, we chose the following main 
model congruent to the DAG: age, sex, physical activity (> 2 h/week 
regularly, 1 h/week regularly, 1 h/week unregularly, no or almost no 
physical activity), smoking status (non-smoker, smoker), alcohol con
sumption (no: 0 g/day; moderate: men > 0 and < 40 g/day, women >
0 and < 20 g/day; high: men >= 40 g/day, women >= 20 g/day), 
employment status (full-time, part-time, low-paid or unregular 
employment, no employment), family status (living alone, living with 
partner), and equivalent income. The different categories for alcohol 
regarding men and women were selected based on prior research in 
KORA (Keil et al., 1997; Wellmann et al., 2004). Covariates for the cross- 
sectional analysis were assessed during KORA F4 (2006–2008). For the 
longitudinal analysis, we additionally used measurements of covariates 
taken during KORA FF4 (2013/2014). Socio-demographic covariates, 
lifestyle characteristics, and clinical treatments were based on self- 
reported information. Anthropometric measurements were conducted 
by trained investigators at the study center. 

2.5. Statistical analysis 

We used logistic regression in the cross-sectional analysis to inves
tigate the associations between prevalent MetS and interquartile range 
(IQR) increases in each single exposure variable while adjusting for 
potential confounders during the time of KORA F4. For the longitudinal 
analysis, we used generalized estimating equations (GEE) with a logit- 
link to assess the associations between exposure variables and incident 
MetS while adjusting for time-varying covariates. This method was 
chosen, because we assumed that values between the two measuring 
points for the variables in our model might not be independent. The 
chosen Working Correlation for the GEE was “compound symmetry”. 

Participants with missing data on the outcome variables, covariates, 
or exposure variables were excluded from the analysis. As exposure 
variables we selected: residential mean averages of PM2.5abs, PMcoarse, 
NO2, PM10, PM2.5, PNC, O3, and road traffic noise; exposure to resi
dential greenness was assessed within a 500 m buffer around the resi
dents’ homes. 

Selected covariates were added stepwise to the model. First, we 
included basic individual characteristics variables for model 1 (age, sex). 
For model 2, lifestyle-related variables were added (physical activity, 
smoking status, alcohol consumption). Model 3, our main model, 
comprised further socioeconomic covariates (employment status, family 
status, equivalent income). Model 3 was also used to calculate associa
tions for the five single components of the metabolic syndrome. As ORs 
tend to show higher values in cases where the outcome is frequent, we 
additionally estimated RRs for MetS using log-binomial Poisson 
regression with robust standard errors in the cross-sectional analysis and 
GEE with Poisson distribution in the longitudinal analysis. 

We used multi-exposure models to assess the independent effects of 
the exposures for the cross-sectional analysis. Using our main model, we 
calculated two-exposure models for all combinations of exposure vari
ables with a Spearman correlation coefficient =< 0.7. Furthermore, we 
examined effect estimates for PM2.5, PM2.5abs, and greenness within 
lower and higher strata (<= median vs. > median) of the other exposure 
variables to look for combined effects. We combined PM2.5, O3, road 
traffic noise, and residential greenness in models containing three or 
four exposure variables. 

Assuming additive effects of single environmental exposures on the 
risk of MetS, we used the Cumulative Risk Index (CRI) method to 
calculate Joint Odds Ratios (JOR) to estimate combined effects of 
decreased residential greenness and elevated PM2.5, O3, and road traffic 
noise. This method has been used by Lippmann et al. to assess the 
combined risks of environmental exposures on health outcomes 

(Lippmann et al., 2013) and was developed further by other authors. 
Congruent with the definition by Jerret et al. (Jerrett et al., 2013); 
Crouse et al. (Crouse et al., 2015), and Klompmaker et al. (Klompmaker 
et al., 2019), we denote the JOR based on the combination of the p 
environmental exposures as the CRI and define it as: 

CRI = exp

[
∑p

p=1
β̂pxp

]

= exp(β̂
′

x) =
∏p

p=1
JORp  

where β̂
′

=

(

β̂1 …β̂p

)

are the log odds ratios estimated in a model 

including all p environmental exposures. x’ = (x1, … , xp) are the levels 
at which each OR is evaluated, in our case an increase in IQR. Corre
sponding to Klompmaker et al. (Klompmaker et al., 2019), we define the 
95% CI as: 

95\% CI = exp(β̂
′

x) =
∏p

p=1
JORp 

For estimating JORs, we reversed the direction of the association 
between residential greenness and MetS compared to the other analyses. 
Therefore, the JOR is defined as OR for an IQR increase in air pollution 
and road traffic noise and an IQR decrease in residential greenness 
compared to no increase (decrease in case of greenness) in all exposures. 

Potential effect modifications had been identified by literature re
view and were investigated by adding interaction terms to the main 
model: sex (male vs. female), age (<= 65 years vs. > 65 years), physical 
activity (< 1 h vs. per week regularly vs. at least 1 h per week regularly), 
smoking (nonsmoker vs. smoker), diabetes (no prevalent diabetes vs. 
prevalent diabetes), obesity (BMI <= 30 kg/m2 vs. BMI > 30 kg/m2), 
and living area (city vs. town/suburb vs. rural). 

Results are presented as Odds Ratios (OR) and Risk Ratios (RR) 
together with corresponding 95% confidence intervals (95% CI). The 
complete statistical analysis was performed using the software R, 
Version 3.4.3. 

2.6. Sensitivity analysis 

We conducted several sensitivity analyses to test the robustness of 
our results: (1) we excluded all participants who had moved since survey 
S4. For the cross-sectional analysis, we therefore excluded all partici
pants who had changed their address between S4 and F4, and for the 
longitudinal analysis all who had moved between S4 and FF4; (2) we 
added the percentage of households with an estimated income below 
1250 Euro within a 500 m × 500 m grid to the model to adjust for the 
socioeconomic status of the neighborhood; (3) we adjusted for smoking 
with pack years instead of smoking status; (4) we adjusted for body mass 
index (BMI) in the main model; (5) we further investigated deviation 
from linearity of the exposure–response functions visually by plotting 
the results of logit-link generalized additive models for the cross- 
sectional analysis and logit-link generalized additive mixed models for 
the longitudinal analysis using the covariates of the main model. (6) To 
test the robustness of the results of the longitudinal analysis, we calcu
lated associations between exposure variables and incident MetS with a 
logit-link generalized linear mixed-effects model. (7) To investigate a 
potential selection bias in our longitudinal analysis, we adjusted for 
MetS at KORA F4 when estimating the association between prevalent 
MetS at KORA FF4 and environmental exposures. 

3. Results 

3.1. Study population 

A detailed description of the populations for the cross-sectional and 
the longitudinal analysis can be found in Table 1. At the time of F4, 1014 
participants had prevalent metabolic syndrome (35.2%), 1869 had no 
metabolic syndrome (64.8%). Subjects had an average age of 56.2 years 
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Table 1 
Description of population for cross-sectional analysis at KORA F4 and longitudinal analysis at KORA FF4; Participants with metabolic syndrome (MetS) at baseline 
were excluded for the longitudinal analysis.    

F4   FF4   

Total With MetS Without MetS Total With MetS Without MetS 

Item N (%) or Mean ± SD N (%) or Mean ± SD N (%) or Mean ± SD N (%) or Mean ± SD N (%) or Mean ± SD N (%) or Mean ± SD 
Participants 2883 (100) 1014 (35.2) 1869 (64.8) 1192 (100) 216 (18.1) 976 (81.9) 
Sex Female: 1473 (51.1); 

Male: 1410 (48.9) 
Female: 401 (39.5); 
Male: 613 (60.5) 

Female: 1072 (57.4); 
Male: 797 (42.6) 

Female: 667 (56.0); 
Male: 525 (44.0) 

Female: 121 (44.0); 
Male: 95 (56.0) 

Female: 572 (58.6); 
Male: 404 (41.4) 

BMI (kg/m2) 27.6 ± 4.8 30.6 ± 4.6 26.0 ± 4.1 26.6 ± 4.3 29.6 ± 4.4 26.0 ± 4.1 
Age (years) 56.2± 13.1 62.0 ± 11.4 53.0 ± 13.0 59.1 ± 11.8 63.7 ± 10.7 58.0 ± 11.8 
Waist-to-Hip-Ratio 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 
Equivalent income (€) 1249 ± 597.3 1203 ± 581.0 1274 ± 604.7 1465 ± 660.8 1396 ± 615.2 1481 ± 669.8 
Elevated blood 

pressure1 
1413 (49.0) 868 (85.6) 545 (29.2) 434 (36.4) 178 (82.4) 256 (26.2) 

Elevated triglyceride 
levels2 

720 (25.0) 589 (58.1) 131 (7.0) 152 (12.8) 97 (44.9) 55 (5.6) 

Decreased HDL3 571 (19.8) 409 (40.3) 162 (8.7) 49 (4.1) 31 (14.4) 18 (1.8) 
Elevated fasting 

glucose4 
956 (33.2) 756 (74.6) 200 (10.7) 377 (31.6) 186 (86.1) 191 (19.6) 

Elevated waist 
circumference5 

1971 (68.4) 973 (96.0) 998 (53.4) 822 (69.0) 212 (98.1) 610 (62.5) 

Diabetes mellitus 328 (11.4) 294 (29.0) 34 (1.8) 52 (4.4) 22 (10.2) 30 (3.1) 
Smoking status       
Nonsmoker 2378 (82.6) 882 (87.2) 1496 (80.0) 1007 (84.5) 181 (83.8) 826 (84.6) 
Smoker 502 (17.4) 129 (12.7) 373 (20.0) 185 (15.5) 35 (16.2) 150 (15.4) 
Physical activity       
> 2 h/week 713 (24.7) 205 (20.2) 508 (27.2) 357 (29.9) 49 (22.7) 308 (31.6) 
1 h/week, regularly 877 (30.4) 279 (27.6) 598 (32.0) 397 (33.3) 70 (32.4) 327 (33.5) 
1 h/week, unregularly 378 (13.1) 128 (12.6) 250 (13.4) 157 (13.2) 40 (18.5) 117 (12.0) 
Non/almost non 915 (31.7) 402 (39.6) 513 (27.4) 281 (23.6) 57 (26.4) 224 (23.0) 
Alcohol consumption6 14.4 ± 19.5      
No consumption 856 (29.7) 335 (33.0) 521 (27.9) 302 (25.3) 61 (28.2) 241 (24.7) 
Moderate consumption 1523 (52.8) 495 (48.8) 1028 (55.0) 661 (55.5) 108 (50.0) 553 (56.7) 
High consumption 504 (17.5) 184 (18.1) 320 (17.1) 229 (19.2) 47 (21.8) 182 (18.6) 
Family status       
Living alone 690 (23.9) 236 (23.3) 454 (24.3) 291 (24.4) 55 (25.5) 236 (24.2) 
Living with partner 2193 (76.1) 778 (76.7) 1415 (75.7) 901 (75.6) 161 (74.5) 740 (75.8) 
Employment status       
Full time 1054 (36.6) 285 (28.1) 769 (41.1) 412 (34.6) 63 (29.2) 349 (35.8) 
Part time 368 (12.8) 54 (5.3) 314 (16.8) 241 (20.2) 25 (11.6) 216 (22.1) 
Low-paid/Unregular 170 (5.9) 44 (4.3) 126 (6.7) 77 (6.4) 14 (6.5) 63 (6.5) 
None 1291 (44.8) 631 (62.2) 660 (35.3) 462 (38.8) 114 (52.8) 348 (35.7) 
Myocardial infarction 91 (3.2) 64 (6.3) 27 (1.4) 20 (1.7) 10 (4.6) 10 (1.0) 
Stroke 61 (2.1) 39 (3.8) 22 (1.2) 21 (1.8) 8 (3.7) 13 (1.3) 
Living area       
City 1208 (41.9) 439 (43.3) 769 (41.1) 441 (37.0) 80 (37.0) 361 (37.0) 
Town/Suburb 1198 (41.6) 405 (39.9) 793 (42.4) 539 (45.2) 93 (43.1) 448 (45.9) 
Rural 477 (16.5) 170 (16.8) 307 (16.4) 212 (17.8) 43 (19.9) 167 (17.1)  

1 Diastolic blood pressure >= 85 mmHg and/or systolic blood pressure >=130 mmHg or intake of antihypertensiva with prehistory of hypertension 
2 Triglyceride levels >= 150 or intake of fibrates 
3 HDL levels < 40 men / <50 women or intake of fibrates 
4 fasting glucose >= 100 mg/dl or intake of glucose lowering medication 
5 waist circumference >= 94 cm men/ >= 80 cm women 
6 No consumption: 0 g/day; Moderate consumption: > 0 g/day and < 40 g/day for men and > 0 g/day and < 20 g/day for women; High consumption: > 40 g/day for 

men and > 20 g/day for women 

Table 2 
Description and Spearman correlation coefficients of annual air pollution concentrations, road traffic noise and greenness estimated at residence for the cross-sectional 
analysis (N = 2883).  

Name Min Median Mean ±
SD 

IQR Max PM10 PM2.5 PMcoarse PM2.5 

abs 
PNC NO2 O3 Road traffic 

noise 
Green- 
ness 

PM10 (µg/m3)  12.3  16.3 16.6± 1.5  2.1  22.3 1         
PM2.5 (µg/m3)  8.2  11.9 11.8± 1.0  1.4  14.4 0.52 1        
PMcoarse (µg/m3)  2.5  4.9 5.0± 1.0  1.3  8.8 0.78 0.58 1       
PM2.5abs (10-5/m)  0.8  1.2 1.2± 0.2  0.3  1.8 0.77 0.62 0.81 1      
PNC (103/cm3)  3.2  7.3 7.3± 1.8  2.0  15.7 0.81 0.65 0.76 0.77 1     
NO2 (µg/m3)  6.9  13.8 14.2± 4.5  6.9  27.5 0.72 0.72 0.84 0.86 0.77 1    
O3 (µg/m3)  32.1  39.2 39.1± 2.4  3.4  46.2 0.04 − 0.19 0.11 − 0.12 − 0.04 − 0.18 1   
Road traffic noise 

(dB)  
22.3  53.7 54.6± 6.7  8.1  76.2 0.49 0.34 0.45 0.42 0.41 0.48 − 0.10 1  

Greenness (NDVI)  0.1  0.3 0.3± 0.1  0.1  0.6 − 0.67 − 0.64 − 0.72 − 0.73 − 0.73 − 0.80 0.07 − 0.33 1  
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and an average BMI of 27.6 kg/m2. The prevalence of single MetS 
components was 49.0% for elevated blood pressure (N = 1413), 25.0% 
for elevated triglyceride levels (N = 720), 19.8% for decreased HDL 
cholesterol levels (N = 571), 33.2% for elevated fasting glucose (N =
956) and 68.4% for elevated waist circumference (N = 1971). 

For the longitudinal analysis, we included only subjects without 
MetS at the time of F4. These were on average younger (53.0 years) and 
had a lower BMI (26.0 kg/m2) than those participants with MetS at F4 
(age: 62.0 years, BMI: 30.6 kg/m2). There were 216 cases of incident 
MetS (18.1%). The prevalence of single MetS components was 34.7% for 
elevated blood pressure (N = 464), 13.0% for elevated triglyceride 
levels (N = 174), 4.4% for decreased HDL cholesterol (N = 59), 31.0% 
for elevated fasting glucose (N = 415) and 67.3% for elevated waist 
circumference (N = 901). 

3.2. Exposures 

Descriptive statistics and Spearman correlation coefficients for air 
pollutants, road traffic noise and residential greenness for the cross- 
sectional analysis can be found in Table 2. Differences in the longitu
dinal analysis were negligible (Supplemental Table 1). Maxima for PM10 
(22.3 µg/m3) and PM25 (14.4 µg/m3) exceeded the average annual mean 
concentrations of the WHO air quality guidelines (World Health Orga
nization, 2005), while the maximum concentration of NO2 (27.5 µg/m3) 
did not. NO2 was within the European limit value of an average 
maximum of 40 µg/m3 per year (Directive 2008/50/EC). Air pollutants 
showed moderate to very strong correlations among each other; an 
exception was O3, which was very weakly corelated with the other air 
pollutants. Road traffic noise showed weak to moderate correlations 
with the other exposures. Residential greenness was negatively corre
lated with the other exposure variables except for O3 (r = 0.07). 

3.3. Cross-sectional analyses 

Results for prevalent MetS are presented in Table 3. We found pos
itive association between prevalent MetS and IQR increases in PM10 
(OR: 1.15; 95% CI: 1.02; 1.29), PM2.5 (OR: 1.14; 95% CI: 1.02; 1.28), 
PMcoarse (OR: 1.14; 95% CI: 1.02; 1.27), and PM2.5abs (OR: 1.17; 95% CI: 
1.03; 1.32) in our main model (Model 3). We further found positive 
associations for NO2 (OR: 1.13; 95% CI: 0.99; 1.29), PNC (OR: 1.04; 95% 
CI: 0.95; 1.13), O3 (OR: 1.01; 95% CI: 0.90; 1.14) and road traffic noise 
(OR: 1.06; 95% CI: 0.96; 1.17), although they were not statistically 
significant. The same applies to residential greenness, which was 
negatively associated (OR: 0.95; 95% CI: 0.84; 1.06). Risk Ratios showed 
consistently smaller effects for all environmental exposures. 

Results for the five MetS components can be found in Supplemental 
Table 3. Here, we found significant associations for lowered HDL 
cholesterol levels and PM2.5abs (OR: 1.18; 95% CI: 1.02; 1.36) and for 
the associations between elevated triglyceride levels and PM2.5abs (OR: 
1.16; 95% CI: 1.02; 1.33), NO2 (OR: 1.15; 95% CI: 1.01; 1.32), and 
residential greenness (OR: 0.86; 95% CI: 0.77; 0.97). 

3.4. Longitudinal analyses 

Results of the longitudinal analysis are shown on Table 4. For inci
dent MetS, we found a positive, but non-significant association for an 
IQR increase in O3 in model 3, our main model (OR: 1.18; 95% CI: 0.97; 
1.45). There was a negative, but non-significant association for resi
dential greenness (OR: 0.86; 95% CI: 0.71; 1.08). RRs did not differ 
noteworthy from these results. 

Results of the longitudinal analysis for the five MetS components can 
be found in Supplemental Table 4. Here, we found significant negative 
associations between residential greenness and elevated blood pressure 

Table 3 
Association between residential environmental exposures and prevalent metabolic syndrome per interquartile range increase (IQR) in exposure for the cross-sectional 
analysis (N = 2883).  

Exposure Model 1a Model 2b Model 3 (Main Model)c Model 3 (Main Model)c  

OR (95% CI) P OR (95% CI) P OR (95% CI) P RR (95% CI) P 

PM10 (µg/m3) 1.13 (1.01; 1.26)  0.04 1.12 (1.00; 1.26)  0.05 1.15 (1.02; 1.29)  0.02 1.08 (1.02; 1.15)  0.01 
PM2.5 (µg/m3) 1.13 (1.01; 1.26)  0.04 1.13 (1.01; 1.27)  0.04 1.14 (1.02; 1.28)  0.02 1.08 (1.01; 1.15)  0.03 
PMcoarse (µg/m3) 1.11 (0.99; 1.23)  0.07 1.11 (0.99; 1.23)  0.07 1.14 (1.02; 1.27)  0.02 1.08 (1.01; 1.16)  0.02 
PM2.5abs (10-5/m) 1.14 (1.00; 1.28)  0.04 1.13 (1.00; 1.28)  0.06 1.17 (1.03; 1.32)  0.02 1.09 (1.02; 1.17)  0.02 
PNC (103/cm3) 1.03 (0.94; 1.12)  0.57 1.02 (0.93; 1.12)  0.65 1.04 (0.95; 1.13)  0.42 1.02 (0.97; 1.08)  0.38 
NO2 (µg/m3) 1.10 (0.97; 1.25)  0.13 1.10 (0.97; 1.25)  0.15 1.13 (0.99; 1.29)  0.06 1.07 (1.00; 1.15)  0.05 
O3 (µg/m3) 1.00 (0.88; 1.12)  0.93 1.01 (0.90; 1.14)  0.85 1.01 (0.90; 1.14)  0.83 1.01 (0.94; 1.07)  0.83 
Road traffic noise (dB) 1.05 (0.96; 1.16)  0.29 1.05 (0.95; 1.16)  0.36 1.06 (0.95; 1.17)  0.29 1.03 (0.97; 1.09)  0.30 
Greenness (NDVI) 0.96 (0.86; 1.07)  0.48 0.97 (0.87; 1.08)  0.52 0.95 (0.84; 1.06)  0.32 0.97 (0.91; 1.03)  0.30  

a exposure + age, sex. 
b Model 1 + physical activity, alcohol consumption, smoking status. 
c Model 2 + family status, equivalent income, occupational status. 

Table 4 
Association between residential environmental exposures and incident metabolic syndrome per interquartile range (IQR) increase in exposure for the longitudinal 
analysis (N = 1192).  

Exposure  Model 1a Model 2b Model 3 (Main Model)c Model 3 (Main Model)c   

OR (95% CI) P OR (95% CI) P OR (95% CI) P RR (95% CI) P 

PM10 (µg/m3)  0.98 (0.80; 1.20)  0.85 0.96 (0.79; 1.17)  0.69 0.96 (0.78; 1.18)  0.69 0.97 (0.81; 1.17)  0.72 
PM2.5 (µg/m3)  1.01 (0.83; 1.23)  0.94 0.99 (0.81; 1.20)  0.88 0.98 (0.80; 1.20)  0.86 0.99 (0.83; 1.17)  0.87 
PMcoarse (µg/m3)  0.95 (0.79;1.15)  0.61 0.94 (0.78; 1.13)  0.49 0.93 (0.77; 1.13)  0.47 0.94 (0.80; 1.11)  0.49 
PM2.5abs (10-5/m)  0.91 (0.74; 1.14)  0.42 0.89 (0.71; 1.11)  0.30 0.89 (0.71; 1.11)  0.29 0.90 (0.74; 1.10)  0.30 
PNC (103/cm3)  1.02 (0.88; 1.18)  0.78 1.01 (0.87; 1.16)  0.93 1.01 (0.87; 1.17)  0.93 1.01 (0.89; 1.15)  0.90 
NO2 (µg/m3)  0.94 (0.77; 1.16)  0.59 0.91 (0.74; 1.13)  0.40 0.91 (0.73; 1.12)  0.37 0.92 (0.7;7 1.11)  0.39 
O3 (µg/m3)  1.13 (0.93; 1.38)  0.22 1.18 (0.97; 1.45)  0.10 1.18 (0.97; 1.45)  0.10 1.16 (0.97; 1.38)  0.11 
Road traffic noise (dB)  0.89 (0.74; 1.07)  0.22 0.88 (0.74; 1.06)  0.17 0.88 (0.74; 1.06)  0.18 0.90 (0.77; 1.05)  0.18 
Greenness (NDVI)  0.84 (0.71; 1.00)  0.05 0.86 (0.72; 1.03)  0.10 0.86 (0.71; 1.03)  0.09 0.87 (0.75; 1.02)  0.09  

a exposure + age, sex. 
b Model 1 + physical activity, alcohol consumption, smoking status. 
c Model 2 + family status, equivalent income, occupational status. 
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(OR: 0.82; 95% CI: 0.68; 0.99), elevated fasting glucose (OR: 0.84; 95% 
CI: 0.73; 0.97), and elevated triglyceride levels (OR: 0.72; 95% CI: 0.59; 
0.88). 

3.5. Multi-exposure models 

Results of multi-exposure models in the cross-sectional analysis can 
be found in Fig. 2. After adjusting for PM2.5, effects for PM10, PMcoarse, 
and PM2.5abs were not significant anymore. Furthermore, we found 

stronger effects of PM2.5 for lower levels of ozone and road traffic noise; 
residential greenness showed protective effects at lower levels of ozone 
(Supplemental Fig. 2). When combined with PM10 or PM2.5, the asso
ciation between greenness and MetS in models with two or more 
exposure variables reversed and was positive. 

3.6. Joint odds ratios 

JORs for PM2.5, O3, road traffic noise and residential greenness for 

Fig. 2. Results of two-exposure models for PM10, PM2.5, PMcoarse, PM2.5abs, and NO2 in the cross-sectional analysis. Odds Ratios per interquartile range (IQR) in
crease in exposure for prevalent metabolic syndrome using the main model. unadj.: adjusted with no second exposure additional to the main model; adj.: adjusted with a 
second exposure variable additional to the main model. 
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the association with prevalent MetS in the cross-sectional analysis can be 
found in Fig. 3. We found the highest JOR for an IQR increase in PM2.5, 
O3, and road traffic noise (OR: 1.21; 95% CI: 0.99; 1.47). JORs were 
usually higher than effects in the single-pollutant models of the inves
tigated exposures. An exception was the JOR for an IQR increase in 
PM2.5 and an IQR decrease in residential greenness (OR: 1.13; 95% CI: 
0.99; 1.28), which was slightly smaller than the OR for PM2.5 in a single- 
pollutant model (OR: 1.14; 95% CI: 1.02; 1.28). 

3.6.1. Effect modification 
Results of the analysis for effect modifications for prevalent MetS are 

presented in Fig. 4. Effects of PM2.5 and PM2.5abs were slightly stronger 
for men. ORs were higher for individuals with diabetes concerning 
PM2.5. The area where participants lived was a statistically significant 
modifier of the association between MetS and residential greenness: 
While more surrounding greenness tended to show a protective effect for 
participants living in urban areas, it was a risk factor in rural areas. 

Effect modifications for incident MetS in the longitudinal analysis 
can be found in Supplemental Fig. 1. Here, effects of air pollutants and 

the effect of residential greenness tended to be higher in men, whereas 
the effect of living area on the association between surround green and 
MetS directed into the opposite direction. 

3.6.2. Sensitivity analyses 
Adjusting for pack years instead of smoking status, including only 

participants who had not moved since baseline survey S4, and adding 
the socioeconomic status of the neighborhood to the model did not alter 
estimates noteworthy in the cross-sectional analysis, although estimates 
for NO2 and PM2.5 were not significant anymore after excluding par
ticipants who had moved since baseline survey S4 (Supplemental Table 
6). In the longitudinal analysis, effect estimates stayed mostly constant 
(Supplemental Table 7). After including BMI to the main model, ORs 
generally increased. Thus, the association between prevalent MetS and 
NO2 became significant in the cross-sectional analysis (OR: 1.17; 95% 
CI: 1.02; 1.35), whereas in the longitudinal analysis we found a signif
icant effect for O3 (OR: 1.32; 95% CI: 1.06; 1.63). Applying a generalized 
linear mixed-effects model did not change the associations between 
exposure variables and incident metabolic syndrome noteworthy. Visual 

Fig. 2. (continued). 
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inspection of the exposure–response functions suggested no major de
viations from linearity for prevalent MetS (Supplemental Fig. 3) and 
incident MetS (Supplemental Fig. 4). Adjusting for MetS at KORA F4 
when calculating the OR between prevalent MetS at KORA FF4, esti
mates remained mostly unchanged, with the exception of O3, where the 
association with MetS became smaller than in the main analysis (OR: 
1.05; 95% CI: 0.90; 1.22). Additionally, the effect of road traffic noise 
became statistically significant (OR: 0.87; 95% CI: 0.77; 0.99). 

4. Discussion 

4.1. Summary 

In summary, our results suggest a positive association between an 

increase in PM10, PM2.5, PMcoarse, PM2.5abs and prevalent MetS. For 
incident MetS, we found no significant associations. We saw no signifi
cant associations for road traffic noise; while the effect showed a positive 
association in the cross-sectional analysis, it was slightly negative in the 
longitudinal analysis. Residential greenness showed a negative associ
ation with MetS in both the cross-sectional and the longitudinal analysis, 
but neither was statistically significant. When adjusting for independent 
effects of the exposure variables, estimates for PM2.5 and road traffic 
noise decreased in the cross-sectional analysis when including further 
air pollutants in the model. We found no clear indications of susceptible 
population subgroups. JORs were higher than effects in single pollutant 
models. 

Fig. 2. (continued). 
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4.2. Comparison to literature 

4.2.1. Main analyses 
In our cross-sectional analysis, we found positive associations for IQR 

increases in PM10, PM2.5, PMcoarse, and PM2.5abs with prevalent MetS. 
These results are consistent with previous findings. Studies investigating 
the associations between air pollution and MetS have mostly focused on 
PM. In the 33CCHS study, 10 µg/m3 increases in PM10 and PM2.5 were 
significantly associated with a higher chance for prevalent MetS, with 
ORs of 1.13 (95% CI: 1.08; 1.19) and 1.09 (95% CI: 1.00; 1.18), 
respectively (Yang et al., 2018). Further, the Heinz Nixdorf Recall (HNR) 
Study reported positive, but non-significant associations for an IQR in
crease in PM10 (OR: 1.02; 95% CI: 0.93; 1.11) and PM2.5 (OR: 1.07; 95% 
CI: 0.94; 1.20) with prevalent MetS (8). This study took also place in 

Germany, had a comparable number of participants at baseline (N =
4457), and a similar follow-up time (5.1 years) as our study. However, 
the study population for the longitudinal analysis in the HNR Study had 
more than twice the size of our longitudinal analysis (N = 3074). Here, 
the HNR Study found positive, but borderline significant associations 
between an IQR increase in PM10 (OR: 1.14; 95% CI: 0.99; 1.32) and 
PM2.5 (OR: 1.19; 95% CI: 0.98; 1.44) and incident MetS. Previous studies 
had found a significant association between PM2.5 and incident MetS. In 
a Korean study with 119,998 participants, the Hazard Ratio (HR) for 
incident MetS per 10 µg/m3 increase in PM2.5 was 1.07 (95% CI: 1.03; 
1.11) (Lee et al., 2019); in the US-American Normative Aging Study, a 1 
µg/m3 increase in PM2.5 was associated with an increased risk for inci
dent MetS in an elderly male population (HR: 1.27; 95% CI: 1.06; 1.52) 
(Wallwork et al., 2017). For both PM10 and PM2.5, we could not see these 

Fig. 2. (continued). 
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effects for the association with incident MetS. 
PM2.5abs and NO2 are considered as markers for traffic-related air 

pollution. We found a positive association between an IQR increase in 
PM2.5abs for prevalent, but not for incident MetS. In the HNR Study, 
findings showed no noteworthy effects of PM2.5abs for both prevalent 
and incident MetS (Matthiessen et al., 2018). While the OR between an 
IQR increase in NO2 and prevalent MetS showed an increased risk in our 
analysis, this association was not significant. Therefore, we failed to see 
an effect that has been shown in previous findings. The 33CCHS study 
reported a strong effect of a 10 µg/m3 increase in NO2 for the risk of 
prevalent MetS (OR: 1.33; 95% CI: 1.12; 1.57) (Yang et al., 2018). In the 
HNR Study, the association between an IQR increase in NO2 and prev
alent MetS showed a similar size compared to our analysis (OR: 1.12; 
95% CI: 1.02; 1.24) (Matthiessen et al., 2018). 

O3 has been linked to an increased risk for cardiovascular death in 
epidemiological studies, but it is unclear whether these effects are 
dependent on other air pollutants (Turner et al., 2016; Jerrett et al., 
2009). An IQR increase in O3 was not associated with a higher risk for 

both prevalent and incident MetS in our main analysis. Therefore, we 
could not replicate the result from the 33CCHS study, where a signifi
cant positive association between an increase in O3 and prevalent MetS 
was observed (OR: 1.10; 95% CI: 1.01; 1.18) (Yang et al., 2018). After 
adding BMI as a covariate to the main model in a sensitivity analysis, the 
association between O3 and incident MetS became significant and was 
the strongest effect found in our analyses. This effect may be explicable 
by over-adjustment. However, it is unclear why the ORs for the other 
exposure variables were not affected comparably. 

For road traffic noise, our analyses showed no consistent results. 
While to our knowledge no study before has investigated the effect of 
road traffic on MetS itself, several studies have found associations to 
health outcomes related to MetS: hypertension (van Kempen and 
Babisch, 2012), diabetes mellitus (Sorensen et al., 2013), and myocar
dial infarction (Sorensen et al., 2012). However, our results for single 
components of MetS did not show clear trends as well. 

Associations between residential greenness and MetS were negative 
in both the cross-sectional and the longitudinal analysis, but neither was 

Fig. 2. (continued). 

Fig. 3. Joint Odds Ratios for PM2.5, O3, Road traffic noise, and residential greenness from single, two-, and multi-exposure models using the Cumulative Risk Index. 
Joint Odds Ratios per interquartile range (IQR) increase in each exposure for prevalent metabolic syndrome using the main model. 
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significant. Therefore, we only found an indication of the protective 
effect for residential greenness that has been shown in previous ana
lyses. An interquartile range increase in NDVI within a 500 m buffer was 
significantly associated with a decreased OR for MetS both in the 
33CCHS (Yang et al., 2020) and in the Whitehall II study (de Keijzer 
et al., 2019). Furthermore, a cross-sectional study with 188 adolescents 
in the US found a significant negative association between a metabolic 
syndrome cluster score and the percentage of land used as parks (Dengel 
et al., 2009). Concerning single components of MetS, the 33CCHS study 
found living areas with higher amount of greenness linked to higher 
levels of HDL cholesterol and lower levels of triglycerides (Yang et al., 
2019). While our results showed a significant protective effect of an IQR 
increase in residential greenness for both prevalent and incident 
elevated triglyceride levels, associations for HDL cholesterol were 
negative, though non-significant. 

4.2.2. Multi-exposure models 
Residential greenness did not lose its negative association with 

prevalent MetS when adjusted for ozone or road traffic noise. However, 
after adjusting for PM10 or PM2.5, the association reversed and became 
positive. These results should be considered carefully, as residential 
greenness was strongly correlated with both PM10 and PM2.5. For road 

traffic noise, the association with prevalent MetS diminished consider
ably after adjusting for particulate matter and NO2. While this associa
tion has not been researched directly in previous studies, in a Californian 
cohort study the associations between MetS and both NOx and noise 
remained unchanged when both exposures were added to the model (Yu 
et al., 2020). 

JORs models using two or more exposures were higher than ORs 
based on single exposure models. Similar to previous findings, results of 
JORs indicate that considering environmental exposures separately may 
lead to miss-classifications regarding the risk attributable to these ex
posures. Combined effects of PM2.5 and road traffic noise were mostly 
attributable to PM2.5 in our models, while the JOR of ozone, road traffic 
noise, and greenness seemed to be constituted mostly by the latter two. 
Klompmaker et al. (Klompmaker et al., 2019) found higher JORs for 
decreased greenness and increased air pollution for diabetes, a car
diometabolic disease related to MetS, compared to single-exposure ORs. 
We found the same effect for MetS in our models when greenness was 
combined with O3 and with both PM2.5 and O3. The JOR of increased 
PM2.5 and decreased greenness was lower than considering PM2.5 alone. 
However, this result should be considered carefully due to the strong 
correlation between both exposures, even though it was below the 
threshold (spearman correlation of >0.7) which we chose as a criterion 

Fig. 4. Results of effect modification analysis for sex, age physical activity, smoking status, diabetes, obesity, and living area as effect modifiers for the cross-sectional 
analysis at KORA F4. Odds ratios per increase in interquartile range for prevalent metabolic syndrome using the main model. 
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for selecting exposures for multi-pollutant models. 

4.2.3. Effect modifications 
Our results suggest a slightly stronger effect for an IQR increase in 

PM2.5 for men. Lee et al. reported male sex as a potential effect modifier 
for the association between PM2.5 and incident MetS, but the effect was 
not significant (Lee et al., 2019). Yang et al. found the same effect for 
prevalent MetS in the 33CCHS study, although the effect modification 
was not statistically significant (Yang et al., 2018). Further results by 
Yang et al. indicate age as a significant effect modifier for the association 
between residential greenness and MetS: While there was a protective 
effect for people aged<65 years, the association was reversed for older 
participants (Yang et al., 2020). This congruent to the observation we 
made in our stratified analysis. There is an ongoing discussion about the 
role of age as an effect modifier for the association between particulate 
matter and MetS. While there was a stronger positive association be
tween PM2.5 and prevalent MetS for individuals <50 years in the 
33CCHS study (Yang et al., 2018), Eze et al. found stronger effects of 
PM10 for people aged >50 years (Eze et al., 2015). In our analysis, ORs 
for MetS per IQR increase in PM2.5 tended to be higher for younger 
people <= 65 years, whereas there was no noteworthy distinction be
tween age groups for PM10. 

4.3. Biological pathways 

While evidence from epidemiological studies suggests that air 
pollution may play a role in the development of MetS, the biological 
mechanism remains unclear. An important factor seems to be the release 
of reactive oxygen species that can be induced by exposure to air 
pollution, leading to oxidative stress that can cause metabolic dysfunc
tions like chronic inflammation (Brook et al., 2010; Lodovici and Biga
gli, 2011; Wei et al., 2016). PM2.5 has been linked in studies to 
biomarkers of inflammation such as C-reactive protein (CRP) (Su et al., 
2017; Pope et al., 2004; Zhang et al., 2017) and reduce the anti- 
inflammatory and anti-oxidant capacity of HDL cholesterol (Ram
anathan et al., 2016). These inflammations may induce pathways that 
accelerate atherosclerosis (Münzel et al., 2017) and impair glucose 
metabolism (Liu et al., 2019). These findings are supported by epide
miological studies linking air pollution to biomarkers of insulin resis
tance (Kelishadi et al., 2009; Wolf et al., 2016). Furthermore, particulate 
matter is supposed to induce changes to the autonomic nervous system 
which can lead to an elevated blood pressure (Rajagopalan et al., 2018). 

Similarly, different pathways are discussed for how noise might lead 
to cardiometabolic impairments that constitute MetS. Noise is supposed 
to act as an environmental stressor, causing responses of the sympathetic 
and endocrine system (Babisch, 2011) that include the release of stress 

Fig. 4. (continued). 
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hormones like catecholamines (Münzel et al., 2014). These can trigger 
physiological alterations including a rise in blood pressure and an 
increased heart rate that can lead to a manifestation of cardiovascular 
diseases (Babisch et al., 2014). Additionally, noise can disturb sleep at 

night time (Miedema and Vos, 2007), which can lead to an impaired 
glucose metabolism (Stamatakis and Punjabi, 2010). 

For greenness, the mechanisms leading to beneficial effects in health 
are not fully understood yet. Different biopsychological and 

Fig. 4. (continued). 
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physiological pathways are discussed. Residential greenness may act as 
a mitigating factor, reducing the exposure of environmental stressors 
like air pollution and noise. Additionally, it may help residents with 
restoration from stressors and help build capacities, e.g. by encouraging 
physical activity and social integration (Markevych et al., 2017; Kuo, 
2015). These pathways are probably not independent from each other 
but intertwined (Hartig et al., 2014). A cross-sectional study found levels 
of cardiovascular risk factors such as oxidative stress in individuals 
living in areas with a higher NDVI (Yeager et al., 2018). 

5. Strengths and limitations 

This study had several strengths. We used data from the KORA 
cohort, a well-established study that includes a broad variety of clinical, 
lifestyle-related and environmental data. This allowed us to adjust for 
many confounders and investigate effect modifications. The longitudinal 
design, which was a part of our analysis, enabled us to investigate the 
temporal development of our outcome in dependence from the exposure 
variables. The results where furthermore consistent across several 
sensitivity analyses indicating the robustness of our findings. 

There are also several limitations to this study. Our outcome was 
attributed to participants based on measurements taken on the day they 
visited the study center. This may have caused misclassifications. While 
trained investigators and information given to the participants should 
have minimized this problem, a bias may still exist. Furthermore, 
because estimations of air pollutants were based on measurements in 
2014 and 2015, the real exposure at KORA F4, which took place from 
2006 to 2008, may differ from the values used for the analysis. However, 
in previous studies spatial contrasts remained constant for 10 years and 
longer, despite changes in concentrations (Eeftens et al., 2011; Wang 
et al., 2013). It seems reasonable to assume that the same holds true for 
air pollution estimates for the period of our analysis. While exposure was 
assigned to home addresses of the participants, we did not measure how 
much time participants spent at home. Therefore, we do not know to 
what extent the attributed values concur with the real exposure of the 
subjects. Another limitation was that LUR models were calculated based 
on measurements from 20 monitoring sites. While LUR models have 
been designed with fewer stations, they tend to perform worse than LUR 
models with more measurement sites (Eeftens et al., 2011; Basagaña 
et al., 2012). 

Another limitation refers to the longitudinal analysis specifically. 
Here, our study population underwent an extensive selection process. By 
excluding all participants with prevalent MetS, the selected population 
showed a better health status than the overall population at the time of 
F4: participants were on average younger and had a lower prevalence of 
cardiovascular risk factors. These factors may have decreased their 
susceptibility to the adverse cardiometabolic effects of air pollution (Liu 
et al., 2019; Cantone et al., 2017). However, it seems unlikely that a 
selection bias has led to the absence of effects in our longitudinal 
analysis that we were able to detect in our cross-sectional analysis. When 
we adjusted for MetS at the time of KORA F4, the associations between 
MetS at KORA FF4 and environmental exposures remained mostly 
unaltered. 

6. Conclusion 

This study showed that long-term residential exposure to PM10, 
PM2.5, PMcoarse, and PM2.5abs is associated with a higher risk for prev
alent MetS in an adult population. For incident MetS, we found no sig
nificant associations with the exposure variables. Our analysis showed 
no consistent results concerning vulnerable subgroups or joint in
fluences of exposures. Our findings implicate the importance of 
improving air quality to prevent negative cardiometabolic health out
comes including coronary heart disease and type 2 diabetes mellitus in 
the general population. 
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