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Deep learning the collisional cross sections of the
peptide universe from a million experimental values
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The size and shape of peptide ions in the gas phase are an under-explored dimension for
mass spectrometry-based proteomics. To investigate the nature and utility of the peptide
collisional cross section (CCS) space, we measure more than a million data points from
whole-proteome digests of five organisms with trapped ion mobility spectrometry (TIMS)
and parallel accumulation-serial fragmentation (PASEF). The scale and precision (CV <1%)
of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS
values solely based on the peptide sequence. Cross section predictions for the synthetic
ProteomeTools peptides validate the model within a 1.4% median relative error (R > 0.99).
Hydrophobicity, proportion of prolines and position of histidines are main determinants of the
cross sections in addition to sequence-specific interactions. CCS values can now be predicted
for any peptide and organism, forming a basis for advanced proteomics workflows that make
full use of the additional information.
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ARTICLE

he combination of ion mobility spectrometry (IMS) and

mass spectrometry (MS) extends conventional liquid

chromatography-mass spectrometry (LC-MS) by an extra
dimension of separation, increasing peak capacity, selectivity, and
depth of analysis!~>. Recent advances have greatly improved the
sensitivity of commercially available IMS devices and the tech-
nology is now set for a broader application in MS-based pro-
teomics®-10.

IMS separates ions in the gas phase (typically in the mbar
pressure range) based on their size and shape within milliseconds.
This time scale allows recording full ion mobility spectra between
typical chromatographic peaks (seconds) and the acquisition
pulses of time-of-flight (TOF) instruments (~100 us). We have
recently integrated trapped ion mobility spectrometry (TIMS)! 112,
a relatively new and particularly compact ion mobility device, with
a high-resolution quadrupole TOF mass analyzer' %314 In MS/
MS mode, this opens up the possibility to step the precursor
selection window as a function of ion mobility, allowing the
fragmentation of multiple precursors during a single TIMS scan!3.
We termed this novel scan mode parallel accumulation-serial
fragmentation (PASEF) and demonstrated that it increases MS/
MS rates more than ten-fold without any loss in sensitivity as is
otherwise inherent to faster scanning rates!%1°.

An intriguing feature of the combination of TIMS and PASEF
is that it should allow the acquisition of ion mobility values on a
very large scale. Such data have previously been measured on a
case by case basis by classical drift tube IMS, in which a weak
electric field drags ions through an inert buffer gas!®-18. Larger
ions collide more frequently with gas molecules and hence tra-
verse the drift tube with a lower speed as compared with their
smaller counterparts. In TIMS the physical process is the same,
except that the setup is reversed with the electric field holding
ions stationary against an incoming gas flow, prior to their
controlled release from the device by lowering the electric
field!%20. In both cases, the measured ion mobility (reported as
the reduced ion mobility coefficient K;) can be used to derive a
collisional cross section (CCS), which is the rotational average of
an ion’s gas-phase conformation?!22. The CCS intrinsically
depends on the ion structure, which is also illustrated by the fact
that different classes of biomolecules (e.g., metabolites, carbohy-
drates, peptides) show different trends in their ion mobilities as a
function of molecular mass?3. Interestingly, conformations also
vary within a compound class - to the extent that isobaric peptide
sequences can be distinguishable by their different CCS>42°,

The link between the amino acids of a peptide and its measured
cross section has the potential to increase the confidence in its
identifications through reference or predicted CCS values. This
has motivated researchers to develop various (machine learning)
models based on amino acid-specific parameterization and phy-
sicochemical properties!®26-2°, However, as comprehensive
experimental data are not available, predicting the full complexity
of the peptide conformational space remains elusive. Further-
more, it is not clear which properties should be considered to best
parameterize such models and make them generalizable. We
reasoned that a combination of very large and consistent datasets
acquired by PASEF with state of the art deep learning methods
would address both challenges. Due to their inherent flexibility
and their ability to scale to large datasets, deep learning methods
have proven very successful in genomics3?-3! and more recently in
proteomics for the prediction of retention times and fragmenta-
tion spectra32-35,

We here set out to explore the nature and utility of the peptide
CCS space in proteomics by first measuring a very large dataset of
CCSs by TIMS-TOF PASEF across five different biological spe-
cies. Building on this dataset, we develop and train a bi-
directional recurrent neural network with long short-term

memory (LSTM) units to predict CCS values for any peptide
sequence in the tryptic peptide universe. Interpreting our network
based on recent approaches from explainable AI allows us to
investigate the nature of the underlying relationship between
linear peptide sequence and peptide cross section.

Results

Construction of a very large-scale peptide CCS dataset. To fully
capture the conformational diversity of peptides in the gas phase,
we generated peptides from whole-cell proteomes of Cae-
norhabditis elegans, Drosophila melanogaster, Escherichia coli,
HeLa, and budding yeast using up to three different enzymes with
complementary cleavage specificity (trypsin, LysC, and LysN). To
increase the depth of our analysis, we split peptide mixtures into
24 fractions per organism and analyzed each of them separately
with PASEF on a TIMS-quadrupole TOF MS (Methods; Fig. 1a).
As this is the same setup we used before, we combined our new
experimental data with our previously reported dataset from a
tryptic HeLa digest!0.

In total, we compiled 360 LC-MS/MS runs and processed them
in the MaxQuant software36-37. This resulted in about 2.5 million
peptide spectrum matches and 426,845 unique peptide sequences
at globally controlled false discovery (FDR) rates of less than 1%
at the peptide and protein levels for each organism and enzyme.
MaxQuant links each peptide spectrum match to a four-
dimensional (4D) isotope cluster (or ‘feature’) in mass, retention
time, ion mobility, and intensity dimension. For each of these, the
ion mobility value is determined as the intensity-weighted average
of the corresponding mobilogram trace and can be converted into
an ion-neutral CCS value using the Mason-Schamp equation2!.
Some peptides occur in more than one conformation and have
multiple peaks in an LC-TIMS-MS experiment, but for simplicity
we here chose to keep only the most abundant feature per charge
state (Supplementary Fig. 1).

Overall, our dataset comprises over two million CCS values,
which we collapsed to about 570,000 unique combinations of
peptide sequence, charge state and, if applicable, side chain
modifications such as oxidation of methionine (Fig. 1b). Peptide
sequence lengths ranged from 7 up to 55 amino acids with a
median length of 14. The trypsin and LysC datasets contributed
79% of the peptide sequences (C-terminal R or K), whereas LysN
peptide (N-terminal K) accounted for the remaining 21%. Within
the two classes of peptides, the proportion of the terminal amino
acids conformed to their expected frequencies from the database
(Fig. 1¢, d). Due to our selection of enzymes, peptides should have
at least one basic amino acid. Consequently, singly charged ions
were a small minority (2%), which we excluded from further
analysis. We detected 69% of the peptides in the doubly charged,
and 25% in the triply charged and 4% in the quadruply charged
state. Plotting the mass-to-charge (m/z) vs. CCS distribution of all
peptides separates them by their charge state over the m/z range
400-1700 A2 and 300-1000 A2 in cross section (Fig. le). Within
each charge state, m/z and CCS were correlated in accordance with
previous observations in smaller datasets!®18:23:38-40_ Qverall, 95%
of all tryptic peptides were distributed within +8% around power-
law trend lines for each charge state (Supplementary Fig. 2).
Interestingly, the deviation increases with charge state and mass—to
the extent that there are two distinct sub-populations for charge
state 3—perhaps due to the increased amino acid variability and
structural flexibility in longer sequences. Our data show that
peptides occupy about one-quarter of the 2D m/z-mobility space,
whereas a fully orthogonal 2D separation would occupy the full
space. Assuming an average ion mobility resolution of 60, this
translates into an at least ten-fold increased analytical peak capacity
as compared with only MS (Supplementary Fig 3).
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Fig. 1 Large-scale peptide collisional cross section (CCS) measurement with TIMS and PASEF. a Workflow from extraction of whole-cell proteomes
through digestion, fractionation, and chromatographic separation of each fraction. The TIMS-quadrupole TOF mass spectrometer was operated in PASEF
mode. b Overview of the CCS dataset in this study by organism. ¢ Frequency of peptide C-terminal amino acids. d Frequency of peptide N-terminal amino
acids. e Distribution of 559,979 unique data points, including modified sequence and charge state, in the CCS vs. m/z space color-coded by charge state.
Density distributions for m/z and CCS are projected on the top and right axes, respectively. Source data are provided as a Source Data file.

Evaluating the accuracy, precision, and utility of TIMS CCS
measurements. Peak capacity indicates how many peptides can
be analytically resolved from each other. However, for their
identification it is sufficient to determine their apex positions with
adequate precision. In MS-based proteomics, accurate measure-
ment of the peptide mass greatly reduces the number of candi-
dates in database searches®®, and the retention time can likewise
be employed as a filter, as is typically done in the analysis of data-
independent acquisition (DIA) experiments*!. We reasoned that
ion mobility values should be precise and reproducible as they are
based on gas-phase interactions and defined electric fields, in
contrast to chromatographic retention times, which depend on
surface interactions that vary according to sample matrices and
over time. We therefore investigated the precision, accuracy and
added benefit of ion mobility measurements in our dataset.
First, we calculated correlation coefficients for retention times
and CCS values from pair-wise overlapping tryptic peptides in the
168 LC-MS/MS runs that had the highest number of shared
peptides across organisms. Depending on evolutionary distance,
this number ranged from none to hundreds and these formed the
basis of our calculations. We obtained two triangular half-
matrices of color-coded Pearson correlation coefficients—one for
the retention time correlations and one for CCS (upper and lower
part of Fig. 2a, respectively). Correlation values were generally
above 0.9 for both retention time and cross section, although
experiments were done over several months on three different
instruments. However, correlations of CCS values were system-
atically higher than those for retention times, for example, the

median correlation for the Hela runs between June 2018 and
May 2019 is r = 0.990 for retention times and r = 0.995 for cross
sections (based on 1264 peptides per pairwise comparison on
average). Further, the upper triangle of the heatmap shows
patches of similar color, unlike the mirrored positions in the
lower triangle (Fig. 2a). This indicates chromatographic batch-
effects resulting in non-linear shifts or changes in the
peptide elution order. In contrast, the absence of similar patterns
in the CCS comparisons supports our starting hypothesis
that the ion mobility is largely independent of experimental
circumstances.

Closer inspection of the variation in CCS values revealed
mostly linear shifts, which do not affect the correlation
coefficient. These shifts were only in the range from absolute 0
to 40 A2 (median 9.4 A2) even for very distant measurements, and
they are mainly due to variations of the gas flow in the TIMS
tunnel. Importantly, a linear alignment based on a few peptide
CCS values almost completely corrects for these shifts (Methods,
Fig. 2b). With such an alignment, CCS values can be compared
across disparate datasets, which we did for all analyses shown
here. Across the 347,885 peptide CCS values measured at least in
duplicate, the median coefficient of variation (CV) was 0.4%,
which highlights the excellent reproducibility of TIMS CCS
measurements also over longer periods of time and across
instruments (Fig. 2¢). This may even be improvable as suggested
by our previously reported CVs of 0.1% for replicate injections of
a whole-proteome digest on a single instrument!?. Reassuringly,
we found an excellent correlation of TIMSCCSy, values and drift
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Fig. 2 Precision, accuracy, and utility of experimental peptide CCS values. a Color-coded pairwise Pearson correlation values of peptide retention time
(upper triangular matrix) and CCS values (lower triangular matrix) between the 168 LC-MS/MS runs of fractionated tryptic digests. Experimental metadata
are indicated below the x-axis. White (n/a) indicates less than 5 data points for pairwise comparison. b CCS values of shared tryptic peptides
independently measured in two typical LC-MS runs of fractions from Drosophila and Hela (n = 68). ¢ CVs of repeatedly measured peptide CCS values in
the full dataset (n = 347,885 peptides). d Specificity of combined peptide m/z and CCS information for doubly and triply charged peptides with C-terminal
arginine or lysine (n= 324,246 and 112,015) with a fixed m/z tolerance of +1.5 ppm and as a function of CCS tolerance. For details, see main text and

Methods.

tube ion mobility experiments*>~#* (Pearson r = 0.997) with an
average absolute deviation <2% (Supplementary Fig. 4).

To investigate the utility of the additional CCS information for
peptide identification, we returned to Fig. le and defined
tolerance windows in m/z and CCS dimensions for each peptide
with C-terminal arginine or lysine as expected in tryptic digests
(identified by MS/MS at an FDR < 1%). We then determined the
fraction of windows in this map that were exclusively occupied by
a single peptide, meaning a unique match between experimental
measurement and our large peptide dataset (Fig. 2d). We set the
mass tolerance at the median mass accuracy (+1.5ppm) and
varied the CCS tolerance separately for doubly and triply charged
peptides, because they occupy different cross section areas
(Methods). Without the CCS information, at +50% tolerance,
about 90% of the doubly charged and 67% of the triply charged
peptides had at least one other peptide within 1.5 ppm distance
(‘non-unique’). The fraction of unique peptides increased once
the CCS window was restricted to less than +10%, in accordance
with the roughly 20% spread of CCS values in Fig. le. Within
three standard deviations (+1.5%) of the measured CCS values,
about two-thirds of the doubly charged and 75% of the triply
charged species were unique and these fractions increased
progressively for narrower CCS windows. We thus conclude that
ion mobility can substantially reduce the number of potential
peptides that need to be considered, benefiting peptide

identification or MS1 level feature matching. At current CCS
value accuracy, this is about a factor of two to three. As Fig. 2d
also shows, an increase in accuracy down to 0.1% could make the
large majority of peptides unique (56% for 2+ and 90% and 3% in
a £0.5% CCS window).

Dependence of CCS values on linear sequence determinants.
Having investigated the accuracy and utility of peptide CCS
values, we asked whether a dataset of this scale could also shed a
light on potential substructures in the m/z vs. ion mobility space
and the relationships between linear peptide sequences and their
corresponding gas-phase structures. In the m/z vs. CCS space of
Fig. le, more compact conformations appear below and more
extended confirmations appear above the overall trend lines
for CCS values as a function of m/z.

We first explored whether amino acids with preferences for
secondary protein structures*®, would also effect peptide ion
structures in the gas phase and form clusters in this global view
(Supplementary Fig. 5). This is a long-standing interest in ion
mobility research and detailed studies of model peptides revealed
that in particular helical structures can be stable in the gas
phase#6-48, Mapping the amino acids in each peptide sequence
that favor helices in proteins, we found a tendency toward higher
CCS with an increasing fraction of A, L, M, H, Q, and E. This
suggests that such peptides, indeed, have a propensity to adopt
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Fig. 3 A global view on peptide cross sections. a Mass-to-charge vs. collisional cross section distribution of all peptides in this study colored by the
GRAVY hydrophobicity index (n=559,979). b Subset of peptides with C-terminal arginine or lysine colored by the fraction of prolines in the linear
sequence (nh = 452,592). ¢ Histidine-containing peptides of (b) colored by the relative position of histidine (n =171,429). Trend lines (dashed) are fitted to
the overall peptide distribution to visualize the correlation of ion mass and mobility in each charge state.

extended helical rather than more compact globular structures. In
contrast, peptides with a high fraction of amino acids favoring
turn structures (G, S, D, N, and P) tended to more compact
conformations. Note, however, that these are subtle, population-
wide effects. An interesting result was that peptides with <10% of
the mostly non-polar amino acids V, I, F, T, and Y (favoring sheet
structures in proteins) formed a narrow band of compact gas-
phase conformations.

Such tendencies have been ascribed to intra-molecular
interactions such as coulombic repulsion, charge solvation and
hydrogen bonding*’~>1. We reasoned that the hydrophobicity of
peptides could thus be a good indicator of these interactions in a
global view. Indeed, the GRAVY score®?, a commonly used index
of hydrophobicity, highlighted distinct areas of the m/z vs. ion
mobility space and within the CCS value distributions of each
charge state, the peptides below the trend line had lower GRAVY
scores than those above (Fig. 3a). The two major subgroups of the
triply charged peptides also followed this trend in that
hydrophobic peptides had a higher propensity to be in the upper
population and vice versa. Interestingly, and perhaps counter-
intuitively, this correlation was less apparent when comparing the
relative bulkiness of amino acid residues even though these
properties are related (Supplementary Fig. 6). These results are,
however, in line with early work in ion mobility, indicating that
non-polar amino acids contribute over-proportionately to the
peptide CCS value26>3 and stabilize helices in the absence of
solvent*’. When rotationally averaged, this results in larger,
effective cross sections.

To resolve structural trends at the level of individual amino
acids, we visualized their relative distribution in the same 2D
space. Proline is unique due to its cyclic structure, which results
in an inability to donate hydrogen bonds and to disruption of
secondary structures in proteins. We found that peptides with
more prolines had somewhat smaller CCS values on a global scale
(Fig. 3b). In line with the above reasoning, this could be explained
by a disruption of extended conformations and preference for
globular ones.

A peptide’s CCS value is not only determined by its amino acid
composition, but also by its amino acid sequence. As a large-scale
example of this, we generated complementary peptide sequences
with lysine either at the N-terminus (LysN digestion) or at the C-
terminus (LysC digestion). As described before3?, the two peptide
populations are most distinct in triply charged species (Supple-
mentary Fig. 7). Comparing 43,463 complementary sequences of

doubly charged peptides, we found changing CCS values in the
range of —5% up to +10% with a slight median shift of about 1%
toward higher CCS values for peptides with C-terminal lysine.
The 14,388 triply charged species split in two sub-populations,
with one maximum at about +1% similar to the doubly charged
species and a second maximum at a shift of about +8%. This
indicates that for the latter, switching the position of lysine from
the C- to the N-terminus destabilizes the extended conformation.
Assuming that the LysC peptides have a more extended
conformation due to charge repulsion of the terminal charges,
this again conforms to the above considerations.

We next investigated such effects in histidine-containing
tryptic peptides, by color-coding them by their relative histidine
position in the linear sequences (Fig. 3¢). Peptides with histidines
close to the N-terminus are more likely to adopt an extended
conformation and peptides with histidines closer to the C-
terminal lysine or arginine are more compact in the gas phase.
This again emphasizes that the internal charge distribution and
the ability to solvate charges intra-molecularly have a strong
influence on peptide CCS values.

Although our analysis revealed interesting general trends and
suggested common principles, it is challenging to combine them
into robust models that rationalize the trends and determine the
CCS value of a given peptide from its linear sequence. More
importantly, peptide CCS values do not lend themselves to global
ab initio calculations as this is beyond the capabilities of
computational chemistry. To that end, we next turned to deep
learning.

Deep learning accurately predicts peptide CCS values. To
construct an accurate CCS predictor that can incorporate these
large-scale peptide measurements, we decided to employ a flexible
deep learning model. We set out to define a network architecture
that is capable of learning a non-linear mapping function con-
necting the linear amino acid peptide sequence with associated
charge states to the experimentally measured CCS value with the
following properties: (i) Exploit the sequential structure of the
data where each peptide is encoded as a string of amino acid
sequences; (ii) Account for the influence of an amino acid in the
context of the entire peptide sequence; and (iii) Process peptide
sequences of arbitrary length. An architecture fulfilling those
properties is a bi-directional LSTM network on top of the raw
sequence followed by a two-layer multilayer perceptron (MLP)
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(Fig. 4a, Methods). Similar models have already proven successful
in proteomics32-3435, The bi-directional LSTM layers enable the
model to interpret each amino acid in the context of neighboring
amino acids, while the following concatenation layer reduces the
resulting N (sequence length) vectors into a single set of 256
features, together encoding the properties of the entirety of the
peptide sequence. Together with the charge state, this vector
constitutes the input to the MLP module for the final CCS value
regression. The entire architecture is implemented with differ-
entiable modules and is end-to-end trainable. We trained our
model with the set of 559,979 unique CCS values from our
experimental data of the five organisms.

Machine learning models, in particular deep learning models,
can easily be over-fitted, resulting in poor generalization
performance on new datasets. While holding out samples within
the dataset helps, for a more rigorous safeguard, we acquired an
independent additional dataset from the synthetic ProteomeTools
peptides®. This yielded 155,004 unique peptide sequences as an
external test set, which was never seen by the model during
training. In this test set, our model reached a high accuracy with a
1.4% absolute median deviation and a Pearson correlation
coefficient of 0.992 (Fig. 4b, c). For the subset of doubly charged
peptides the median absolute deviation was 1.2%, and for triply
and quadruply charged species it was 1.8% and 2.0%, respectively
(Supplementary Fig. 8). Presumably as a result of an increasing
number of accessible conformations, we found that the median
absolute deviation increased from 1.2% for CCS values <400 A2,
to 1.5% for CCS values between 400 and 800 A2 (n =129,710)
and 2.2% for 2580 peptides with CCS values >800 A2 (Supple-
mentary Fig. 9). Of all predicted CCS values, 90% were within
+4.0% deviation from the experimental data. In comparison, the
experimental median absolute deviation between tryptic peptides
from ProteomeTools and endogenous peptides was 0.6% (r=
0.995, n =54,914).

In our ProteomeTools data we also found a subset of 7% of the
peptide sequences, for which MaxQuant identified at least one
secondary feature with a CCS difference >2% relative to the most

abundant feature. As we trained our model with CCS values of
the latter, it is expected to predict the CCS value of the main
conformation in such cases. However, for peptides with a more
compact secondary conformation, we observed a bias toward
lower CCS values and vice versa (Supplementary Fig. 10). Future
prediction models may therefore benefit from considering
multiple conformations, in particular for longer peptides and
higher charge states.

To independently validate the accuracy of our predictions in a
real-world example, we replaced experimental CCS values in a
spectral library for DIA, built from the 24 HeLa fractions, with
our predictions. We then used the experimental and the predicted
libraries individually to re-analyze a triplicate diaPASEF experi-
ment of a whole-proteome Hela sample>®. Targeted data analysis
in the Spectronaut®® software makes use of library values to score
peptide signals and to restrict the data extraction window in the
ion mobility dimension, thereby removing interfering signals
from precursors with similar mass and retention time, but
different ion mobility. The software automatically performs an
alignment of the diaPASEF experiment to the library and
optimized the median ion mobility extraction window to 0.07
and 0.09 Vscm ™2 for the experimental and predicted library,
respectively. The median absolute deviation of peptide ion
mobility values were 0.74% and 0.93%. Overall, the experimental
and predicted libraries performed very similarly, resulting in 7766
(experimental) and 7685 (predicted) identified protein groups on
average (Supplementary Fig. 11).

Given that datasets in hundreds of thousands may still not be
seen as large in deep learning, we next investigated the
dependency between model accuracy in the test set and training
dataset size (Fig. 4d, e). We observed a monotonous improvement
in relative prediction accuracy as well as in the Pearson
correlation with growing training dataset size. The model error
decreased from 1.91% median relative error at 5600 samples to
1.42% for a set of 279,990 training samples, reflecting a
substantial decrease in relative error of more than 20%. In
contrast, moving from 279,990 samples to the full set of
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Fig. 5 Explainable artificial intelligence reveals context-dependent amino acid contributions. a Example peptide sequences with SHAP value attributions
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559,979 samples resulted in a relative improvement of only 1.4%
to a median relative error or 1.4%. These diminishing returns in
accuracy of prediction indicated that the number of CCS values
was sufficient—at least for currently achievable data quality.

Resolving amino acids contributions. Deep learning models are
often deemed black boxes, as they are powerful predictors but
learned relationships are typically hard to interpret. To make our
model interpretable in relation to our experimental findings and
to extract further molecular insights we calculated Shapley
Additive Explanation (SHAP)>7-8 values for each amino acid in
each sequence. In this case, SHAP values indicate the influence of
a specific amino acid on the peptide CCS value by comparing it to
reference values determined by randomly sampling sequences.
This allowed us to interpret the CCS prediction for a peptide
sequence by determining the individual, contextual attribution of
each amino acid (Methods).

Figure 5a illustrates our analysis of sequence-specific amino
acid SHAP values for three representative peptide sequences. In
the regular tryptic peptide sequence (i), arginine and leucine with
long side-chains shifted the prediction value to larger CCS as
compared with a random sequence, while the smaller glycine
contributed less than average. In the atypical peptide sequence
(ii), the attribution of leucine was similar, however, the
attribution of arginine was largely reduced in the N-terminal
position. The context-dependent attribution of each amino acid
was also evident from the long peptide sequence (iii), indicating a
relatively large contribution of the small amino acid alanine to the
prediction value. Interestingly, in this particular sequence,
glutamic acid had a positive attribution, whereas asparagine

somewhat reduced the prediction value, despite the fact that both
are similar in size and mass.

Plotting the aggregated SHAP value distribution over the entire
test dataset for each individual amino acid, showed the expected
relative order in terms of their average contribution (Fig. 5b):
light and small amino acids such as glycine and proline had
smaller SHAP values, whereas large and bulky amino acids such
as tryptophan, arginine and lysine had larger attributions on
average. In line with this observation, the average SHAP values
correlated well with the amino acid mass and bulkiness®®, as
indicated by Pearson correlation coefficients of 0.79 and 0.69,
respectively (Fig. 5¢, d). Deviations from these correlations, for
example, for asparagine, aspartic acid, leucine, and isoleucine,
which all have similar mass, could be explained by differences in
their bulkiness and hydrophobicity, in line with our experimental
results above. Collectively, these results highlight that our deep
learning model learned plausible features, extracting related
physical quantities on the level of individual amino acids
automatically from the training data, even though we solely used
the linear peptide sequence as an input.

Beyond the average values, the contribution of individual amino
acids to a CCS prediction had vastly different values depending on
their position in a sequence (Fig. 5b). Whereas the contributions of
glycine, serine, glutamic acid, and methionine were quite constant,
those of lysine, arginine, and histidine nearly varied over the entire
range of observed SHAP values. In particular for histidine, this
agrees with our empirical observation that the position in the linear
sequence had a distinct effect on the cross section (Fig. 3c). We thus
conclude that our model resolves substantial structural effects for
some of the amino acids within each sequence to provide a very
accurate CCS estimate for the entire peptide.
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Human whole-proteome level CCS prediction. The human
proteome gives rise to 616,948 unique tryptic peptide sequences
(considering a minimum length of 7 amino acids and no missed
cleavages), of which we measured about 18% in the course of this
study. To investigate the entire peptide universe and to create a
reference database of all tryptic peptides in the human organism,
we next used our trained deep learning model to predict CCS
values for the remaining 82%. Given the importance of charge in
ion mobility and the fact that it does not follow from the linear
sequence in a trivial manner, we first trained a second deep
learning model on our experimental training data to also predict
the charge state (Methods). We then fed each human peptide
sequence together with its predicted charge state into the trained
CCS model, resulting in a virtually complete compendium of
human peptide CCS values (Supplementary Data 1).

To provide a bird’s-eye view of the structure of these data, we
visualized the data manifold learned in the last layer of the neural
network, in which each sequence is described by a vector of 256
neural network features. These features represent all information
relevant to the prediction and were used to regress the final CCS
values. However, the data manifold is too high dimensional to be
directly accessible to human interpretation, hence we used a non-
linear dimension reduction algorithm (Uniform Manifold
Approximation and Projection, UMAP®) to visualize the data
in a 2D space. In this view, each point represents a single peptide
sequence and each local structure represents classes of peptides
with similar features. Distances in this space can be interpreted as
similarities between sequences in terms of the features extracted
by the network, meaning that sequences with similar gas-phase
properties are close to each other. Figure 6a reveals that the
neural network organized the data in three connected manifolds,
in which the sequences are ordered in terms of their associated
CCS value, starting with low CCS values (<300 A2) in the first
cluster and increasing to high values (>900 A2) in the third
cluster. Similar to the representation in m/z vs. CCS space, we
found that the main clusters were directly associated with the
charge state and, within each charge state, there were apparent
local structures.

Importantly, our experimental CCS values are distributed
across the entire predicted peptide universe (orange and blue
points in Fig. 6b), with very high densities in the CCS regions
400—800 A2, and lower densities in the region below 300 A2 This
reassures that the depth of our experimental dataset was sufficient
to sample the full feature space, and therefore suggests that our

model can be applied to predict CCS values of any tryptic peptide
sequence with similar high accuracy.

Discussion

Technological advances have rekindled the interest in IMS, which
is now about to become mainstream in proteomic laboratories.
Differential ion mobility spectrometers act as filters, only allowing
selected ions to enter the mass spectrometer. In contrast, TIMS
allows to measure ion mobility values and to derive CCS values
that reflect an ion’s size and shape. To investigate the benefit of
this additional information in proteomics and making use of the
speed and sensitivity of PASEF, we measured over two million
CCS values of about 500,000 unique peptide sequences from five
biological species. This covers a substantial proportion of the
peptide space and is by far the most comprehensive dataset of
CCS values to date.

This scale allowed us to first assess the analytical benefits of
CCS values, which turn out to correspond to a roughly ten-fold
increase in separation power. We further established that at an
accuracy of 1%, the number of possible precursors of a peptide in
a proteomics experiment decreases about two- to three-fold. Such
an accuracy can be achieved with a simple linear re-calibration
across distant measurements and different instruments. With this
re-calibration, CCS values essentially become intrinsic properties
of a molecule—meaning they do not depend on external cir-
cumstances—similar to their molecular weights, and unlike their
retention times. In this regard, we note ongoing research on
minimizing ion heating effects in TIMS measurements, as this
may also influence the observed cross section or result in frag-
mentation before MS/MS, depending on instrument settings and
space-charge effects®!1-64. However, results presented here and in
other studies!>226566 indicate that TIMSCCS values are generally
in excellent agreement with the current gold-standard drift tube
ion mobility.

The scale and uniformity of our dataset makes it a valuable
resource to investigate fundamentals of peptide gas-phase struc-
tures in detail. Beyond the well-known correlation of CCS values
with peptide mass, they also correlated with physicochemical
amino acid properties such as hydrophobicity, while the con-
tribution of certain amino acids varied based on their position in
the sequence. While this scale allowed us to compare a multitude
of different peptide sequences, a limitation of our analysis is that
we considered only one CCS per peptide and charge state for
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simplicity. However, ions from a single peptide may occur in
multiple gas-phase conformations that can be resolved by IMS0.
Even more information could thus be derived by resolving the
ion-mobility fine structure, for example, of higher charge states®!
or proline-containing peptides®’. As peptide CCS values in the
gas phase are fully determined by their linear amino acid
sequences, we reasoned that they should also be predictable with
high accuracy. Indeed, after training our state-of-the-art deep
learning model on our extensive dataset, it achieved a median
accuracy of about 1% for independently measured synthetic
peptides, close to the experimental uncertainty. Our model gen-
eralized very well to the extent that it accurately predicted CCS
values even for unseen peptides, such as those from the ‘missing
genes’ subset in ProteomeTools’. Adding even more data values
would have diminishing returns, however, prediction accuracy
could be further improved with even more consistent measure-
ments and higher ion mobility resolution or by considering
multiple conformations. To obtain a sufficient number of CCS
values for deep learning, we trained and validated our model with
complex samples of proteolytic digests and pooled synthetic
peptides. In the future, this work could be complemented with
manual investigation of isolated peptides, for example, to study
mobility peak shapes and multiple conformations in more detail
and independent of MS feature detection algorithms or other
factors.

We also interrogated our deep learning model with regard to
the determinants of its predictions with Shapley Additive
Explanation (SHAP). Amino acids greatly differ in the extent to
which their CCS contribution depends on their sequence context
—ranging from almost none to a rather wide positive or negative
contribution compared to an average amino acid. This highlights
how our model, indeed, learned underlying principles. These
could readily be extended to other peptide classes, such as
modified®® or cross-linked® peptides, using transfer learning’?,
with little additional experimental effort.

Our study complements recent efforts in predicting properties
of peptides on the basis of their sequences alone, especially those
using deep learning for retention times and MS/MS spectra
intensities’%3435 Taken together, almost any peptide property
relevant to proteomics workflows can now be predicted accu-
rately, even in an ion mobility setup. Conceptually, this allows the
community to nearly fully reconstruct the expected experimental
values of a MS-based proteomics experiment, given a list of
identified and quantified peptides. In more narrow terms, there is
great potential to render time- and cost-intensive experimental
libraries largely dispensable as exemplified here for diaPASEF.
The CCS model presented here further extends the capabilities of
such strategies to make full use of the ion mobility dimension.
Similarly, predicted CCS values open up the possibility to reuse
comprehensive community libraries such as the Pan Human
library’! for ion mobility-enhanced DIA or targeted workflows.
We further envision that the combination of predicted CCS,
retention time, and MS/MS spectra may improve scoring in
database searches and narrow down the list of candidates. This is
especially important in challenging applications such as pepti-
domics or proteomics of microbiomes>* that have a very large
search space. To foster its application and further developments,
we make the source code available for training and predictions, in
addition to the ready-to-use predictions of the human peptide
universe included here.

Methods

Sample preparation. The human HeLa cell line (S3, ATCC), C. elegans (N2 wild-
type), D. melanogaster (CantonS), E. coli (XL1 Blue), and Saccharomyces cerevisiae
(BY4741) were cultivated following standard protocols. All animal experiments

were performed in compliance with the institutional regulations of the Max Planck
Institute of Biochemistry and the government agencies of Upper Bavaria. Whole
organisms were first grinded in liquid nitrogen and cell pellets were directly sus-
pended in lysis buffer with chloroacetamide (PreOmics, Germany) to simulta-
neously lyse cells, reduce protein disulfide bonds, and alkylate cysteine side
chains’2. The samples were boiled at 95 °C for 10 min and subsequently sonicated
at maximum power (Bioruptor, Diagenode, Belgium). Protelytic digestion was
performed overnight at 37 °C by adding either (i) equal amounts of LysC and
trypsin, (ii) LysC, or (iii) LysN in a 1:100 enzyme:protein (wt/wt) ratio. The
resulting peptides were de-salted and purified via solid-phase extraction on styr-
enedivinylbenzene reversed-phase sulfonate (SDB-RPS) sorbent according to our
‘in-StageTip’ protocol (PreOmics). The dried eluates were reconstituted in water
with 2% acetonitrile (ACN) and 0.1% trifluoroacetic acid (TFA) for further ana-
lysis. The synthetic ProteomeTools>* peptides were reconstituted in the same
buffer. To make the data comparable and reusable, we spiked iRT standards
(Biognosys) into all samples.

High-pH reversed-phase fractionation. Peptide fractionation was performed at
pH 10 on an EASY-nLC 1000 (Thermo Fisher Scientific, Germany) using a

30 cm x 250 um C, g reversed-phase column (PreOmics). Approximately 50 pg of
peptides were separated at a flow rate of 2 uL min~! with a binary gradient starting
from 3% B, which was linearly increased to 30% B within 45 min, to 60% B within
17 min, and to 95% B within 5 min before re-equilibration. Fractions were collected
into 24 wells by switching the rotor valve of an automated concatenation system?3
(Spider fractionator, PreOmics) in 90 s intervals. Peptide fractions were vacuum-
centrifuged to dryness and reconstituted in water with 2% ACN and 0.1% TFA.

Liquid chromatography and mass spectrometry. LC-MS was performed on an
EASY-nLC 1200 (Thermo Fisher Scientific) system coupled online to a hybrid
TIMS-quadrupole TOF mass spectrometer!? (Bruker Daltonik timsTOF Pro,
Germany) via a nano-electrospray ion source (Bruker Daltonik Captive Spray).
Approximately 200 ng of peptides were separated on an in-house 45 cm x 75 pm
reversed-phase column at a flow rate of 300 nL min~! in an oven compartment
heated to 60 °C. The column was packed in-house with 1.9 um C,g beads (Dr.
Maisch Reprosil-Pur AQ, Germany) up to the laser-pulled electrospray emitter tip.
Mobile phases A and B were water and 80%/20% ACN/water (v/v), respectively,
and both buffered with 0.1% formic acid (v/v). To analyze fractionated peptides
from whole-proteome digests, we used a gradient starting with a linear increase
from 5% B to 30% B over 95 min, followed by further linear increases to 60% B and
finally to 95% B in 5 min each, which was held constant for 5 min before returning
to 5% in 5 min and re-equilibration for 5 min. The pooled synthetic peptides were
analyzed with a gradient starting from 5% B to 30% B in 35 min, followed by linear
increases to 60% B and 95% in 2.5 min each before washing and re-equilibration
for a total of 5 min.

The mass spectrometer was operated in data-dependent PASEF!3 mode with
1 survey TIMS-MS and 10 PASEF MS/MS scans per acquisition cycle. We analyzed
an ion mobility range from 1/K, = 1.51 to 0.6 Vs cm™2 using equal ion
accumulation and ramp time in the dual TIMS analyzer of 100 ms each. Suitable
precursor ions for MS/MS analysis were isolated in a window of 2 Th for m/z <700
and 3 Th for m/z> 700 by rapidly switching the quadrupole position in sync with
the elution of precursors from the TIMS device. The collision energy was lowered
stepwise as a function of increasing ion mobility, starting from 52 eV for 0-19% of
the TIMS ramp time, 47 eV for 19-38%, 42 eV for 38-57%, 37 eV for 57-76%, and
32 eV until the end. We made use of the m/z and ion mobility information to
exclude singly charged precursor ions with a polygon filter mask and further used
‘dynamic exclusion’ to avoid re-sequencing of precursors that reached a ‘target
value’ of 20,000 a.u. The ion mobility dimension was calibrated linearly using three
ions from the Agilent ESI LC/MS tuning mix (m/z, 1/Ky: 622.0289, 0.9848 Vs cm~%;
922.0097, 1.1895 Vs cm~2 and 1221.9906, 1.3820 Vs cm~2). All experimental
parameters with relevance to the measurement of CCS values are summarized in
Supplementary Table 1.

Data processing. MS raw files were analyzed with MaxQuant3%37 version 1.6.5.0,
which extracts 4D isotope patterns (‘features’) and associated MS/MS spectra. The
built-in search engine Andromeda’4 was used to match observed fragment ions to
theoretical peptide fragment ion masses derived from in silico digests of a reference
proteome and a list of 245 potential contaminants using the appropriate digestion
rules for each proteolytic enzyme (trypsin, LysC or LysN). We allowed a maximum
of two missing values and required a minimum sequence length of 7 amino acids
while limiting the maximum peptide mass to 4600 Da. Carbamidomethylation of
cysteine was defined as a fixed modification, and oxidation of methionine and
acetylation of protein N-termini were included in the search as variable mod-
ifications. Reference proteomes for each organism including isoforms were acces-
sed from UniProt (Homo sapiens: 91,618 entries, 2019/05; E. coli: 4403 entries,
2019/01; C. elegans: 28,403 entries, 2019/01; S. cerevisiae: 6049 entries, 2019/01; D.
melanogaster: 23,304 entries, 2019/01). The synthetic peptide library (Proteome-
Tools**) was searched against the entire human reference proteome. The max-
imum mass tolerances were set to 20 and 40 ppm for precursor and fragment ions,
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respectively. False discovery rates were controlled at 1% on both the peptide
spectrum match and protein level with a target-decoy approach. The analyses were
performed separately for each organism and each set of synthetic peptides (‘pro-
teotypic set’, ‘SRM atlas’, and ‘missing gene set’). To demonstrate the utility of CCS
prediction, we re-analyzed three diaPASEF experiments from Meier et al.>> with
Spectronaut 14.7.201007.47784 (Biognosys AG), replacing experimental ion
mobility values in the spectral library with our predictions. Singly charged peptide
precursors were excluded from this analysis as the neural network was exclusively
trained with multiply charged peptides.

Bioinformatic analysis. Bioinformatic analysis of the MaxQuant output files and
data visualization was performed with Python version 3.6 employing the following
packages: NumPy, pandas, SciPy’?, Biopython’®, Matplotlib, and Seaborn. Decoy
database hits were excluded from the analysis as well as peptide features assigned
with zero intensity values. Peptides can adopt multiple conformations, both in the
liquid and in the gas phase. For simplification, we here selected only the most
abundant feature for each modified peptide sequence and charge state per LC-
TIMS-MS run. To account for experimental drifts in the measurements of
TIMSCCS values over time, we performed a hierarchical clustering (similar to37)
and aligned all experiments by calculating pair-wise linear offsets (y = x + b) going
from the closest to the most distant nodes. Multiple measurements of the same
modified peptide and charge state in different LC-MS experiments were merged to
one unique CCS value by calculating the mean. To perform nearest neighbor
analysis in the m/z vs. CCS space, we represented the data in a Kd-tree structure
using the Chebyshev distance metric to define a rectangular area with a given mass
and CCS tolerance surrounding a node of interest.

Deep learning model for CCS prediction. The deep learning model takes a raw
(modified) peptide sequence as input. First, each amino acid gets one-hot encoded
into a 26-dimensional vector representation for processing. This one-hot encoding
also is applied to the elements ‘(ox)’ and ‘(ac)’, resulting in a total feature vector
with dimension L x 26 with L being the length of a given peptide. This vector is
connected to a two-layer bi-directional recurrent network with LSTM77 units with
500 hidden nodes each, which extract context-based features for each individual
amino acid. This feature embedding gets further reduced to a global 256-
dimensional peptide feature vector by concatenating the last output neurons of
both the LSTM networks aggregating from left or right over the sequence. This
peptide feature vector is further concatenated with additional charge state of the
sequence and then is fed to a logistic regression layer which regresses the expected
CCS value for the sequence. The most significant hyperparameters, namely:
number of hidden neurons, number of layers were chosen by running a small
search in a first preliminary step on a validation set consisting of 10% of the
training data. The combination of recurrent layers with the concatenation step
allows the model architecture to process peptide sequences with arbitrary lengths.
The final model is end-to-end optimized by an ADAM Optimizer on 559,979
unique CCS values (modified peptide sequence and charge state) and validated on
155,004 holdout peptides from the synthetic ProteomeTools library. The full fra-
mework is implemented using Python with TensorFlow”8 as the autograd library,
enabling the neural network optimization. On an i7-4930K CPU machine equipped
with an NVIDIA Geforce 1080 our model was trained within 8 h and the pre-
diction of single peptide CCS values takes approximately 1 ms.

Deep learning model for peptide charge state prediction. To predict the most
probable (most abundant) charge state from the linear peptide sequence, we built a
charge prediction neural network which has the identical structure as our CCS
prediction model. It takes the raw peptide sequence as input following the same
one-hot encoding procedure and predicts a single associated charge value. We
trained the charge prediction model on the same 559,979 unique training values
and validated it on the holdout set of 155,004 peptides from ProteomeTools. The
charge prediction model reaches a final accuracy of 93.5% for predicting the three
observed charge states 2, 3, and 4.

Analysis of amino acid feature attribution of the learnt network. For a given
sequence and its CCS prediction, every amino acid is associated with a SHAP
value®”*8, This SHAP value quantifies how the presence of the amino acid influ-
ences the final prediction. By the summation-to-delta property, the SHAP values
are constrained in a way such that the sum of all SHAP values in a sequence results
in the final CCS prediction. SHAP values are a unification of multiple existing
approaches’?-83 for explaining predictions by feature attribution. For interpreting
the predictions of our model we use the DeepExplainer from the official SHAP
implementation (https://github.com/slundberg/shap). The DeepExplainer approx-
imates SHAP values and is based on DeepLift®. Here the importance of individual
features is approximated by comparing the model output for an input that contains
the specific feature value to the model output where the feature is set to a reference
value. A crucial step for this approach is to define the reference values. In our case,
the inputs are sequences of one-hot-encoded amino acids and we use 128 randomly
chosen background sequences from the dataset in order to define meaningful
reference values for all neurons. In order to capture non-linearities, the DeepLift
approach approximates feature attributions for every neuron in the model. It starts

at the output layer and propagates the values to the input by backpropagation,
which is called applying the chain rule for multipliers in the original publication®!.
Applying this approach to the input sequences in our CCS model we are able to
capture the SHAP value for an individual amino acid in a peptide sequence.

Visualization of learnt network representation of the human proteome. To
visualize the 256-dimensional neural network feature space, we apply the UMAP®0
algorithm, which is a dimension reduction technique for general non-linear
dimension reduction and it assumes uniform distribution of the data on a Rie-
mannian manifold. Under certain conditions this manifold can be modeled with a
fuzzy topological structure. The 2D embedding, which is used for visualization is
found by searching for a low-dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure. Therefore, pairwise similarities
between peptide sequences in the high-dimensional NN space approximately
resemble positions in the low-dimensional embedding visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The MS raw files and associated MaxQuant output files generated and analyzed
throughout this study have been deposited at the ProteomeXchange Consortium via the
PRIDE partner repository®> with the dataset identifier PXD019086. The previously
acquired HeLa data is available through the dataset identifier PXD010012. The diaPASEF
raw files are available through the dataset identifier PXD017703. H. sapiens (taxon
identifier: 9606), S. cerevisiae (taxon identifier: 559292), D. melanogaster (taxon identifier:
7227), E. coli (taxon identifier: 83333) and C. elegans (taxon identifier: 6239) proteome
databases were downloaded from UniProt [https://www.uniprot.org]. Source data are
provided with this paper.

Code availability

The source code of our deep learning model and data analysis scripts are available on
GitHub (https://github.com/theislab/DeepCollisional CrossSection and https://github.
com/mannlabs/DeepCollisionalCrossSection).
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