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At a Glance Commentary:  Although certain environmental and genetic determinants of lung function and COPD have been identified, our understanding of the underlying mechanisms that contribute to COPD remains incomplete.  Recent improvements in proteomic profiling technologies have enhanced our ability to evaluate systemic markers associated with COPD.  Here we have identified novel protein markers and pathways associated with pulmonary function and lung function decline across multiple cohorts.




Abstract 
Rationale:  Chronic obstructive pulmonary disease (COPD) is a common, complex respiratory disease characterized by airway obstruction and accelerated lung function decline.  Our understanding of systemic protein biomarkers associated with COPD remains incomplete.
Objectives:  We tested whether aptamer-based protein profiling could identify markers and pathways related to impaired pulmonary function and lung function decline in multiple studies.  
Methods:  We studied 3,827 non-Hispanic/European White participants across six cohort studies with both aptamer-based proteomic and spirometry data. In linear regression models we examined protein associations with baseline FEV1 and FEV1/FVC.  In linear mixed effects models we investigated the associations of baseline protein levels with rate of FEV1 decline (mL/year) in 2,636 participants with up to 7 years of follow-up spirometry.   
Measurements and Main Results:  We identified 198 proteins associated with FEV1, among which 12 proteins were also significantly associated with FEV1/FVC, including retinal binding protein 4 (FEV1: β=0.0307, Q=2.18×10-4; FEV1/FVC: β=0.008, Q=4.0×10-3) and bactericidal permeability-increasing protein (FEV1: β=-0.0280, Q=6.80×10-3; FEV1/FVC: β=0.0050, Q=0.04).  We identified 15 proteins associated with the rate of FEV1 decline (Q<0.05), including tissue factor and nidogen (β=-5.21 mL/year, Q=0.016 and β=-4.90 mL/year, Q=0.020, respectively). Several protein associations supported previous GWAS findings for lung function and COPD.  Pathways and processes associated with lung function included extracellular matrix organization, dysregulation of coagulation and angiogenesis.
Conclusions:  In this study, we have identified novel protein associations with baseline lung function and lung function decline. These proteins might represent disease markers of at-risk individuals or novel molecular targets and pathways with the potential to modify the clinical course of COPD.
Word Count: 250 words

Introduction
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with over 328 million cases worldwide1 and is currently the third leading cause of death in the world. The sine qua non of COPD is airflow obstruction (low FEV1/FVC) by spirometry that is not fully reversible. The severity of COPD is assessed by the FEV1, percent predicted, and progression is typically expressed as change in FEV1 in mL/year.  
In developed countries, smoking is the primary exposure associated with COPD; however, only a minority of smokers develop COPD2,  while indoor and outdoor pollution may be important contributing factors3. Recently, investigators have applied unbiased genome wide association studies (GWAS) to identify novel disease pathways4, 5, but only a moderate amount of disease susceptibility has been linked to genetic causes6, suggesting that additional genetic and environmental determinants, along with gene-environment interactions, remain to be identified. Further defining molecular signatures through additional -omics studies, such as transcriptomics or proteomics, could improve our understanding of COPD.  
While several studies have assessed focused panels of protein biomarkers in COPD and lung function7-10, recently developed large-scale, high-throughput proteomic technologies may be applied to epidemiologic cohorts to simultaneously measure hundreds to thousands of proteins.  Specifically, aptamer-based proteomic technologies have been used to identify biomarkers associated with coronary artery disease11, 12, muscular dystrophy13, Alzheimer’s disease14, and lung cancer15.  As opposed to focused interrogations of specific biomarkers, large-scale proteomic platforms facilitate analyses across a broad swath of the human proteome, which may better highlight novel disease pathways and processes.
However, few epidemiologic studies exist with both pulmonary phenotyping and large-scale proteomic data.  Here we analyzed four population-based cohorts and two longitudinal COPD case-control studies with lung function measurements and aptamer-based proteomic data of human plasma.  We leveraged these data to identify biomarkers and pathways associated with lung function and lung function decline.


Methods
Study Populations
Our study included 3,827 non-Hispanic/European White participants from six cohort studies who had at least one spirometry measurement and one plasma or serum SOMAscan proteomic assay.  These cohorts included three population-based prospective cohort studies [Framingham Heart Study (FHS),  Kooperative Gesundheitsforschung in der Region Augsburg (KORA), Multi-ethnic Study of Atherosclerosis (MESA) Lung Study],  a  smokers cohort  [Lovelace Smokers Cohort (LSC)], as well as  two longitudinal COPD case-control studies: the COPDGene Study and SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS). Study descriptions are detailed in the Online Data Supplement. The baseline characteristics of the participants included in cross-sectional lung function analyses are presented in Table 1 and participants from FHS, KORA, LSC and COPDGene included in the longitudinal decline analyses are shown in Table 2.  The respective local Institutional Review Boards approved all study protocols and written informed consent was obtained from all participants.  
Clinical Data and Definitions
Spirometry tests were performed at baseline in all cohorts in accordance with the American Thoracic Society or European Respiratory Society recommendations.  Only spirometry measurements meeting acceptability criteria were included in this study.  Pre-bronchodilator values were used for analysis across all six cohorts, since post-bronchodilator assessment was not available in all cohorts.   COPD was defined using spirometric evidence of airflow obstruction [pre-bronchodilator forced expiratory volume at one second (FEV1)/forced vital capacity (FVC) < 0.70].
Aptamer-based proteomics platform
The single-stranded DNA aptamer-based SOMAscan™ proteomics platform was used to assay baseline samples.  KORA samples and FHS batch 1 were profiled on Version 1.1k with 1,124 aptamers.  FHS batch 2 and COPDGene, SPIROMICS and MESA were profiled on Version 1.3k which contained 1,305 aptamers.  LSC samples were profiled on a platform with > 4,000 aptamers. Version 1.1k aptamers that were replaced in more recent versions were excluded from analyses. Across all cohorts we report only proteomic data from aptamers that were represented on Version 1.3k.   All assays were performed using SOMAscan reagents according to the manufacturer’s detailed protocol16.  
Statistical Analysis
Protein relative fluorescent unit (RFU) values were inverse normalized due to non-normal distribution.  Proteins and pulmonary function traits (FEV1, FVC and FEV1 /FVC) were treated as continuous variables.  We analyzed cross-sectional protein associations with lung function (FEV1 and FVC) by using linear regression models adjusting for  age, age2, sex, height, height2, BMI, pack-years, current smoking status, proteomics plate and batch (when applicable).  In the FEV1/FVC linear regression models, we adjusted for age, sex, BMI, pack-years, smoking status, proteomics plate and batch (where applicable).  We further adjusted for COPD case status as a covariate in the models for COPDGene and SPIROMICS given their case-control design.  Linear mixed effects regression models (including a pedigree-based kinship matrix to adjust for familial relatedness in FHS) were used to examine the association between protein levels at baseline exam and FEV1 decline.  The model included a random intercept and fixed effects for time (a continuous variable quantifying the time period between each FEV1 measurement and baseline), protein and its interaction with time, baseline age, gender, height, current smoking status and pack-years, proteomics plate and batch (when applicable).  Results across all cohorts were combined in random-effects meta-analyses. False discovery rate (FDR)17 Q<0.05 was used to denote significance. 
Pathway Analysis
Pathway analyses focused on proteins associated with all lung function traits (FEV1, FVC, FEV1/FVC, FEV1 decline) was performed in ConsensusPath DB Release 3418, 19 accessed on 02/04/2020.  P-values were generated by binomial hypergeometric distribution tests to determine which pathways are over-represented in the list of UniProt IDs.  Pathways with FDR17 Q<0.05 were reported.



Results
Study Sample
The characteristics of the study sample for the cross-sectional lung function analyses are presented in Table 1.  We studied a total of 3,827 non-Hispanic / European white participants from all six cohorts.  Four studies (FHS, COPDGene, KORA and LSC) had ≥ 2 spirometry measurements in 2,636 participants with average follow-up ranging from 5.4 to 6.9 years.  There was a slight female predominance across a majority of the studies.  The average age of the participants in each study ranged from 55 to 68 years, with the COPDGene and SPIROMICS participants being slightly older.  COPDGene, SPIROMICS and LSC participants had greater smoking exposures and lower mean FEV1.
Protein associations with baseline lung function
[bookmark: _gjdgxs]In multivariable-adjusted models, we identified 198 proteins that were associated with baseline FEV1 in meta-analysis (Q<0.05).  Of these 198 proteins, 58 proteins met a Bonferroni-adjusted P threshold < 3.83 x10-5.  The details of proteins associated with FEV1 are provided in Figure 1 and Supplementary Table 1.  We confirmed previously identified markers associated with COPD such as C-reactive protein20 (CRP; β=- 0.0753, Q=8.77- x10-15) and fibrinogen gamma chain21 (β=-0.0508, Q=1.75 x10-3).  Our findings also confirmed a previously reported association of proteins in the TGF-β/BMP pathway  with FEV14, 22, 23 including bone morphogenetic receptor type 1A (BMPR1A; β=0.0515, Q=3.50x10-7), and multiple BMP co-receptors, such as repulsive guidance molecules A, B and C, (RGMA, β=0.0551, Q=7.61x10-5; RGMB, β=0.0654, Q=3.54x10-5 and RGMC, β=0.0545, Q=2.11x10-4, respectively).  Further, several proteins associated with  FEV1 support previous GWAS findings for lung function and COPD4, 22, including BMP-14 (GDF5), hepatocyte growth factor receptor (MET), EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) and insulin-like growth factor binding protein 5 (IGFBP5)22, 24.  Several proteins with previously reported genetic signals from GWAS of lung function and/or COPD22, 24, 25 are annotated in Supplemental Table 1. 
The majority of protein associations with FEV1 were novel, including kallistatin (β=0.0589, Q=1.20x10-8), a serine protease inhibitor similar to alpha-1-antitrypsin, 26 which binds prekallikrein (β=0.0341, Q=2.05x10-3) to produce kallikreins.  Further, several kallikreins themselves (e.g. 7, 8 and 14) were also significantly associated with FEV1 (β=0.0340, Q = 2.34x10-3; β=0.0270, Q=0.01; β=-0.0308, Q=6.65 x10-3, respectively).  We also identified multiple proteins in the coagulation cascade associated with FEV1, including antithrombin III (β=0.0867, Q=1.69 x10-17) and prothrombin (β=0.0470, Q=1.05x10-7).  Circulating levels of several adipokines were also related to FEV1, including retinoic acid receptor responder protein 2 (TIG2; β=-0.0480, Q=8.72x10-6)27 and retinol binding protein 428 (RBP; β=0.0476, Q=2.18 x10-4). While a subset of proteins were related both to both FEV1 and FVC (Supplementary Table 2), there were 40 proteins associated with FEV1 only (Q<0.05), including IgE and RBP (highlighted in Figure 1 as red circles, denoted in Supplementary Table 1).  
[bookmark: _Hlk16804480]Further, twelve of the proteins associated with FEV1 (Q<0.05) were also significantly associated with FEV1/FVC (Q<0.05; Figure 2), including RBP (β=0.0081, Q = 4.00x10-3), kallistatin (β =0.0062, Q=3.96x10-4), kallikrein 7 (β=0.0050, Q=0.02), BMPR1A (β=0.0047, Q=0.03), and RGM-C (β=0.0074, Q=0.03).  Several novel immune response mediators were associated with FEV1 and FEV1/FVC.  For example, higher levels of lymphocyte activation gene 3 (LAG), an immune checkpoint inhibitory receptor that regulates T cell responses29, and adhesion G protein-coupled receptor E2 (EMR2), a regulator of granulocyte cell chemotaxis and degranulation30, were associated with higher FEV1/FVC and FEV1 (LAG3: FEV1 β=0.0307, Q=8.00x10-4 and FEV1/FVC β=0.0058, Q=0.03;  EMR2: FEV1: β=0.0353, Q=4.00x10-5 and FEV1/FVC: β=0.0061, Q=0.03 respectively).  We found two proteins inversely associated with FEV1/FVC and FEV1; protein S100A12 (FEV1/FVC β=-0.0065, Q=0.03; FEV1 β=-0.0563, Q=7.26x10-6) and bactericidal permeability-increasing protein (BPI; FEV1/FVC: β=0.0050, Q=0.04; FEV1: β=-0.0280, Q=6.80x10-3).  S100A12 functions as a danger associated molecular pattern (DAMP) molecule that binds to the receptor for advanced glycation endproducts (AGER) to stimulate innate immune cells and inhibit metalloproteinases31-33. BPI functions as an antibacterial factor with cytotoxic activity against many gram negative bacteria34, 35.  The list of significant protein associations with FEV1/FVC ratio is shown in Supplementary Table 3.  


Proteins associated with the rate of FEV1 decline
Baseline characteristics of participants in the longitudinal analysis are shown in Table 2.  Overall, clinical characteristics of the participants included in the longitudinal analyses are similar to those reported in Table 1.  Average FEV1 decline ranged from 30.3 mL/year to 67.4 mL/year across cohorts; as expected, declines were greater in the disease cohorts.
We examined the relationships between baseline protein levels and the rate of FEV1 decline in mL/year in multivariable-adjusted models.  We found 15 proteins significantly associated with the rate of change in FEV1 (Q<0.05; Figure 3, Supplementary Table 4).  Consistent with prior studies36, higher levels of soluble receptor of advanced glycation end products (sRAGE), were associated with a slower rate of FEV1 decline (β=5.46 mL/year, Q=4.05 x10-3).  In multivariable analyses also adjusting for sex, we report that higher levels of female associated sex hormones [follicular stimulating hormone (FSH; β=7.61, Q=8.31x10-7) and luteinizing hormone (LH; β=7.23, Q=2.16x10-3)] were associated with slower rate of FEV1 decline.  Leptin, a hormone produced by adipose tissue, was also associated with slower rate of decline (β=9.25, Q=2.38 x10-4).   Model adjustment for BMI did not attenuate leptin association with FEV1.
We also identified several circulating proteins associated with a faster rate of lung function decline (Figure 3). For example, higher levels of secretory leukoproteinase inhibitor (SLPI), a neutrophil elastase inhibitor 37 and antimicrobial peptide38,  were associated with a faster rate of lung function loss (β=-5.06, Q=0.02). Elevated levels of other antimicrobial immune response mediators were also found to be associated with more rapid lung function decline, including mannose binding lectin39 (MBL; β=-4.58, Q=0.029).  Notably, higher levels of angiogenenic factors such as vascular endothelial growth factor (VEGF; β=-5.06, Q=0.016) and angiogenin (β=-6.42, Q=0.017) were also associated with more rapid lung function loss.  Elevated levels of tissue factor (TF), a regulator of coagulation cascade40,  angiogenesis 41 and inflammation42, were associated with faster rate of FEV1 decline (β=-5.2 mL/year, Q=0.016).   We also observed an inverse association of putative cardiac markers including interleukin-1 receptor-like 1 (IL1RL1; a.k.a. ST2)43 and cysteine-serine-rich protein 3 (CSRP3)44  with the rate of FEV1 decline (ST2; β=-5.46, Q=4.05x10-3 and CSRP3; β=-8.42, Q=0.02, respectively).  Detailed results for all proteins associated with FEV1 decline are described in Supplementary Table 4.  
Pathway analysis 
Using ConsensusPathDB18, 19, we tested proteins associated with lung function for enrichment in biological pathways (Supplementary Table 5).  Consistent with recent genetic studies of lung function and COPD 22, 24, there was an over-representation of proteins associated with extracellular matrix organization, elastic fiber formation, TGF-β signaling and integrin interactions/signaling.  We found enrichment in interleukin signaling pathways, including allergic and asthma inflammatory cytokines such as IL-4 and IL-13; and hepatocyte growth factor (HGF)-MET signaling.  Hemostasis was also identified as a relevant pathway including processes such as platelet activation, signaling and aggregation and both the intrinsic and common pathways of the coagulation cascade.  Novel pathways identified by these analyses included axon guidance and regulation of insulin-like growth factor (IGF) signaling.  


Discussion
This novel analysis of aptamer-based proteomics and pulmonary function in over 3,000 non-Hispanic/European White participants not only dozens of novel protein associations with baseline lung function but also proteins associated with decline in lung function with up to 7 years of follow up.  Leveraging this large-scale proteomic platform, our study provides novel biological insights into specific proteins, pathways, and processes involved in impaired lung function and lung function decline, including dysregulation of the coagulation cascade and angiogenesis.      
Our finding that elevated sRAGE levels were associated with a slower rate of FEV1 decline supports previous reports that studied baseline COPD severity45, decline in FEV146, and emphysema progression using antibody-based platforms47.  sRAGE is the soluble isoform of the proinflammatory RAGE signaling receptor and is thought to serve as a decoy for RAGE ligands to dampen inflammation36.  Several clinical studies have shown circulating sRAGE levels are reduced in COPD45, 48.  In addition, several general population GWAS have identified a chromosome 6p21 locus in the region of the RAGE gene, AGER, which is strongly associated with COPD and lung function24, 49.  In particular lung function GWASs have identified the rs2070600 minor allele association with increased FEV1/FVC in their general population samples49.  In pQTL analyses performed previously, the circulating sRAGE levels measured using this platform were associated with the rs20760050.
Our data also demonstrated that higher levels of female sex hormones (FSH, LSH) were associated with a slower rate of FEV1 decline. Overall sex-specific susceptibility to COPD is poorly understood.  The processes are likely multifactorial: smaller lung size in women, sex hormone impacts on xenobiotic metabolism of cigarette smoke, and environmental exposures may play a role51.  The peri-menopausal period represents a time of significant lung function decline in women, but it would be more consistent with a non-obstructive physiology52.  While menopause data was incomplete across all cohorts, the factors driving lower lung function in menopause may benefit from further study.
We also observed that a higher level of leptin was associated with a slower rate of FEV1 decline.   Leptin is a hormone produced by adipose tissue and is highly associated with BMI53.  The relationship of BMI and COPD remains unclear.  One population-based study reported a U-shaped relationship between BMI and COPD prevalence among underweight or obese adults54.  Recent studies have reported a higher BMI association with slower rate of decline55 and improved survival in COPD patients56.  Consistent with our leptin finding, there has also been previously reported association of lower leptin/adiponectin ratio with faster lung function decline in two smaller independent cohorts57.  Further, prior GWAS studies highlighted an association between leptin receptor gene polymorphisms and lung function decline in COPD58.  Notably, our results demonstrated an inverse association of leptin with baseline FEV1 across our study population, which may reflect mechanical factors associated with obesity59, 60.  In addition to leptin, our analyses also highlight other adipokine associations with FEV1, including RBP and TIG2.  Together these findings may suggest that dysregulation of leptin, as well as other adipokines may play a role in progression of COPD. 
We found higher levels of IL1RL1 (a.k.a. ST2) were associated with faster rate of lung function decline.  ST2 functions as the receptor for pro-inflammatory IL-33.  Similar to asthma, both increased expression of ST2 receptor and IL-33 have been observed in COPD61, 62.  IL-33 induces IL-6 and IL- 8 production in lung epithelial and endothelial cells63, 64, causing an influx of neutrophils that secrete elastases and proteases, which contributes to lung tissue damage65.  Cigarette smoke and LPS has also been shown to increase ST2 and/or IL-33 in immune66 and lung epithelial cells62.  Our finding is further supported by a recent finding of IL1RL1 as novel genetic signal associated with FEV1/FVC24.  Currently there are two drug trials targeting the IL-33/ST2 pathway in COPD, including a trial evaluating the efficacy of anti-ST2 antibody on the frequency of COPD exacerbations (ClinicalTrials.gov: NCT03546907).   
Elevated levels of angiogenic factors, VEGF and angiogenin, were also associated with more rapid FEV1 decline.  VEGF has been implicated as the major mediator of pathological angiogenesis in several diseases, including animal models of small airway disease in COPD67.  Prior studies have shown enhanced bronchial expression of VEGF in patient with COPD68 and both VEGF and angiogenin have been negatively correlated with pulmonary function in stable COPD69.   Several proteins associated with FEV1, such as sTIE70, TSP271, and kallistatin72, are involved in angiogenesis.  Kallistatin, in particular, has been shown to inhibit VEGF signaling in animal models73.  Overall, our data highlights angiogenesis as a potential contributor to development of COPD.  This may further support the emerging data on vascular dysfunction in COPD pathogenesis74-76.  
We observed that higher levels of nidogen-1, an extracellular matrix (ECM) protein that bridges laminin and type IV collagen in the basement membrane77, was associated with a faster rate of FEV1 decline.  This finding highlights dysregulation of ECM remodeling in COPD since alterations in ECM proteins may contribute to airway thickening and degradation of alveolar walls that ultimately leads to airflow limitation78.  Experimental animal models also suggest that nidogen is critical in heart and lung embryonic organogenesis79.  Other ECM proteins were associated with FEV1, including integrin alpha1:beta1, aggregan and brevican core protein.  ECM protein levels may merely reflect turnover of structural constituents, however recent studies suggest that ECM proteins influence cell behaviors such as immune cell recruitment and retention80-82.  Our findings also confirmed prior FEV1 associations with ECM proteases, including MMP-283, MMP-983 and Cathepsin G84.     
The coagulation cascade is also highlighted in our findings across lung function traits.  Elevated tissue factor (TF), which is expressed by injured endothelium, was associated with faster rate of FEV1 decline.  TF initiates the extrinsic and common coagulation cascade to generate thrombin85.   We also observed a highly significant inverse association of FEV1 and anti-thrombin III, a circulating plasma thrombin inhibitor.   Our data also demonstrates FEV1 association with protease nexin 1, tissue thrombin inhibitor86.  The cognate gene for protease nexin 1, SERPINE2, has been previously reported as a COPD susceptibility gene that may be influenced by gene-by-smoking interaction87.  Tissue injury may also directly activate intrinsic pathway serine proteases, such as kallikreins which have also been implicated in ECM remodeling88, 89.  Our findings may indicate vascular injury as a contributing factor in progression of COPD.  
Higher levels of several anti-microbial factors, such as MBL and SLPI, were associated with more rapid decline.  Previous studies have reported higher prevalence of a MBL2 polymorphism in frequent exacerbators with advanced COPD90; however serum protein levels have not been associated with lung function.  SLPI is a leukocyte elastase inhibitor that modulates inflammatory and immune response after bacterial infection. Similar to alpha-1 antitrypsin, it prevents tissue damage by limiting protease activity91.  While SLPI has been previously associated with sputum of patients with stable COPD found to be decreased during exacerbations92, there are no studies describing circulating level associations with lung function decline.  SLPI is currently being explored as a therapeutic target for COPD and asthma.  Further as noted above, S100A1231-33 and BPI34, 35 were antimicrobial factors highly associated with both FEV1 and FEV1/FVC.  The directionality of some associations may represent a highly activated immune response to chronic bacterial colonization in COPD. 
Our study has several limitations.  Our study population was limited to only non-Hispanic/European White participants as an approach to minimize racial/ethnic heterogeneity.  Additional studies in racially/ethnically diverse cohorts, as well as replication analyses in other non-Hispanic/European White cohorts are needed.  Although at present there are few cohorts with large scale proteomic data and pulmonary phenotyping.  Differences in cohort study designs, equipment and geography contribute to heterogeneity among participants and measures.  By combining our results across cohorts, we detected significant associations despite small effect size and limited sample size.  While heterogeneity is a limitation of our combined analyses, our findings potentially highlight protein signals common across the entire study population— some of which support by previous GWAS findings.   Post-bronchodilator spirometry, which is used for the clinical diagnosis of COPD, was unavailable across all cohorts.  However, studies suggest that pre- and post-bronchodilator spirometry measures are highly correlated93 and pre- and post-bronchodilator lung function are similarly associated with outcomes such as mortality in a general population94.  While this proteomics platform reports on 1,305 proteins, as a targeted platform it does not provide uniform coverage of all pathways95-99, thus the overall number of analytes assayed is a modest fraction of the estimated 20,981 proteins annotated in the Human Protein Atlas100. This, in turn, could influence our pathway enrichment studies. Future efforts should be directed toward confirming the aptamer specificity of our protein findings, examining the functional effects of these protein-phenotype associations, exploring the clinical value of protein markers for early detection of patients at risk for rapid progression and performing additional studies in more diverse racial/ethnic populations.
In summary, we have identified over a dozen novel circulating protein markers associated with lung function decline.  While our findings also highlight previously reported protein and genetic associations with COPD, by leveraging this large-scale proteomic platform we have expanded on these findings as well as identified new proteins and pathways that may be relevant to COPD.  Identifying novel molecular targets and pathways that may modify the course of disease is crucial to developing preventive strategies and novel therapies.


Data availability
Aptamer-based proteomic profiling results for all proteins measured in FHS, MESA, LSC, COPDGene and SPIROMICS have been or in process of being deposited in the database of Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap). Primary data is available through the established application procedure. Application for KORA data can be made via the KORA Project Application Self-Service Tool, KORA.PASST. All other results and analytic methods are available within the manuscript or from the authors on request. 
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Figure 1. Protein associations with baseline FEV1
Volcano plot showing multivariable-adjusted protein associations with FEV1 in meta-analyses.  All colored circles above –Log Q=0.05 line represent proteins with significant associations with FEV1.  Red circles highlight proteins associated with FEV1 only Q<0.05 (not associated with FVC with Q>0.05). See Supplementary Table 1 for details for all significant protein associations with FEV1 including annotation of protein full name, UniProt, EntrezGene and aptamer sequence IDs.   
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Figure 2.  Proteins associated with both FEV1 and FEV1/FVC.  Proteins associated with both FEV1 and FEV1/FVC in meta-analyses across all cohorts (Q < 0.05).  Proteins listed in order of ascending beta estimate for FEV1 association. See Supplementary Tables 1 and 3 for details for all significant protein associations with FEV1 and FEV1/FVC, respectively. 
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Figure 3.  Protein associations with FEV1 decline.  Proteins associated with rate of FEV1 decline.  Meta-analyses of linear mixed-effects models for FHS, KORA, COPDGene and LSC; Q<0.05.  Proteins listed in order of ascending beta estimate for FEV1 decline association.  Models were adjusted for age, gender, height, smoking status and pack-years, assay plate and batch (if applicable).  Sample size varied because some proteins were not measured in SOMAscan Version 1.1k for FHS batch 1 and KORA.  Beta estimates >0 indicate higher levels of protein associated with slower rate of decline and <0 indicate higher levels of proteins associated with faster rate of decline.  See Supplementary Table 4 for details for all significant protein associations with FEV1 decline including annotation for protein full name, UniProt, EntrezGene and aptamer sequence IDs.   


	Table 1.  Characteristics of participants with baseline spirometry 

	 
	Population-based cohorts
	Smoking enriched cohort
	COPD enriched cohorts

	Cohort
	FHS
	KORA
	MESA
	LSC
	COPDGene
	SPIROMICS

	n
	1,556
	577
	278
	153
	1,075
	188

	Age (years)
	55(10)
	53.8 (4.3)
	69.6 (9.7)
	56.0 (8.7)
	62.6 (9.1)
	62.2 (8.8)

	Male, n (%)
	716 (46)
	263 (45.6)
	141 (20.7)
	32 (20.9)
	528 (49.1)
	94 (50)

	Body mass index (kg/m2)
	27.4 (5.0)
	27.5 (4.7)
	28.3 (5.3)
	26.5 (5.2)
	28.8 (6.0)
	27.6 (4.8)

	Current Smoker, n (%)
	303 (19)
	105 (18.2)
	28 (10.1)
	91 (59.4)
	362 (33.7)
	49 (26.1)

	Never smoker (%)
	252 (36)
	221 (38.3)
	97 (35.0)
	---
	36 (3.4)
	28 (14.9)

	Smoking pack-year history
	16.6 (21.4)
	21.2 (20.0)
	14.91 (22.8)
	43.44 (19.8)
	44.3 (26.1)
	42.6 (31.8)

	FEV1 (L)  (pre-bronchodilator)
	2.9 (0.8)
	3.3 (0.8)
	2.47 (0.8)
	2.54 (0.7)
	2.2 (0.9)
	2.3 (0.9)

	FEV1 % predicted (pre-bronchodilator)
	92.7 (14.0)
	102.8 (15.4)
	92.18 (18.2)
	86.32 (19.3)
	72.9 (25.9)
	77.1 (26.4)

	FVC % predicted  (pre-bronchodilator)
	97.6 (13.2)
	102.6 (12.9)
	98.45 (16.2)
	92.17 (14.5)
	85.7 (17.9)
	91.7 (18.2)

	PRISm (%)
	101(6)
	20 (3.5)
	20 (7.2)
	8 (5.2)
	107 (10.0)
	6 (3.2)

	GOLD 1 (%)
	202 (13)
	29 (5.0)
	57 (20.51)
	10 (6.5)
	89 (8.3)
	36 (19.1)

	GOLD 2 (%)
	164 (11)
	18 (3.1)
	35 (12.6)
	29 (18.9)
	224 (20.8)
	42 (22.3)

	GOLD 3 (%)
	23 (1)
	1 (0.2)
	5 (1.8)
	7 (4.6)
	130 (12.1)
	17 (9)

	GOLD 4 (%)
	1 (<1)
	0 (0)
	1 (<1)
	2 (1.3)
	62 (5.8)
	7 (3.7)

	Entries are mean (SD) or n (%).                                                                                                           PRISm defined as FEV1/FVC ≥ 0.7 and FEV1 % predicted according to Hankinson equations < 80%. 
	
	





	Table 2.  Baseline characteristics of participants with follow up spirometry
	 
	 

	 
	Population-based cohorts
	Smoking enriched cohorts
	COPD enriched cohorts

	Cohort
	FHS
	KORA
	LSC
	COPDGene

	n
	1,326
	495
	153
	662

	Mean interval  first and last spirometry (years ± sd)
	6.9 (1.1)
	6.5 (0.5)
	5.9 (0.3)
	5.4 (0.7)

	Age (years)
	54 (10)
	53.7 (4.4)
	55.96 (8.7)
	62.5 (8.7)

	Male, n (%)
	605 (45.6)
	229 (46.3)
	32 (20.9)
	306 (46.2)

	Body mass index (kg/m2)
	27.4 (5.0)
	27.4 (4.6)
	26.55 (5.2)
	28.9 (5.9)

	Current Smoker, n (%)
	241 (18.2)
	80 (16.2)
	91 (59.5)
	194 (29.3)

	Never smoker (%)
	490 (37)
	193 (39.0)
	---
	26 (3.9)

	Smoking pack-year history
	15.7 (20.1)
	21.0 (19.9)
	43.44 (19.8)
	42.1 (25.6)

	FEV1 (L)  (pre-bronchodilator)
	2.90 (0.77)
	3.3 (0.8)
	2.54 (0.8)
	2.3 (0.85)

	FEV1 % predicted  (pre-bronchodilator)
	93 (15)
	103.1 (15.4)
	86.32 (19.4)
	77.3 (24.1)

	FVC % predicted  (pre-bronchodilator)
	98 (13)
	103.2 (12.9)
	92.17 (14.5)
	87.9 (17.3)

	Mean FEV1 decline in -mL/year (sd)
	30.3 (25.2)
	56.3 (40.8)
	64.7 (37.1)
	38.6 (55.5)

	PRISm (%)
	82 (6)
	18 (3.6)
	8 (5.2)
	66 (10.0)

	GOLD 1 (%)
	170 (13)
	27 (5.5)
	10 (6.5)
	61 (9.2)

	GOLD 2 (%)
	136 (10)
	16 (3.2)
	29 (19)
	126 (19.0)

	GOLD 3 (%)
	13 (1)
	1 (0.2)
	7 (4.9)
	64 (9.7)

	GOLD 4 (%)
	0 (0)
	0 (0)
	2 (1.3)
	20 (3.0)

	Entries are mean (SD) or n (%).                                                                                                                                 PRISm: FEV1/FVC ≥0.7 and FEV1 percent predicted according to Hankinson equations < 80%. 
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