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Revealing the role of the human blood plasma
proteome in obesity using genetic drivers
Shaza B. Zaghlool 1,11, Sapna Sharma2,3,4,11, Megan Molnar 2,3, Pamela R. Matías-García2,3,5,

Mohamed A. Elhadad 2,3,6, Melanie Waldenberger 2,3,7, Annette Peters 3,4,7, Wolfgang Rathmann4,8,

Johannes Graumann 9,10, Christian Gieger2,3,4, Harald Grallert2,3,4,12 & Karsten Suhre 1,12✉

Blood circulating proteins are confounded readouts of the biological processes that occur in

different tissues and organs. Many proteins have been linked to complex disorders and are

also under substantial genetic control. Here, we investigate the associations between over

1000 blood circulating proteins and body mass index (BMI) in three studies including over

4600 participants. We show that BMI is associated with widespread changes in the plasma

proteome. We observe 152 replicated protein associations with BMI. 24 proteins also

associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in

lipid metabolism and inflammatory pathways impacting clinically relevant pathways of

adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with

LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA,

and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and

tissue-specific gene expression data, our findings suggest potential therapeutic targets fur-

ther elucidating the role of these proteins in obesity associated pathologies.
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Obesity is a multifactorial disorder with still poorly
understood causative mechanisms and a large polygenic
contribution1. Genome-wide association studies of BMI

identified genetic variants that can account for ~2.7–6% of the
observed variance in body mass index (BMI)2,3. Due to an
increasingly sedentary lifestyle and a transition to consumption of
more and more processed foods, the prevalence of worldwide
obesity has tripled over the past 40 years4. Based on the latest
estimates in European Union countries, 30–70% of adults are
affected by overweight and 10–30% by obesity (World Health
Organization). Obesity greatly increases the risk of several
chronic diseases such as depression, type 2 diabetes, cardiovas-
cular disease, and certain cancers, putting a great burden on the
healthcare system. Therefore, a better understanding of the
interaction between lifestyle choices, environmental factors, and
genetic predisposition is critical for developing effective treat-
ments and preventive interventions5,6.

The genetic composition is determined at conception and can
be used to make predictions regarding disease susceptibility.
The dramatic increase in obesity rates clearly points toward
nongenetic factors or environmental factors as major drivers,
most likely in interaction with genetic variants7. Although some
diseases can result from a single rare monogenic mutation with
a large effect, most common diseases are the consequence of a
cumulative effect of polygenic inheritance encompassing
numerous variants, each making only a small contribution to
the overall disease risk8. Through genome-wide association
studies (GWAS), more than 900 genetic variants have been
identified to be associated with BMI3. However, these GWAS
mapped associations still do not fully explain the molecular
mechanisms leading to increased BMI. Genome-wide polygenic
scores (GPS) are currently being used to quantify inherited
disease susceptibility9 and can explain ~13.9% of the variance
in BMI which is more than twice the variance in BMI explained
by using only the GWAS loci3. These scores approximated a
normal distribution in the population and there is a consider-
able correlation between the GPS and measured BMI (R2 ~ 0.3).
Individuals in the upper tail of the GPS distribution can be
susceptible to genetic effects comparable to carriers of single
rare monogenic disease variants9.

Given that proteins are the main building blocks of an
organism, and also potential drug targets, proteome-wide asso-
ciation analysis seems to be the obvious next step in obesity
research10. Levels of many proteins vary significantly between
individuals with obesity and normal-weight individuals11,12. Until
recently, mass spectrometry-based proteomic analyses of blood
samples were limited to small sample sizes or a limited number of
measured proteins. Multiplexed affinity-based proteomics
approaches using antibodies or specifically designed aptamers
now allow quantification of levels of hundreds of proteins from
small amounts of plasma or serum samples. We previously
quantified 1100 blood circulating proteins using the SOMAscan
affinity proteomics platform (Somalogic Inc.)13 in samples from
996 individuals of the population-based KORA F4 (Cooperative
Health Research in the Region of Augsburg) study14 and 356
participants of the multiethnic Qatar Metabolomics Study on
Diabetes (QMDiab)15.

In this work, we report a high throughput proteomics asso-
ciation study with BMI in KORA (Germany), and replication in
two independent studies, including QMDiab, and publicly avail-
able association statistics from 3301 individuals in the INTER-
VAL study (England)16. We show that BMI is associated with
several changes in plasma proteins. We compute GPS for BMI17

and identify proteins whose levels associate with the GPS for
BMI. We then use Mendelian randomization paired with
experimental evidence to identify proteins and pathways that may

be causally linked to obesity and vice versa. The study design and
main findings are presented in Fig. 1.

Results
Out of 921, 152 assayed blood protein levels associate with
BMI. After stringent quality control, we identified 921 proteins
whose levels were determined in 996 blood samples from the
KORA study and that were also measured both in the INTER-
VAL and the QMDiab studies. Although not available for all three
studies, we also included the leptin (LEP) and leptin receptor
(LEPR) proteins for their well-studied roles in obesity. The study
descriptive statistics for the 996 individuals are provided in
Supplementary Data 1. We did not observe any significant dif-
ferences (p < 0.001) in smoking and alcohol consumption
between individuals with BMI ≥ 30 and BMI < 30. We used linear
regression with age and sex as covariates to carry out a protein-
wide association study in KORA and identified 184 associations
between log2 transformed blood circulating protein levels and
BMI after conservative Bonferroni correction (p < 5.43 × 10−5;
0.05/921). Totally, 107 proteins were negatively correlated with
BMI while 77 were positively correlated (Fig. 2). The full sum-
mary statistics for the basic model (adjusting for age and sex only)
are presented in Supplementary Data 2.

We tested the influence of a number of potential confounders
on the BMI–protein associations, specifically, smoking status,
alcohol consumption, physical activity, and diabetes state
(Supplementary Data 3). We did not observe any substantial
effect of confounding by these factors on the BMI–protein
associations, and all Bonferroni significant protein–BMI associa-
tions found in the full model remained significant compared to
the model where only age and sex were included as covariates.

We confirmed the BMI–protein associations using the
published INTERVAL associations16 and additionally attempted
replication of these 184 associations in the multiethnic QMDiab
study (Supplementary Data 4). Of the 184 proteins, 150
BMI–protein associations (81.5%) were replicated (both

A) Proteome-wide associa�on study of BMI
in KORA, replica�on in Interval & QMDiab

B) Associa�on with genome-wide
polygenic scores for BMI

C) Bi-direc�onal causal analysis between BMI 
and protein levels (Mendelian Randomiza�on) 

D) Knock out animal models, �ssue specific gene 
expression analysis, and drug database lookup

152 replicated BMI-
associated proteins

19 GPSBMI-associated 
proteins

BMI causal for 24 proteins, 
6 proteins causal for BMI

(LEPR, IGFBP1, WFIKKN2,AGER, DPT, CTSA)

921 proteins

921 proteins

152 proteins

28 proteins

NKORA= 996 

Prep<2.72x10-4
NINTERVAL= 3301 
NQMDIAB= 356 

P< 5.43 x 10-5

PMR_prot->BMI<6.10x10-4
PMR_BMI->prot<3.29x10-4

Fig. 1 Study overview. A Protein-wide association study with BMI
conducted in KORA with confirmation/replication in INTERVAL and
QMDiab. B Protein-wide association study with BMI polygenic scores (in
KORA and QMDiab) C Bidirectional causality analysis to determine if BMI
has a potentially causal effect on protein levels and/or if proteins are
potentially causal in the development of obesity. D Studying tissue-specific
gene expression in humans/mice, identification of genes encoding proteins
related to obesity traits, searching for existing animal models, and
identification of potentially targetable proteins through drug database
searches.
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significant and directionally concordant) in INTERVAL, after
Bonferroni correction (p < 2.72 × 10−4; 0.05/184). In QMDiab, 37
(20.1%) of the BMI–protein associations were replicated after
Bonferroni correction, while a further 131 proteins (71.2%) were
directionally concordant, but were not sufficiently powered for
replication. In total, 152 BMI–protein associations were replicated
in at least one study—specifically, 35 associations replicated in
both studies, 115 associations replicated only in INTERVAL, and
two associations replicated only in QMDiab (THBS2 and
ANGPT2). In addition, we found that out of 28 BMI–protein
associations that had 95% replication power (determined by
sampling), 17 proteins (60.7%) fully replicated in QMDiab, and
26 proteins (92.9%) displayed at least nominal significance. The
Pearson correlation for the effect sizes is R= 0.92 between KORA
and INTERVAL, and R= 0.84 between KORA and QMDiab
(Supplementary Fig. 1).

Association of BMI polygenic scores with BMI. We computed
GPS for BMI (GPSBMI) for 996 participants of KORA and 353 of
QMDiab (those with available genotyping data) using variants
and weights from the previous studies9,17. Briefly, the GPSBMI

score is based on summary statistics from a recent GWAS with
BMI and assigns weights to each genetic variant depending on the
strength of its association with BMI (see “Methods”). The GPSBMI

was strongly associated with BMI in KORA (p= 2.32 × 10−43),

and was also significant in the multiethnic QMDiab study (p=
5.54 × 10−4) (Supplementary Fig. 2a, b).

Nineteen proteins were associated with the GPSBMI in KORA
after accounting for multiple testing (p < 5.43 × 10−5; 0.05/921)
(Supplementary Data 5). All 19 GPSBMI-associated proteins were
also strongly associated with BMI in KORA (Table 1). The
regression coefficients for the BMI–protein associations and the
GPSBMI–protein associations were directionally concordant. The
strongest protein association with BMI (LEP; p= 3.34 × 10−136)
was also the strongest with GPSBMI (p= 1.32 × 10−12), followed
by IGFBP1, IGFBP2, SERPINE1, and WFIKKN2.

We replicated the analysis in QMDiab to evaluate the
applicability of a polygenic score derived from European
participants to a cohort of mixed non-Caucasian ethnicity. Using
linear regression and adjusting for age, sex, and study-specific
covariates (described in “Methods”), five log2 transformed
proteins remained significantly associated with GPSBMI after
Bonferroni correction in QMDiab (p < 0.05/19; 2.63 × 10−3)
(NOTCH1, C5, NCAM1, CRP, and SERPINC1), while another
six proteins (LEP, IGFBP1, WFIKKN2, UNC5D, MET, and
RARRES2), were nominally associated with concordant direc-
tionality (p < 0.05) (Supplementary Data 6).

To confirm that the GPSBMI to protein associations were truly
polygenic, as opposed to potentially being driven by a few strong
in-cis variant effects, we excluded all genetic variants within 100
MB of the genes encoding the associated protein from score
computation. All of the 19 protein associations with GPSBMI

remained significant after eliminating potential cis-pQTL effects
(Supplementary Data 7).

Extreme BMI polygenic scores identify 19 proteomic sig-
natures for 5% of the population. Interestingly, the association
between GPSBMI and BMI was not linear. The effect estimate was
in fact much stronger at the extremes of the distribution (Fig. 3),
which agrees with previous reports of this tail effect9. A tail effect
is observed when the ratio of the effect at the tails to the effect of
the entire distribution is greater than 1. To evaluate this tail effect
in our study, we stratified the 996 KORA study samples based on
GPSBMI percentiles. We found a steeper slope with respect to BMI
and several protein measures (LEP, WFIKKN2, and IGFBP1) at
the lower and upper extremes of the distribution. For instance,
the mean BMI was 24.94 kg/m2 [CI: 24.29–25.60] in the bottom
decile and 31.09 kg/m2 [CI: 31.09–32.21] in the top decile
translating to a significant difference between the groups (two-
sample t test p= 3.82 × 10−17).

To investigate whether a similar tail effect can be observed for
the associations between GPSBMI and blood circulating proteins,
we compared the different effect sizes and significance levels at
various percentiles of the GPSBMI distribution for all proteins
(Supplementary Data 8), including the full dataset (N= 996), the
25th vs. 75th percentiles, the 20th vs. 80th percentiles, the 15th vs.
85th percentiles, the 10th vs. 90th percentiles, and the 5th vs. 95th
percentiles. We found that the effect of GPSBMI on the log2
transformed LEP, IGFBP1, and WFIKKN2 was almost quad-
rupled in the 5% tail of the population compared to the full data
(Fig. 4). Individuals in the extreme tail of the GPSBMI distribution
showed an over-proportionally increased genetic predisposition
for developing obesity17. We found a similar tail effect for all 19
GPSBMI-associated proteins (Table 2) (Supplementary Fig. 3).

We further tested whether a similar tail effect was observed for
the remaining 133 BMI-associated proteins (Supplementary
Data 9). Out of 133, 81 proteins were associated with BMI (p <
5.43 × 10−5), but weakly associated with GPSBMI (0.05 ≤ p ≤
6.30 × 10−5). Of these 81 proteins, 49 proteins were weakly
associated with the tails of GPSBMI (p < 0.05) and had a greater
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Fig. 2 Protein-wide association study with body mass index. Volcano plot
showing the association of BMI with plasma protein levels in KORA using a
linear regression model, including age and sex as covariates. Leptin is the
strongest protein associated with BMI (p= 3.34 × 10−136) in addition to
151 significantly associated proteins (red).
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than 3-fold increase/decrease in effect size between the 5% tails
and the full data. On the other hand, 52 out of 133 proteins were
associated with BMI, but not at all with GPSBMI (p > 0.05).
However, 11 of these 52 proteins were associated with the tails of
GPSBMI (p < 0.05) and had a greater than 3-fold increase/decrease
in effect size between the 5% tails and the full data.

Mendelian randomization. To assess whether proteins are cau-
sally affected by BMI in the direction (BMI-to-protein) or vice
versa (protein-to-BMI), we carried out bi-directional Mendelian
randomization investigations. We initially conducted both, a one-
sample (1SMR) and a two-sample (2SMR) Mendelian randomi-
zation analysis, and in both directions (Table 3). MR analysis
results are presented using the 2SLS method for the 1SMR, and
using the IVW method for the 2SMR. In the BMI-to-protein
direction, we used GPSBMI as an instrument for BMI. Our results
indicated that the 1SMR had higher statistical power than the
2SMR in identifying significant MR associations. This is plausible
because the BMI instrument was generated using variant weights
from the largest GWAS with BMI. The 1SMR used individual-
level protein data, while the 2SMR only had access to protein
summary statistics from a study that is merely four times the size
of KORA.

In the protein-to-BMI direction, we found that the 2SMR was
more powered than the 1SMR. This was also plausible and could
be attributed to the fact that individual-level genetic associations
with BMI as an outcome, were much weaker in a study the size of
KORA, while the effect estimates from larger GWAS with BMI2,3

were much more precise. In all applicable cases (including
nominal associations), we found consistency in the MR effect
directions between the 1SMR and 2SMR, and in both directions
of the MR (BMI-to-protein, and protein-to-BMI) (Supplementary
Data 10–13). We, therefore, focus our analysis on 1SMR in the
BMI-to-protein direction and 2SMR in the protein-to-BMI
direction.

BMI is potentially causal for 24 of the 152 tested proteins. The
1SMR approach allowed the investigation of potentially causal
relationships between BMI and 152 replicated blood plasma
proteins. Our analysis suggests that BMI has a causal effect on 24
proteins, after correction for multiple testing (p < 0.05/152=
3.29 × 10−4) (Fig. 5, Supplementary Data 10).

Six plasma proteins have a potentially causal role in the
development of obesity. Using 2SMR analysis, we used the
Proteome PheWAS browser18 which curated single-nucleotide

Table 1 Proteins significantly associated with BMI and the polygenic score for BMI. The p values (pBMI-prot), linear regression
coefficients (bBMI-prot) are for the BMI-protein associations, while pGPS-prot and bGPS-prot are for the GPSBMI–protein linear
regression associations.

Protein Soma SeqID (Entrez Gene) pBMI-prot bBMI-prot SEBMI pGPS-prot bGPS-prot SEGPS
Leptin
2575-5_5 (LEP)

3.34 × 10−136 0.122 0.004 1.32 × 10−12 0.181 0.025

Insulin-like growth factor-binding protein 1
2771-35_2 (IGFBP1)

1.60 × 10−70 −0.110 0.006 4.72 × 10−10 −0.187 0.030

Insulin-like growth factor-binding protein 2
2570-72_5 (IGFBP2)

1.08 × 10−62 −0.107 0.006 3.60 × 10−9 −0.183 0.031

Plasminogen activator inhibitor 1
2925-9_1 (SERPINE1)

3.53 × 10−35 0.083 0.006 2.84 × 10−8 0.175 0.031

WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing protein 2
3235-50_2 (WFIKKN2)

8.30 × 10−39 −0.086 0.006 5.83 × 10−8 −0.168 0.031

Dickkopf-related protein 3
3607-71_1 (DKK3)

1.40 × 10−28 −0.074 0.006 7.85 × 10−7 −0.152 0.031

Galectin-3-binding protein
5000-52_1 (LGALS3BP)

2.53 × 10−35 0.083 0.006 1.18 × 10−6 0.153 0.031

Sex hormone-binding globulin
4929-55_1 (SHBG)

5.84 × 10−40 −0.084 0.006 1.88 × 10−6 −0.142 0.030

Growth hormone receptor
2948-58_2 (GHR)

2.28 × 10−41 0.089 0.006 3.38 × 10−6 0.145 0.031

Growth/differentiation factor 2
4880-21_1 (GDF2)

3.13 × 10−21 −0.063 0.007 4.35 × 10−6 −0.141 0.031

Netrin receptor UNC5D
5140-56_3 (UNC5D)

2.43 × 10−49 −0.093 0.006 4.63 × 10−6 −0.137 0.030

Neurogenic locus notch homolog protein 1
5107-7_2 (NOTCH1)

1.31 × 10−23 −0.068 0.007 5.08 × 10−6 −0.143 0.031

Hepatocyte growth factor receptor
2837-3_2 (MET)

3.52 × 10−28 −0.075 0.007 6.68 × 10−6 −0.142 0.031

Antithrombin-III
3344-60_4 (SERPINC1)

5.85 × 10−41 −0.087 0.006 6.82 × 10−6 −0.138 0.030

C-reactive protein
4337-49_2 (CRP)

1.10 × 10−42 0.091 0.006 2.99 × 10−5 0.131 0.031

Neural cell adhesion molecule 1, 120 kDa isoform, 4498-62_2 (NCAM1) 3.31 × 10−37 −0.085 0.006 3.05 × 10−5 −0.131 0.031
Protein jagged-1
5092-51_3 (JAG1)

2.47 × 10−7 −0.036 0.007 3.45 × 10−5 −0.130 0.031

Cystatin-M
3303-23_2 (CST6)

2.24 × 10−11 −0.044 0.006 3.56 × 10−5 −0.123 0.030

Endothelial cell-specific molecule 1
3805-16_2 (ESM1)

4.92 × 10−18 −0.059 0.007 4.33 × 10−5 −0.129 0.031
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polymorphisms (SNPs) associated with proteins from five protein
GWASs13,16,19–21 and categorized protein instruments based on
their suitability for MR analysis. We identified genetic instru-
ments for 82 of the 152 replicated proteins, in addition to LEPR
which we considered a positive control in this study. This analysis
suggested that six proteins (LEPR, IGFBP1, WFIKKN2, AGER,
DPT, and CTSA) may potentially have a causal role in the
development of obesity, after correction for multiple testing (p <
0.05/82= 6.10 × 10−4) (Supplementary Data 13).

In summary, we found that BMI had a causal effect on the
levels of 24 proteins, while six proteins had a potentially causal
role in the development of obesity, two of which are suggested to
have roles in both directions (IGFBP1 and WFIKKN2). LEPR/
LEP also showed roles in both directions (LEPR-to-BMI, and
BMI-to-LEP).

The biological role of the 28 causally and/or consequentially
BMI-associated proteins. To study the tissue-specific role of the
causal/consequential proteins in obesity, we screened the
Genotype-Tissue Expression (GTEx) human database and
the Mouse Genome Informatics (MGI) database. We found that
data from GTEx was available for 20 of the 28 proteins and those
proteins can be clustered into two groups (Supplementary
Fig. 4A). While the functional role of a subset of these may be
more global, others may imply specific pathways. The first cluster
consisting of seven proteins showed wide-spread expression
across 54 different human tissues and similarly across various

mouse tissues. For instance, NCAM1, DKK3, IGFBP2, LGALS3BP,
SERPINE1, and NOTCH1 were predominantly expressed in the
brain, adipose, and heart tissues. The second cluster consisting of
13 proteins, showed more sporadic expression in relevant human
tissues, such as LEP in adipose tissue, IGFBP1, CRP, and SER-
PINC1 in liver tissue, CST6 in the skin, and WFIKKN2 in ovaries,
testis, and brain. In mice, Wfikkn2 is primarily expressed in the
brain, heart, eyes, and pancreas (Supplementary Fig. 4B). There is
not much knowledge about the role of WFIKKN2 in obesity,
however, it is known to have a regulatory role of some members
of the transforming growth factor-beta (TGFB) family22. The
TGFB superfamily is produced in adipose tissues and involved in
the regulation of adiposity23 and obesity is known to alter their
expression level.

We further investigated the 28 proteins for enrichment in
obesity traits, using the hybrid mouse diversity panel (HMDP)24

as well as an F2 cross of the inbred ApoE−/− C57BL/6J and
C3H/HeJ strains25 (see “Methods”). Twenty-six of the proteins
had mouse orthologs26. We observed correlations (R > 0.1 and p
value < 0.05) between adipose, liver, and brain tissue gene
expression and numerous essential obesity traits, including body
fat composition, bone density, insulin, and various lipid traits
such as LDL, HDL, cholesterol, triglycerides, etc. (Fig. 6). We
observed enrichment in obesity traits in mice, such as weight,
length, and triglycerides for the potentially causal proteins (Ager,
Ctsa, and Dpt). We also found enrichment in HDL cholesterol
and total cholesterol for Ager and Ctsa, fat mass for Ctsa and Dpt,
and abdominal fat for Dpt. In general, correlations between

Fig. 3 Stratification of the KORA samples according to GPSBMI deciles (n= 996 biologically independent samples). There is a steep slope with respect
to both BMI (A) and various protein measures (B–D) at the upper and lower deciles. LEP, like BMI, has an increasing trend, while IGFBP1 and WFIKKN2 has
a decreasing trend. The centers are the mean protein values and the error bars are the 95% confidence intervals.
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proteins were similar, but stronger in adipose tissue compared to
liver and brain tissues. However, a number of differences are
noteworthy. For instance, Wfikkn2 was associated with triglycer-
ides and lipids in adipose and brain tissue, but not the liver. The
association of Wfikkn2 and triglycerides and total fat in brain
tissue was previously reported27.

We then queried Phenoscanner28,29 to determine which of the
152 BMI-associated proteins were associated with known BMI
loci or may be considered the best candidate in the genomic
vicinity. We found that five proteins were strong pQTLs for BMI
loci/regions. These included leptin (LEP), C-reactive protein
(CRP), apolipoprotein B (APOB), lysosomal protective protein
(CTSA), and neural cell adhesion molecule 1, 120 kDa isoform
(NCAM1). Further proteins were found to represent eQTLs near
BMI loci, including immunoglobulin M (IGJ), interleukin-1
receptor accessory protein (IL1RAP), calpastatin (CAST), apoli-
poprotein B (APOB), platelet-activating factor acetylhydrolase
(PLA2G7), plasma protease C1 inhibitor (SERPING1), reticulon-
4 receptor (RTN4R), insulin-like growth factor 1 receptor
(IGF1R), integrin alpha-V: beta-5 complex (ITGB5), complement
factor B (CFB), complement component 1 Q subcomponent-
binding protein, mitochondrial (C1QBP), a cell adhesion
molecule 1 (CADM1), galectin-3-binding protein (LGALS3BP),
and antithrombin-III (SERPINC1).

Lastly, and in order to identify drug targets for the potential
treatment of obesity, we used the DrugBank database30 to search

for existing drugs that target the six proteins that were causal for
BMI. Three proteins were targets for at least one existing drug
that has completed phase II clinical trials (Supplementary
Data 15). Drugs likely for treating obesity included Metreleptin31,
which targets leptin receptors, to treat complications of leptin
deficiency in individuals with congenital or acquired lipodystro-
phy. Another drug, Pegvisomant32, is a highly selective growth
hormone (GH) receptor antagonist that is used to treat
acromegaly by the production of IGF-1 which is the main
mediator of GH activity. A third drug, Mecasermin33, targets
IGFBP1 and IGFBP2 by acting as an agonist of insulin-like
growth factor 1 receptor. It is a drug that is used for the treatment
of growth failure in pediatric patients with primary IGFD or GH
gene deletion. Although the latter drug actually exacerbates
growth, the affected pathway(s) may still be considered a
potential target for medical intervention.

Discussion
Proteins associated with obesity and obesity score. Blood cir-
culating proteins permeate the entire organism and may be
involved in the direct regulation of complex diseases such as
obesity or diabetes. Protein associations may provide biological
interpretations of the molecular mechanisms occurring due to
increased BMI and obesity. We identified 152 proteins that were
significantly associated with BMI in the KORA study and

(A) (B)

(C)

Fig. 4 Extreme GPSBMI is a strong risk factor for increased protein levels and increased BMI (n= 996 biologically independent samples). The effects
from the linear regression model of GPSBMI on A WFIKKN2, B IGFBP1, and C LEP are almost quadrupled in the extreme 5% of the sample compared to the
full data (n= 996). The centers are the regression coefficients (betas) and the error bars are the 95% confidence intervals.
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confirmed them in at least one other study. We then applied a
GPS that was derived and validated in a previous study17 to
compute a GPSBMI for nearly 1000 individuals from the KORA
study. The genetic background of the KORA participants is
similar to the cohort on which the score computation was based,
that is, both are of European ancestry2. The GPSBMI was strongly
associated with BMI, and also with differences in leptin levels, a
protein whose association with BMI and obesity is well estab-
lished, and numerous other obesity-related proteins including
WFIKKN2 and IGFBP1. The GPSBMI not only captures strong
BMI variants but genome-wide BMI effects (although the former
would have stronger weights). The overlap we found between
BMI loci and pQTLs/eQTLs ie. LEP, CRP, NCAM1, CTSA,
LGALS3BP, IGJ, and SERPINC1 provides useful insight for
causation. We later used MR to distinguish between the con-
tribution/consequence of these proteins with respect to BMI.

In this study, we test a genetic score that was based on
European ancestry in a population of Arabs and mixed
ethnicities. Despite the fact that QMDiab has a linkage
disequilibrium (LD) structure differing from European popula-
tions, as well as being multiethnic, diabetes-directed, and of
limited power, we none the less observe an association,
supporting the robustness and strength of the observed signals.
As we used diabetes as a covariate, signals are likely driven by
BMI rather than diabetes. Thus, while the association between the
GPSBMI and BMI in QMDiab compared to the European cohort
may have been weaker, the signals we do replicate are likely
strong true positives. It remains open to speculation whether
generalization of the GPSBMI score was limited due to differences
in the genetic architecture of obesity between the populations or
due to the sample size.

The 19 proteins that were associated with GPSBMI displayed an
amplified effect for the individuals at the tail of the population
distribution. These proteins all play important roles in obesity
and have been well documented in the literature. For instance,
proteins of the insulin-like growth factor system and their
receptors including insulin-like growth factor-binding protein 1

and 2 (IGFBP1 and IGFBP2), and GH have central pathophy-
siological roles in normal metabolism, insulin resistance, and type
2 diabetes34, mainly by modulating insulin sensitivity. IGFBP2
has been shown to be regulated by leptin35. GH also has an
important role in the development of obesity, and GH receptor
(GHR) mutations were reported in individuals with obesity36.
Netrin receptor (UNC5D), is a mediator of inflammation known
to promote macrophage retention in adipose tissue37. Markers of
high adiposity also include increased concentrations of CRP38,39

and SERPINE140, contrasted by reduced levels of SERPINC141

and SHBG42, all of which we observe in this study.
Common diseases are a result of a complex interplay between

genetics and a broad range of environmental perturbations.
Exposure to environmental factors (i.e., diet, age, exposure to
toxins) activates highly interacting protein networks43, which in
turn, may drive molecular mechanisms toward disease. This is
likely the case for obesity, where environmental contributions to
BMI are well recognized19. A tail effect similar to the one
previously reported for GPSBMI

17 was observed for the 19 GPS
associated proteins and another 49 BMI-associated proteins (at a
weaker threshold), but not for 52 proteins that were associated
with BMI and not with GPSBMI. The former set of proteins
supports the presence of a strong genetic effect on the proteins.
Thus, the driving factors for obesity may be distinguished as
genetic or other environmental factors. This may aid in
explaining clinical observations, such as why a subset of
individuals experiences an earlier onset of obesity and may be
useful in defining treatment strategies.

Causal analysis. Our study suggests that BMI has a potentially
causal effect on 24 proteins. Causality in MR is defined as the fact
that a modification of exposure leads to a change in the outcome.
Causality in this sense is not indicative of a particular molecular
mechanism per se. It simply suggests that modifying the exposure
will necessarily lead to a predictable effect on the outcome. Our
observation is in line with a previous study that reports wide-
spread effects of adiposity on DNA methylation7. On the other
hand, our 2SMR also suggests that LEPR, IGFBP1, WFIKKN2,
AGER, DPT, and CTSA are potentially causal for the develop-
ment of obesity. Taken together, our data suggest that a bi-
directional relationship is likely and may be replicated in other
BMI-protein associations due to the underlying complexity of the
disease and the multitude of involved pathways.

Animal models. We extensively searched the literature for animal
models for the 28 proteins (Supplementary Data 14) and found
models covering 18 out of 28 protein-coding genes linked with
obesity. Mice studies showed that Lepr knockout mice became
excessively obese44. Lep and Lepr deficient mice have also been
shown to be hyperinsulinemic, hyperglycemic (depending on the
age and strain), and have elevated total cholesterol levels and
LDL/HDL1 particles45–47. Lep and Lepr levels may be both a
sensor of fat mass and at the same time, part of a negative
feedback mechanism to maintain a set point for body fat sto-
rage48. In some instances, such as leptin deficiency in monogenic
obesity, the causal role of Lep on BMI is obvious49. A global
Igfbp1 deletion in mice showed a significant increase in body
weight and body fat mass50. Interestingly, epigenetic regulation of
IGFBP2 has also been suggested to play a role in abdominal
obesity51.

WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-
containing protein 2 (WFIKKN2) is a protease-inhibitor that
contains multiple distinct protease inhibitor domains52.
WFIKKN2 encodes growth and differentiation factor-associated
serum protein-1 (GASP1)53 and WFIKKN2 is an inhibitory

Table 2 The over-proportional contribution of genetics to
BMI in the tail of the GPSBMI distribution translates to at
least a threefold increase/decrease in protein levels. The
effect sizes (beta) and p values from the linear regression
models are presented for the full data set and limited to
data in the 5% tails of the GPSBMI, respectively.

Protein Betafull pfull Beta5% p5%
Beta5%
Betafull

IGFBP2 −0.189 3.60 × 10−9 −1.073 1.08 × 10−7 5.671
IGFBP1 −0.205 4.72 × 10−10 −1.046 1.49 × 10−6 5.101
LEP 0.273 1.32 × 10−12 1.086 1.52 × 10−6 3.977
SERPINE1 0.175 2.84 × 10−8 1.002 4.07 × 10−6 5.732
UNC5D −0.152 4.63 × 10−6 −1.102 6.89 × 10−6 7.230
WFIKKN2 −0.174 5.83 × 10−8 −0.908 7.83 × 10−6 5.227
SHBG −0.159 1.88 × 10−6 −0.958 1.43 × 10−5 6.014
NCAM1 −0.132 3.05 × 10−5 −0.723 1.85 × 10−4 5.464
NOTCH1 −0.145 5.08 × 10−6 −0.728 2.16 × 10−4 5.011
MET −0.143 6.68 × 10−6 −0.718 2.27 × 10−4 5.034
DKK3 −0.160 7.85 × 10−7 −0.857 2.67 × 10−4 5.360
SERPINC1 −0.147 6.82 × 10−6 −0.793 7.65 × 10−4 5.408
CST6 −0.139 3.56 × 10−5 −0.818 8.66 × 10−4 5.894
JAG1 −0.132 3.45 × 10−5 −0.701 1.35 × 10−3 5.294
LGALS3BP 0.154 1.18 × 10−6 0.715 1.69 × 10−3 4.651
GDF2 −0.149 4.35 × 10−6 −0.676 4.40 × 10−3 4.524
GHR 0.148 3.38 × 10−6 0.570 7.62 × 10−3 3.841
ESM1 −0.130 4.33 × 10−5 −0.514 2.00 × 10−2 3.952
CRP 0.133 2.99 × 10−5 0.406 5.11 × 10−2 3.044
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TGF-β binding protein. Animal knockout models for Wfkinn2/
Gasp1 have also shown a significant increase in body weight,
particularly in muscle mass54.

Further, Ager knockout models showed weight gain and
increased plasma cholesterol55, and Ctsa knockout mice pre-
sented with thick skin that contained enlarged hyperplastic
epidermal glands as well as a reduction in dermal fat56. The
circulating soluble receptor for advanced glycation end products
(AGER) is negatively associated with BMI57, as we also observed
in KORA. In addition, recent evidence suggests a role of
adipokine dermatopontin (DPT) in obesity by regulation of
adipose tissue remodeling and inflammation58. A Dpt knockout
mouse model showed increased subcutaneous adipose tissue59,
and effects on skin elasticity, dermis thickness, and collagen
accumulation.

Other biological evidence. GASP1/WFKINN2 has mainly been
involved in skeletal and muscle fiber development in the heart60.
Higher WFIKKN2 protein levels were associated with lower levels
of fasting insulin, triglycerides, HOMA-IR, and visceral fat61

suggesting a protective role against metabolic dysregulation.
In addition, global overexpression of Wfikkn2/Gasp1 resulted

in a significant increase in body weight in mice54. Interestingly,
our findings were consistent with a recent SOMAscan protein
study of type 2 diabetes in AGES-Reykjavik, where WFIKKN2
was reported to be potentially causal for type 2 diabetes62,

independent from BMI. Furthermore, WFIKKN2 was suggested
as a potentially causal candidate for type 2 diabetes, in a second
study from INTERVAL that associates the diabetes risk score
with proteins63, after adjusting for age, sex, and technical
covariates. Lastly, genetic variants in the WFIKKN2 locus (cis-
pQTLs) showed regulation of GDF8/11 at the protein level in a
trans-pQTL manner16. Thus, the plasma levels of GDF8/11 and
WFIKKN2 are strongly controlled by genetics. Genetically
supported targets could be more successful than those without
genetic support in clinical practice64, suggesting that WFIKKN2
is a potential target that would modulate GDF8/11 function, as
suggested in Sun et al.16.

Limitations. We are aware of several limitations to our study.
First, the SOMAscan technology provides a relative abundance of
protein levels, not absolute concentrations. However, this is not a
concern for association studies. Second, the findings reported
here are limited to the specific protein set targeted by the
SOMAscan panel, and also to protein associations that are
detectable in blood. Therefore, the list of associations we report
here is not comprehensive, and studies using other technologies
and other biological sample types may reveal further associations.
The specific disease areas, physiological processes, and classes of
the proteins targeted by the SOMAscan assay have been described
in our previous study65. Third, aptamer-based proteomics
methods are sensitive to potential probe cross-reactivity and non-

Table 3 Accumulative evidence is suggestive of relationships between BMI and proteins in both directions. MR analysis is
summarized for both directions (BMI-to-protein and protein-to-BMI) for one-sample MR (1SMR) using the 2SLS method (linear
regression), and two-sample MR (2SMR) using the IVW method. Entries with an asterisk are Bonferroni significant (corrected
for the respective number of MR tests).

Direction BMI→Protein Protein→BMI Animal
model

Method 1SMR (KORA) 2SMR (GIANT+
UKBiobank/INTERVAL)

1SMR (KORA) 2SMR (PheWeb
browser)

Protein Beta p Beta p Beta p Beta p

LEP (2575-5_5) 0.104 1.43 × 10−8* 0.424 1.01 × 10−6* No instruments No instruments Yes
LEPR (5400-52_3) Not measured in KORA −0.212 1.14 × 10−2 Not measured in KORA 0.007 4.62 × 10−3* Yes
IGFBP1 (2771-35_2) −0.123 7.47 × 10−12* −0.225 8.05 × 10−3 No instruments −0.053 5.51 × 10−4* Yes
IGFBP2 (2570-72_5) −0.121 9.73 × 10−11* −0.277 9.48 × 10−4* No instruments No instruments Yes
SERPINE1 (2925-9_1) 0.109 3.04 × 10−8* 0.208 1.62 × 10−2 No instruments No instruments No
WFIKKN2 (3235-50_2) −0.109 2.49 × 10−8* −0.290 5.00 × 10−4* −0.134 0.749 −0.016 7.39 × 10−5* Yes
DKK3 (3607-71_1) −0.102 4.70 × 10−7* −0.235 5.19 × 10−3 −1.226 0.064 −0.009 0.246 No
LGALS3BP (5000-52_1) 0.092 2.24 × 10−6* Data not available No instruments 0.018 0.279 Yes
SHBG (4929-55_1) −0.091 1.85 × 10−6* Data not available No instruments 0.014 0.233 Yes
GHR (2948-58_2) 0.095 1.18 × 10−6* 0.212 1.11 × 10−2 No instruments No instruments Yes
GDF2 (4880-21_1) −0.094 4.12 × 10−6* Data not available No instruments No instruments Yes
UNC5D (5140-56_3) −0.092 1.08 × 10−6* −0.197 2.25 × 10−2 No instruments −0.001 0.978 No
NOTCH1 (5107-7_2) −0.091 4.98 × 10−6* −0.233 5.44 × 10−3 −0.257 0.758 No instruments Yes
MET (2837-3_2) −0.085 1.36 × 10−5* −0.087 0.296 0.002 0.997 No instruments Yes
SERPINC1 (3344-60_4) −0.081 2.60 × 10−5* −0.057 0.491 No instruments No instruments No
CRP (4337-49_2) 0.074 1.25 × 10−4* 0.314 2.40 × 10−4* No instruments −0.012 0.205 No
NCAM1 (4498-62_2) −0.082 2.43 × 10−5* −0.304 3.25 × 10−4* No instruments 0.015 0.197 No
JAG1 (5092-51_3) −0.086 5.40 × 10−5* −0.195 2.22 × 10−2 −0.312 0.818 −0.011 0.321 No
CST6 (3303-23_2) −0.071 6.56 × 10−4* −0.084 0.320 No instruments No instruments No
ESM1 (3805-16_2) −0.086 3.27 × 10−5* −0.255 2.33 × 10−3 No instruments No instruments No
ADIPOQ (3554-24_1) −0.078 9.14 × 10−5* Data not available No instruments No instruments Yes
IBSP (3415-61_2) −0.079 1.13 × 10−4* No instruments No instruments No instruments No
C1S (3590-8_3) 0.086 9.67 × 10−6* Data not available 0.869 0.028 No instruments No
POSTN (3457-57_1) −0.081 1.87 × 10−4* No instruments −1.519 0.077 No instruments Yes
IGHM (3069-52_3) −0.078 2.09 × 10−4* Data not available No instruments No instruments No
AGER (4125-52_2) −0.030 0.141 −0.189 2.70 × 10−2 No instruments −0.041 6.09 × 10−5* Yes
DPT (4979-34_2) 0.019 0.367 0.109 0.192 −1.519 0.114 −0.023 1.24 × 10−4* Yes
CTSA (3179-51_2) 0.036 8.40 × 10−2 0.209 1.70 × 10−2 0.672 0.320 −0.075 1.18 × 10−7* Yes
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specific binding. We include the validation information for all
proteins extracted from two studies in Supplementary Data 2. A
full review of the limitations of SOMAscan technology such as
possible epitope effects (influence of genetic variance), unspecific
binding, cross-reactivity, interference with DNA-binding pro-
teins, limited coverage of isoforms, and protein post-translational
modifications have been described elsewhere66.

As with all MR studies, limitations are statistical power,
potential reverse causation, population stratification, confound-
ing, and pleiotropy67. Although we took precautions to apply only
valid MR instruments and report associations at conservative
levels of Bonferroni significance, inference of causality should still
be interpreted with caution since the validity of MR analyses is
based on assumptions and has several limitations as outlined in
recent reviews67–69.

GPS capture genetic susceptibility by aggregating effects of
genome-wide variation with individually modest effects. The
cumulative genetic effects captured in these scores influence the
plasma proteome and the risk of developing obesity. We
investigated GPSBMI to protein associations to determine which
protein levels associated with a genetic predisposition to obesity.
Then, by modeling polygenic scores as proxies for obesity, we
identified putatively causal effects of BMI on 24 plasma proteins. In
the reverse direction, we identified six plasma proteins that have a
causal effect on BMI. Complementing our findings with observa-
tions in animal models, our data suggest that LEP/LEPR,
WFIKKN2, and IGFBP1 are both, a readout and driving factor
for obesity, while AGER, DPT, and CTSA have a predominantly
causal effect on BMI. Thus, our computational approaches
combined with the assimilated experimental data, coherently
suggest that the revealed associations can be bidirectional rather
than strictly unidirectional. By overlaying our causal proteins with

both human and mouse gene expression information and
experimental evidence, we highlight potential drug targets and
pathways for follow-up studies.

Methods
Ethics approval and consent to participate. The project agreement for this study
was granted under K060/18 g. All KORA participants have given written informed
consent and the study was approved by the Ethics Committee of the Bavarian
Medical Association. The QMDiab study was approved by the Institutional Review
Boards of HMC and WCM-Q under research protocol number 11131/11). All
study participants provided written informed consent.

Study population (KORA). The KORA F4 study is a population-based cohort of
3080 subjects living in southern Germany. Study participants were recruited
between 2006 and 2008 comprising individuals with ages ranging from 32 to 81.
Other covariates that were considered included binary diabetes information (case/
control based on self-reporting or medication usage), physical activity, alcohol
consumption, and smoking. For this study, aptamer-based proteomics was done
using the SOMAscan platform, and the protein levels of 996 individuals, with ages
ranging from 43 to 79 and consisted of 48% males, have been measured and has
been described in detail elsewhere13.

Proteomics (KORA). The SOMAscan platform was used to quantify the protein
levels of 996 KORA individuals. Details of the SOMAscan platform have been
described elsewhere70–75. Briefly, undepleted EDTA-plasma is diluted into three
dilution bins (0.05, 1, and 40%) and incubated with bin-specific collections of bead-
coupled SOMAmers in a 96-well plate format. Subsequent to washing steps, bead-
bound proteins are biotinylated and complexes comprising biotinylated target
proteins and fluorescence-labeled SOMAmers are photo cleaved off the bead
support and pooled. Following recapture on streptavidin beads and further washing
steps, SOMAmers are eluted and quantified as a proxy to protein concentration by
hybridization to custom arrays of SOMAmer-complementary oligonucleotides.
Based on standard samples included on each plate, the resulting raw intensities are
processed using a data analysis work flow including hybridization normalization,
median signal normalization, and signal calibration to control for interplate dif-
ferences. One-thousand blood samples from the KORA F4 study were sent to
SomaLogic Inc. (Boulder Colorado, USA) for analysis. Of the original 1000 sam-
ples, three did not have BMI information and one sample failed SOMAscan QC,
leaving a total of 996 samples. Data for 1129 SOMAmer probes (SOMAscan assay
V3.2) was obtained for these samples. Twenty-nine of the probes failed SOMAscan
QC, leaving a total of 1100 probes for analysis (Supplementary Data 16).

Genotyping (KORA). The Affymetrix Axiom Array was used to genotype
3788 samples of the KORA S4 of which 996 were used in this study. After thorough
quality control (total genotyping rate in the remaining SNPs was 99.8%) and
filtering for minor allele frequency (MAF) > 1%, a total of 509,946 autosomal SNPs
was used for imputation. Shapeit v2 was used to infer haplotypes from the available
SNPs using the 1000G phase 3 haplotype build 37 genetic maps. Impute2 v2.3.2
was used for imputation. Variants with certainty < 0.95, information metric < 0.7,
missing genotype data (geno 0.2), Hardy–Weinberg equilibrium (hbe) exact test p
value < 1 × 10−6, or with MAF < 0.01 were all excluded. A total of 8,263,604 var-
iants with a total genotyping rate of 0.97 were kept for the analysis.

Study population (QMDiab). The Qatar Metabolomics Study on Diabetes
(QMDiab) is a cross-sectional case-control study that was carried out in 2012 at the
Dermatology Department in Hamad Medical Corporation (HMC Doha, Qatar).
This cohort comprises 388 study participants from Arab and Asian ethnicities of
which around 50% have type 2 diabetes15. The majority of participants were Arabs,
Indians, or Filipinos. The participants were individually recruited (unrelated
individuals). A subset of 356 samples having proteomics data was used in this
study. The participant age ranged from 17 to 81 and included approximately
50% males.

Proteomics (QMDiab). The SOMAscan platform of the WCM-Q proteomics core
was used to quantify a total of 1129 protein measurements in 356 plasma samples
from QMDiab13. Protocols and instrumentation were provided and certified using
reference samples by SomaLogic Inc. No sample data or probes were excluded.

Genotyping (QMDiab). Genotyping was carried out using the Infinium Human
Omni 2.5-8 V1.2 Beadchip array for 353 samples and was previously described
elsewhere13. After stringent quality control, 1,221,345 variants were used to impute
a total of 18,829,416 variants that were used in this study. The same imputation
quality metrics were used in QMDiab as in KORA.

Polygenic score calculation. Polygenic scores represent the quantification of an
individual’s inherited risk by combining the impact of thousands of common
variants. Derivation, validation, and testing of the score is described
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Fig. 5 Forest plot of the causal estimate of BMI on various proteins in the
one-sample MR analysis (KORA). BMI is suggested to have a causal effect
on 24 out of 152 replicated proteins, using the 2SLS method. The BMI
polygenic score (GPSBMI) was used as an instrument for BMI in this analysis.
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Fig. 6 Adipose, liver, and brain tissue gene expression associations with obesity traits in mouse panels. The bi-weight mid-correlation coefficients
(median-based measures of similarity) and p values are shown for obesity-related traits with adipose/liver tissue gene expression levels using a threshold of
p < 0.05 and absolute correlation coefficient >0.1 in two datasets: (A/B) the HMDP dataset consisting of 706 mice fed a standard chow diet and (C/D/E)
the F2 dataset which is a cross of the inbred ApoE−/− C57BL/6J and C3H/HeJ strains fed a high fat+ cholesterol diet. The significance of the correlations
is as indicated (*** for p < 0.001, ** for p < 0.01, and * for p < 0.05). The bottom part of each plot includes the bi-directional MR results (direction and
significance), whether there are existing drugs that target the tested proteins, and the animal knockout model information. Gray boxes indicate missing data.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21542-4

10 NATURE COMMUNICATIONS |         (2021) 12:1279 | https://doi.org/10.1038/s41467-021-21542-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


elsewhere17,2,76. Briefly, the score was derived using summary statistics from a
recent GWAS study for BMI covering up to 339,224 individuals and a reference
panel of 503 European samples from 1000 Genomes phase 3 version 5 Ambiguous
SNPs (A/T or C/G) were not included in the score derivation. A set of candidate
scores were derived using the LDPred algorithm77 which is a Bayesian method and
pruning and threshold derivation strategies. Another approach that involved
pruning and thresholding was used to derive additional candidate scores using an
LD-driven clumping procedure in PLINK version 1.90b (–clump). These scores
were then validated in another dataset. The scores were generated by multiplying
the dosage of each risk allele for each variant by its respective weight, and summing
across all variants in the score while incorporating genotype dosages for the
uncertainty in genotype imputation. Finally, the optimal score having the best
discriminative capacity based on the highest AUC with BMI as the outcome in the
UK Biobank validation dataset was selected.

The derived weights of the optimal candidate BMI score were used to generate
BMI scores for the 996 samples from KORA and the 353 samples from QMDiab.
Scoring was carried out using PLINK version 2.078. The list of variants comprising
the polygenic score for BMI from Khera et al. includes 2,100,302 variants17.
Imputed genotyping data was used, and in total, 1,583,718 (74.5%) and 1,636,172
variants (77.9%) passed QC for the GPS computation, in KORA and QMDiab
respectively. The common set of variants between the two cohorts consisted of
1,565,281 variants (74.5%), and this set included 98.8% of the variants used for the
score computation in KORA and 95.7% of the variants used for the score
computation in QMDiab. We found the correlation between the score computed
using all available variants in KORA and the intersection set to be R2= 0.99. In
addition, the score computed using all available variants in QMDiab and the
intersection set was R2= 0.97. Limiting the score computation to the same set of
loci common among the two studies yielded minimal differences in the scores.
Therefore, all available variants were included in the score computation for the two
studies. Finally, the GPSBMI values were scaled to have a mean of 0 and a standard
deviation of 1.

Statistical analysis. The protein measures were log2 transformed and standar-
dized (mean= 0, sd= 1) in both KORA and QMDiab. For the BMI-protein
associations in KORA, linear models were used while adjusting for age and sex.
Another linear model that adjusts for age, sex, smoking, alcohol, physical activity,
and diabetes was also evaluated in KORA as a sensitivity analysis. For replication of
the BMI–protein associations in QMDiab, the analysis was performed using a
slightly different model: (age+ sex+ study-specific covariates). The study-specific
covariates in QMDiab consisted of diabetes status, the first three principal com-
ponents (PCs) of the genotyping data (genoPC1, genoPC2, and genoPC3) along
with the first three PCs of the proteomics data (somaPC1, somaPC2, and
somaPC3) which were added as covariates in the analysis. Diabetes was used as a
covariate in QMDiab to eliminate associations confounded by the diabetes-BMI
relationship. These PCs were considered as standard covariates of the QMDiab
study15. The genetic PCs accounted for the ethnic variability of the QMDiab cohort
and the proteomics PCs accounted for a moderate level of observed cell lysis.
Together, the first three genetic PCs from QMDiab explained the majority of the
genetic variance (13.1%, 5.9%, and 4.0%, respectively) and effectively separated the
three main ethnic groups composing QMDiab. In KORA, possible effects from
population stratification have already been excluded in the previous studies79.
Therefore, no adjustment for population structure was performed in KORA.
Finally, the association of proteins with the BMI scores was carried out also using
linear regression while adjusting for age and sex in KORA, and adjusting for age,
sex, genetic PCs, and soma PCs in QMDiab.

To consider a BMI–protein association as replicated, we required p < 2.72 × 10−4

(0.05/184). We also estimated the statistical power for the replication by sampling.
This was carried out for each association by randomly selecting 356 individuals
from the KORA cohort (without replacement) and computing the p value of
association for that subset of samples. This was repeated 1000 times and the 50th
smallest p value from this distribution was considered to be obtained at 95%
power (p95).

Cross-reactivity of aptamers. To ensure no BMI–protein associations were
affected by binding issues, we checked all proteins for cross-reactivity (Supple-
mentary Data 2). A list of cross-reactive proteins was obtained from the study of
Sun et al.16, who tested a subset of the SomaLogic aptamers (SOMAmers) for cross-
reactivity with homologous proteins that have at least 40% sequence similarity. In
addition, we assessed the specificity of the SOMAlogic assay for the proteins in our
protein associations using data provided by Emilsson et al.19, where the direct
assessment of aptamer specificity using data-dependent analysis and multiple
reaction monitoring mass spectrometry after SOMAmer enrichment in biological
matrices.

Mendelian randomization analysis. We performed causal inference using both
the 1SMR and 2SMR methods. All MR analyses were conducted using the Men-
delianRandomization library (v0.4.1)80 and the TwoSampleMR library (v0.4.22)81.

We used KORA data to evaluate the effect of BMI on proteins in the 1SMR, by
modeling the GPSBMI as an instrument for BMI. After adjusting for age and sex, we

computed the causal estimate of BMI on the 152 replicated proteins using the 2SLS
method from the ivpack R library v.1.2.

To assess the effect of BMI on protein levels, in a 2SMR setting, we identified
BMI instruments in the GIANT-UK Biobank meta-analysis3 and extracted the
corresponding SNP-exposure estimates from the INTERVAL pGWAS16. We
selected instruments for BMI to have genome-wide significance (p < 1 × 10−8 and f-
statistic > 10) and an LD clumping threshold of 0.001. We further eliminated SNPs
with potential confounders using data from the UK Biobank GWAS82. We
downloaded all variant association data with potential confounders (education,
smoking, alcohol use, physical activity, etc.) from the UKBiobank GWAS
(determined by the genome-wide significance of p < 1 × 10−8). After these filtration
steps and elimination of potentially confounded SNPs, 454 BMI instruments were
used. The exposure and outcome data were harmonized before performing the MR
analysis by aligning the SNPs on the same effect allele for the exposure (BMI) and
outcome (proteins). The 2SMR was feasible for 103 of the 152 replicated proteins
for which GWAS summary statistics were available from INTERVAL. We used the
IVW method to estimate the causal effect of BMI on proteins. We downloaded full
protein GWAS summary statistics from INTERVAL and extracted the genetic
instrument SNPs as outcome associations from this data. The 2SMR results using
the IVW method suggested that BMI was causal for 9 of the 103 tested proteins,
after multiple-testing correction. The causal estimates were directionally
concordant with the 1SMR estimates for all significant proteins. These results were
also robust to sensitivity analysis and evidence of heterogeneity or horizontal
pleiotropy, based on the MR Egger analysis, was weak (Supplementary Data 11).
For all tested proteins, the heterogeneity measures represented by Cochran’s Q
statistic were not significant (p_Het > 0.05), suggesting there was no nondirectional
pleiotropy. In addition, we did not find any evidence of directional pleiotropy,
according to the MR–Egger intercepts test (p_Pleio > 0.05).

For the 1SMR in the protein-to-BMI direction, we identified protein
instruments in KORA and also computed the corresponding SNP-outcome
exposure estimates for the 152 proteins. For each protein, instruments were tested
for association with protein levels in a linear regression model adjusted for age and
sex. Genetic instruments were selected if their association was genome-wide
significant (f-statistic > 10). The genome-wide instruments were filtered to include
only independent signals (r2= 0.001). Out of the 152 plasma proteins, we identified
one or two suitable genetic instruments for 63 proteins. After accounting for
multiple testing, the 1SMR did not provide any evidence of plasma proteins having
a potentially causal effect on BMI, due to lack of strong/suitable instruments
(Supplementary Data 12).

Finally, for the 2SMR in the protein-to-BMI direction, the Proteome PheWAS
browser (http://www.epigraphdb.org/pqtl/ accessed on April 2020)18 was used to
check if any of the proteins with suitable instruments were causal for BMI.
Instrument reliability was based on pleiotropy, consistency, and colocalization
scores, as defined by the authors of that study. With a single genetic variant, the
estimate of the IVW reduces to the ratio of coefficients betaY/betaX or the
Wald ratio.

Gene expression analysis. To investigate the tissue-specific role of the GPSBMI

associated protein-coding genes with obesity, we used RNA-seq tissue expression
data from both humans and mice—the Genotype-Tissue Expression (GTEx)
database83 and the Gene eXpression Database (GXD)84 (C57BL/6J strain),
respectively. The data presented and described in this paper were generated
through a multi-gene query on the GTEx portal on 03/29/2020 from https://www.
gtexportal.org/home/multiGeneQueryPage. Mice expression data was visualized on
the GXD portal where expression data were processed using the Morpheus heat
map and visualization and analysis tool created by the Broad Institute from http://
www.informatics.jax.org/expression.shtml.

Identifying the tissue-specific role of GPS-associated proteins in obesity
using mouse databases. Mouse orthologs were identified for the genes encoding
the causal/consequential proteins using the MGI database (http://www.informatics.
jax.org/)26. An ortholog was present for 26 proteins. Two reference mouse data-
bases were used to identify correlations between adipose, liver, and brain tissue
expression of these proteins and the relevant obesity traits in mice: (a) the HDMP
(n= 706 mice from 100 well-characterized inbred strains fed with a standard chow
diet)24, and (b) an F2 cross of the inbred ApoE−/− C57BL/6J and C3H/HeJ strains
(n= 334 mice that were fed with a high fat and cholesterol diet from 8 to 16 weeks
of age and sacrificed at 24 weeks of age)25. Publically available data from the
systems genetic resource was downloaded and used to search for gene-trait cor-
relations in adipose and liver tissues from https://systems.genetics.ucla.edu/24. The
adipose, liver, and brain tissue expression data of the 334 F2 cross mice was
accessed using the publically available dataset Sage BioNetworks at https://www.
synapse.org/#!Synapse:syn449725. The weight mild correlation coefficients (bicor)
is a similarity measure between samples based on the median which is less sensitive
to outliers and provides a robust alternative to similarity metrics like Pearson
correlation. The bicor coefficients and the p values for the association of gene
expression levels and the selected obesity relevant traits were computed using the
WGCNA R package85. Gene to trait correlations was filtered to only include
absolute correlation coefficients > 0.1 and p value < 0.05 for both datasets.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All summary statistics and association data for KORA and QMDiab are available in
Supplementary Data 2, 3, 5, and 8. The informed consent given by the study participants
does not cover the posting of participant-level phenotype and genotype data in public
databases. However, data are available upon request from KORA-gen (http://epi.
helmholtz-muenchen.de/kora-gen). Requests for both KORA and QMDiab are submitted
online and are subject to approval by the KORA board. Publically available datasets from
the following databases are available at these web links:
DrugBank database: https://www.drugbank.ca
Proteome PheWAS browser: http://www.epigraphdb.org/pqtl
Phenoscanner: http://www.phenoscanner.medschl.cam.ac.uk
Genotype-Tissue Exxpression (GTEx): https://www.gtexportal.org/home/
multiGeneQueryPage
Gene eXpression Database (GXD): http://www.informatics.jax.org/expression.shtml
Mouse Genome Informatics (MGI) database: http://www.informatics.jax.org/
Sage BioNetworks dataset: https://www.synapse.org/#!Synapse:syn4497

Received: 2 June 2020; Accepted: 29 January 2021;

References
1. Barsh, G. S., Farooqi, I. S. & O’Rahilly, S. Genetics of body-weight regulation.

Nature 404, 644–651 (2000).
2. Locke, A. E. et al. Genetic studies of body mass index yield new insights for

obesity biology. Nature 518, 197–U401 (2015).
3. Yengo, L. et al. Meta-analysis of genome-wide association studies for height

and body mass index in approximately 700000 individuals of European
ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

4. Hruby, A. & Hu, F. B. The epidemiology of obesity: a big picture.
Pharmacoeconomics 33, 673–689 (2015).

5. Symonds, M. E., Budge, H. & Frazier-Wood, A. C. Epigenetics and obesity: a
relationship waiting to be explained. Hum. Hered. 75, 90–97 (2013).

6. Bell, C. G. The epigenomic analysis of human obesity. Obesity 25, 1471–1481
(2017).

7. Wahl, S. et al. Epigenome-wide association study of body mass index, and the
adverse outcomes of adiposity. Nature 541, 81–86 (2017).

8. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13,
135–145 (2012).

9. Khera, A. V. et al. Genome-wide polygenic scores for common diseases
identify individuals with risk equivalent to monogenic mutations. Nat. Genet.
50, 1219–1224 (2018).

10. Geyer, P. E. et al. Proteomics reveals the effects of sustained weight loss on the
human plasma proteome. Mol. Syst. Biol. 12, 901 (2016).

11. Saleh, A. et al. Angiogenesis related genes NOS3, CD14, MMP3 and IL4R are
associated to VEGF gene expression and circulating levels in healthy adults.
BMC Med. Genet. 16, 90 (2015).

12. Garcia, S. et al. Colony-stimulating factor (CSF) 1 receptor blockade reduces
inflammation in human and murine models of rheumatoid arthritis. Arthritis
Res. Ther. 18, 75 (2016).

13. Suhre, K. et al. Connecting genetic risk to disease end points through the
human blood plasma proteome. Nat. Commun. 8, 14357 (2017).

14. Wichmann, H. E. et al. KORA-gen—resource for population genetics, controls
and a broad spectrum of disease phenotypes. Gesundheitswesen 67, S26–S30
(2005).

15. Mook-Kanamori, D. O. et al. 1,5-Anhydroglucitol in saliva is a noninvasive
marker of short-term glycemic control. J. Clin. Endocrinol. Metab. 99,
E479–E483 (2014).

16. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558,
73–79 (2018).

17. Khera, A. V. et al. Polygenic prediction of weight and obesity trajectories from
birth to adulthood. Cell 177, 587 (2019).

18. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence
of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020).

19. Emilsson, V. et al. Co-regulatory networks of human serum proteins link
genetics to disease. Science 361, 769–773 (2018).

20. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in
cardiovascular disease. PLoS Genet. 13, e1006706 (2017).

21. Yao, C., et al. Genome-wide mapping of plasma protein QTLs identifies
putatively causal genes and pathways for cardiovascular disease. Nat.
Commun. 9, 3268 (2018).

22. Monestier, O. & Blanquet, V. WFIKKN1 and WFIKKN2: “Companion” proteins
regulating TGFB activity. Cytokine Growth Factor Rev. 32, 75–84 (2016).

23. Lee, M. J. Transforming growth factor beta superfamily regulation of adipose
tissue biology in obesity. Biochim. Biophys. Acta Mol. Basis Dis. 1864,
1160–1171 (2018).

24. Lusis, A. J. et al. The Hybrid Mouse Diversity Panel: a resource for systems
genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 57,
925–942 (2016).

25. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic
genes in mice. Genome Res. 16, 995–1004 (2006).

26. Bult, C. J. et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47,
D801–D806 (2019).

27. Hackl, M. T. et al. Brain leptin reduces liver lipids by increasing hepatic
triglyceride secretion and lowering lipogenesis. Nat. Commun. 10, 2717 (2019).

28. Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype
associations. Bioinformatics 32, 3207–3209 (2016).

29. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching
human genotype-phenotype associations. Bioinformatics 35, 4851–4853
(2019).

30. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database
for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

31. Moon, H. S. et al. Identification and saturable nature of signaling pathways
induced by metreleptin in humans: comparative evaluation of in vivo, ex vivo,
and in vitro administration. Diabetes 64, 828–839 (2015).

32. Paisley, A. N. et al. Pegvisomant interference in GH assays results in
underestimation of GH levels. Eur. J. Endocrinol. 156, 315–319 (2007).

33. Rosenbloom, A. L. Mecasermin (recombinant human insulin-like growth
factor I). Adv. Ther. 26, 40–54 (2009).

34. Lewitt, M. S., Dent, M. S. & Hall, K. The insulin-like growth factor system in
obesity, insulin resistance and type 2 diabetes mellitus. J. Clin. Med 3,
1561–1574 (2014).

35. Hedbacker, K. et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene.
Cell Metab. 11, 11–22 (2010).

36. Ginsberg, S. et al. The obesity of patients with Laron Syndrome is not associated
with excessive nutritional intake. Obes. Res. Clin. Pract. 3, 1–52 (2009).

37. Ramkhelawon, B. et al. Netrin-1 promotes adipose tissue macrophage
retention and insulin resistance in obesity. Nat. Med. 20, 377–384 (2014).

38. Visser, M. et al. Elevated C-reactive protein levels in overweight and obese
adults. J. Am. Med. Assoc. 282, 2131–2135 (1999).

39. Timpson, N. J. et al. C-reactive protein levels and body mass index: elucidating
direction of causation through reciprocal Mendelian randomization. Int J.
Obes. 35, 300–308 (2011).

40. Alessi, M. C., Poggi, M. & Juhan-Vague, I. Plasminogen activator inhibitor-1,
adipose tissue and insulin resistance. Curr. Opin. Lipidol. 18, 240–245 (2007).

41. Batist, G. et al. Low antithrombin III in morbid obesity: return to normal with
weight reduction. JPEN J. Parenter. Enter. Nutr. 7, 447–449 (1983).

42. Li, C. Y. et al. Association of testosterone and sex hormone-binding globulin
with metabolic syndrome and insulin resistance in men. Diabetes Care 33,
1618–1624 (2010).

43. Schadt, E. E. Molecular networks as sensors and drivers of common human
diseases. Nature 461, 218–223 (2009).

44. Chua, S. C. et al. Phenotypes of mouse diabetes and rat fatty due to mutations
in the OB (leptin) receptor. Science 271, 994–996 (1996).

45. Zhang, Y. Y. et al. Positional cloning of the mouse obese gene and its human
homolog. Nature 374, 479 (1995). (Vol 372, 425 (1994)).

46. Kennedy, A. J. et al. Mouse models of the metabolic syndrome. Dis. Model.
Mech. 3, 156–166 (2010).

47. Ring, L. E. & Zeltser, L. M. Disruption of hypothalamic leptin signaling in
mice leads to early-onset obesity, but physiological adaptations in mature
animals stabilize adiposity levels. J. Clin. Investig. 120, 2931–2941 (2010).

48. Oswal, A. & Yeo, G. Leptin and the control of body weight: a review of its
diverse central targets, signaling mechanisms, and role in the pathogenesis of
obesity. Obesity 18, 221–229 (2010).

49. Farooqi, I. S. et al. Clinical and molecular genetic spectrum of congenital
deficiency of the leptin receptor. N. Engl. J. Med. 356, 237–247 (2007).

50. Gray, A. et al. Global Igfbp1 deletion does not affect prostate cancer
development in a c-Myc transgenic mouse model. J. Endocrinol. 211, 297–304
(2011).

51. Yau, S. W. et al. IGFBP-2-taking the lead in growth, metabolism and cancer. J.
Cell Commun. Signal. 9, 125–142 (2015).

52. Kondas, K. et al. Biological functions of the WAP domain-containing
multidomain proteins WFIKKN1 and WFIKKN2. Biochem. Soc. Trans. 39,
1416–1420 (2011).

53. Hill, J. J. et al. Regulation of myostatin in vivo by growth and differentiation
factor-associated serum protein-1: a novel protein with protease inhibitor and
follistatin domains. Mol. Endocrinol. 17, 1144–1154 (2003).

54. Monestier, O., et al. Ubiquitous Gasp1 overexpression in mice leads mainly to
a hypermuscular phenotype. BMC Genom. 13 (2012).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21542-4

12 NATURE COMMUNICATIONS |         (2021) 12:1279 | https://doi.org/10.1038/s41467-021-21542-4 | www.nature.com/naturecommunications

http://epi.helmholtz-muenchen.de/kora-gen
http://epi.helmholtz-muenchen.de/kora-gen
https://www.drugbank.ca
http://www.epigraphdb.org/pqtl
http://www.phenoscanner.medschl.cam.ac.uk
https://www.gtexportal.org/home/multiGeneQueryPage
https://www.gtexportal.org/home/multiGeneQueryPage
http://www.informatics.jax.org/expression.shtml
http://www.informatics.jax.org/
https://www.synapse.org/#!Synapse:syn4497
www.nature.com/naturecommunications


55. Leuner, B. et al. RAGE influences obesity in mice. Effects of the presence of
RAGE on weight gain, AGE accumulation, and insulin levels in mice on a high
fat diet. Z. Gerontol. Geriatr. 45, 102–108 (2012).

56. Pan, X. et al. Mice, double deficient in lysosomal serine carboxypeptidases
Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal
dystrophy and hypertrophic skin thickenings. PLoS ONE 12, e0172854 (2017).

57. Lindsey, J. B. et al. Association between circulating soluble receptor for
advanced glycation end products and atherosclerosis observations from the
Dallas Heart Study. Diabetes Care 32, 1218–1220 (2009).

58. Unamuno, X. et al. Dermatopontin, A Novel Adipokine Promoting Adipose
Tissue Extracellular Matrix Remodelling and Inflammation in Obesity. J. Clin.
Med. 9, 1069 https://doi.org/10.3390/jcm9041069 (2020).

59. Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity 14,
529–644 (2006).

60. Kondas, K. et al. Both WFIKKN1 and WFIKKN2 have high affinity for
growth and differentiation factors 8 and 11. J. Biol. Chem. 283, 23677–23684
(2008).

61. Ruffieux H. et al. A fully joint Bayesian quantitative trait locus mapping of
human protein abundance in plasma. PLOS Computational Biology 16,
e1007882 https://doi.org/10.1371/journal.pcbi.1007882 (2020).

62. Gudmundsdottir, V. et al. Circulating protein signatures and causal candidates
for type 2 diabetes. Diabetes 69, 1843–1853 (2020).

63. Scott C. Ritchie, et al. Integrative analysis of the plasma proteome and
polygenic risk of cardiometabolic diseases Preprint at bioRxiv https://www.
biorxiv.org/content/10.1101/2019.12.14.876474v1 (2019).

64. Nelson, M. R. et al. The support of human genetic evidence for approved drug
indications. Nat. Genet. 47, 856–860 (2015).

65. Suhre, K. et al. Connecting genetic risk to disease end points through the
human plasma proteome. Nat Commun 8, 14357 https://doi.org/10.1038/
ncomms14357 (2017).

66. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics:
perspectives for large population-based studies. Nat. Rev. Genet. (2020).

67. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98
(2014).

68. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian
randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389
(2017).

69. Holmes, M. V., Ala-Korpela, M. & Smith, G. D. Mendelian randomization in
cardiometabolic disease: challenges in evaluating causality. Nat. Rev. Cardiol.
14, 577–590 (2017).

70. Gold, L. et al. Aptamer-based multiplexed proteomic technology for
biomarker discovery. PLoS ONE 5, e15004 (2010).

71. Hathout, Y. et al. Large-scale serum protein biomarker discovery in Duchenne
muscular dystrophy. Proc. Natl Acad. Sci. USA 112, 7153–7158 (2015).

72. Sattlecker, M. et al. Alzheimer’s disease biomarker discovery using SOMAscan
multiplexed protein technology. Alzheimers Dement. 10, 724–734 (2014).

73. Kraemer, S. et al. From SOMAmer-based biomarker discovery to diagnostic
and clinical applications: a SOMAmer-based, streamlined multiplex proteomic
assay. PLoS ONE 6, e26332 (2011).

74. Kiddle, S. J. et al. Candidate blood proteome markers of Alzheimer’s disease
onset and progression: a systematic review and replication study. J. Alzheimers
Dis. 38, 515–531 (2014).

75. Lourdusamy, A. et al. Identification of cis-regulatory variation influencing protein
abundance levels in human plasma. Hum. Mol. Genet. 21, 3719–3726 (2012).

76. Genomes Project, C. et al. A global reference for human genetic variation.
Nature 526, 68–74 (2015).

77. Vilhjalmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of
polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

78. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger
and richer datasets. Gigascience 4, 7 (2015).

79. Gieger, C. et al. Genetics Meets Metabolomics: A Genome-Wide Association
Study of Metabolite Profiles in Human Serum. PLOS Genetics 4, e1000282
https://doi.org/10.1371/journal.pgen.1000282 (2008).

80. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for
performing Mendelian randomization analyses using summarized data. Int. J.
Epidemiol. 46, 1734–1739 (2017).

81. Hemani, G., et al. The MR-Base platform supports systematic causal inference
across the human phenome. Elife. 7 (2018).

82. Ben Neale, et al. GWAS analysis of the UK Biobank (2018).
83. Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet.

45, 580–585 (2013).
84. Smith, C. M. et al. The mouse gene expression database (GXD): 2019 update.

Nucleic Acids Res. 47, D774–D779 (2019).
85. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation

network analysis. BMC Bioinform. 9, 559 (2008).

Acknowledgements
This work was supported by the Biomedical Research Program at Weill Cornell Medicine
in Qatar, a program funded by the Qatar Foundation. K.S. is also supported by QNRF
grant NPRP11C-0115-180010. The KORA study was initiated and financed by the
Helmholtz Zentrum München—German Research Center for Environmental Health,
which is funded by the German Federal Ministry of Education and Research (BMBF) and
by the State of Bavaria. Furthermore, KORA research was supported within the Munich
Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of
LMUinnovativ. The statements made herein are solely the responsibility of the authors.

The KORA-Study Group consists of A. Peters (speaker), J. Heinrich, R. Holle, R. Leidl,
C. Meisinger, K. Strauch, and their co-workers, who are responsible for the design and
conduct of the KORA studies. We gratefully acknowledge the contribution of all
members of field staff conducting the KORA F4 study. We thank the staff of the HMC
dermatology department and of WCM-Q for their contribution to QMDiab. The
Genotype-Tissue Expression (GTEx) project was supported by the Common Fund of the
Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI,
NIDA, NIMH, and NINDS. Finally, we are grateful to all study participants of KORA
and QMDiab for their invaluable contributions to this study.

Author contributions
Conceived and designed the study: S.B.Z., S.S., H.G., and K.S. Performed experiments: S.B.Z.
and S.S. Analyzed data: S.B.Z., S.S., H.G., and K.S. Contributed reagents/materials/analysis
tools: M.M., P.R.M., M.A.E., W.R., J.G., K.S., A.P., C.G., and M.W. Wrote the paper: S.B.Z.,
S.S., H.G., and K.S. All authors discussed the results and reviewed the final paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21542-4.

Correspondence and requests for materials should be addressed to K.S.

Peer review information Nature Communications thanks Jorg Hager, Adam Locke, and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21542-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1279 | https://doi.org/10.1038/s41467-021-21542-4 | www.nature.com/naturecommunications 13

https://doi.org/10.3390/jcm9041069
https://doi.org/10.1371/journal.pcbi.1007882
https://www.biorxiv.org/content/10.1101/2019.12.14.876474v1
https://www.biorxiv.org/content/10.1101/2019.12.14.876474v1
https://doi.org/10.1038/ncomms14357
https://doi.org/10.1038/ncomms14357
https://doi.org/10.1371/journal.pgen.1000282
https://doi.org/10.1038/s41467-021-21542-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Revealing the role of the human blood plasma proteome in obesity using genetic drivers
	Results
	Out of 921, 152 assayed blood protein levels associate with BMI
	Association of BMI polygenic scores with BMI
	Extreme BMI polygenic scores identify 19 proteomic signatures for 5% of the population
	Mendelian randomization
	BMI is potentially causal for 24 of the 152 tested proteins
	Six plasma proteins have a potentially causal role in the development of obesity
	The biological role of the 28 causally and/or consequentially BMI-associated proteins

	Discussion
	Proteins associated with obesity and obesity score
	Causal analysis
	Animal models
	Other biological evidence
	Limitations

	Methods
	Ethics approval and consent to participate
	Study population (KORA)
	Proteomics (KORA)
	Genotyping (KORA)
	Study population (QMDiab)
	Proteomics (QMDiab)
	Genotyping (QMDiab)
	Polygenic score calculation
	Statistical analysis
	Cross-reactivity of aptamers
	Mendelian randomization analysis
	Gene expression analysis
	Identifying the tissue-specific role of GPS-associated proteins in obesity using mouse databases

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




