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Abstract 

 
Currently, reliable, robust and ready-to-use CT-based tools for prediction of COVID-19 
progression are still lacking. To address this problem, we present DABC-Net, a novel deep 
learning (DL) tool that combines a 2D U-net for intra-slice spatial information processing, and a 
recurrent LSTM network to leverage inter-slice context, for automatic volumetric segmentation of 
lung and pneumonia lesions. We evaluate DABC-Net on more than 10,000 radiologists-labeled 
CT slices from four different cohorts. Compared to state-of-the-art segmentation tools, DABC-Net 
is much faster, more robust, and able to estimate segmentation uncertainty. Based only on the 
first two CT scans within 3 days after admission from 656 longitudinal CT scans, the AUC of our 
DBAC-Net for disease progression prediction reaches 93%. We release our tool as a GUI for 
patient-specific prediction of pneumonia progression, to provide clinicians with additional 
assistance to triage patients at early days after the diagnosis and to optimize the assignment of 
limited medical resources, which is of particular importance in current critical COVID-19 
pandemic. 
 
Keywords: COVID-19, Deep learning, Model uncertainty, Pneumonia segmentation, Progression 
prediction 

 

  



Yu et al.  - DABCNet manuscript 3 

Introduction 

The Coronavirus Disease 2019 (COVID-19) has infected more than 45 million people worldwide 
(as of 31th October 2020) and caused more than 1.1 million deaths. In practice, most people 
infected with COVID-19 have mild cold-like symptoms, while others may evolve into serious 
illnesses that require intensive medical treatment or even lead to death. To maximize the 
distribution of available medical resources and save lives, it is vital to predict the progression of 
COVID-19 for each individual at the early days following diagnosis.  
 
Chest computed tomography (CT) plays an important role for evaluating COVID-19 patients by 
showing specific image features such as  ground-glass opacification and consolidation1. So far, 
deep learning (DL) based analyses on chest CT are mostly concentrated on COVID-19 diagnosis 
or classification, e.g. differentiating COVID-19 positive patients from patients with normal 
pneumonia (see2 for an overview). CT-based diagnosis was essential at the beginning of the 
pandemic, when RT-PCR, the gold-standard of COVID-19 diagnosis, was relatively slow and 
often in short supply. Yet the implementation of large-scale RT-PCR test reduces the need for 
using radiology images for screening purposes. Nevertheless, radiology images remain vital to 
detect pulmonary involvement in COVID-19 patients. Particularly, it has been suggested that CT 
assessment of lesions can be used as an imaging surrogate for disease burden and to identify 
severe patients in need of hospital admission3,4. Yet the lesion quantification in both these studies 
relies on laborious manual examination of CT images by experienced radiologists and is hence 
difficult to be integrated into a standard clinical workflow, in particular as a rapid outbreak can 
bring enormous pressure on radiologists in terms of speed and number of examinations.  
 
To address these problems, we propose a novel DL based tool to process and quantify COVID-
19 induced pneumonia progression using chest CT images, thereby producing a progression 
score to assist clinicians in triaging patients (Fig. 1a). The core of our tool is a Dual spatial and 
channel Attention Bidirectional ConvLSTM Net (DABC-Net, Fig. 1b), for automatic segmentation 
of regions of interest, i.e. lung and pneumonia lesions. Compared to the state-of-the-art 3D U-Net 
that uses 3D convolutions to process the spatial context in an isotropic fashion, DABC-Net uses 
a 2D U-Net for intra-slice information and a ConvLSTM for inter-slice context (see Online Methods 
for details), which is more robust for anisotropic CT images where the slice thickness (z-axis 
resolution) does not match the intra-slice (x-y) resolution. Furthermore, we add a spatial attention 
mechanism and a channel attention mechanism, which reduces the number of ConvLSTM units 
and hence the overall parameter size of DABC-Net, making it faster and more resistant to 
overfitting. To demonstrate model generalisability, we evaluate DABC-Net on four different 
cohorts, which is more comprehensive than previous studies where models are trained and 
evaluated on data that originates from the same hospital 2,5. We also assess the model uncertainty 
using Monte Carlo dropout6 and suggest expert recheck on samples associated with high 
uncertainty to prevent the misuse of our model. Last but not least, we release our DABC-Net as 
an open-source and ready-to-use toolkit, which leads to real-time CT segmentation of COVID 
lesions and prediction of disease progression.  
 

https://paperpile.com/c/AzONJ5/G9x0
https://paperpile.com/c/AzONJ5/Zg7z
https://paperpile.com/c/AzONJ5/89lC+uWVs
https://paperpile.com/c/AzONJ5/KrIX+Zg7z
https://paperpile.com/c/AzONJ5/yBzL
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Results 

DABC-Net is faster and more robust than other methods in lung and COVID-19 pneumonia 
segmentation 

Since accurate segmentation is the key step for disease progression prediction, our first 
motivation is to evaluate segmentation performance of DABC-Net along with four state-of-the-art 
segmentation methods: DeepLabV37, Sensor3D8, nnUNet2D and nnUNet3D9 (a short 
comparison of all methods is provided in Table S1;  see Online Methods for details of all methods) 
on four datasets: 

● Coronacases: 2581 slices of 10 COVID patients from Wenzhou Medical University, 
obtained from \url{https://coronacases.org} 

● Radiopedia: 1389 slices of 19 patients from multiple hospitals, obtained from 
\url{https://radiopaedia.org} 

● Wuhan: 3805 slices of 27 patients from Wuhan hospitals  
● Shanghai: 1450 slices of 23 patients from Shanghai Public Health Clinical Center.  

A summary of the complete data information is shown in Table S2. Annotations of lung and 
COVID-19 lesions of the Coronacases dataset and parts of the Radiopedia dataset are publicly 
available10, which we use to train our model and to evaluate it with a five-fold cross-validation. We 
annotate the remaining data by two experienced radiologists and use it for testing only. In all four 
datasets, DABC-Net achieves better Dice scores than other methods for both lung and lesion 
segmentation (Fig. 2a,b, Fig. S1), suggesting that DABC-Net is robust for variations in lesion size, 
CT image intensities, and slice thickness. By contrast, the performance of a full 3D convolution 
deteriorates with increasing slice thickness (Fig. S2) and could completely fail when the 
information of slice thickness is missing and the interpolation along the z-axis is not properly done 
(Fig. 2b, nnUNet3D). Moreover, compared to other methods, DABC-Net is three times faster than 
the second fastest method, Sensor3D, and hundreds times faster than nnUNet (Fig. 2c). This is 
an important advantage, as local hospitals generally face enormous time pressure when a 
COVID-19 wave hits a region.  
 
DABC-Net estimates segmentation uncertainties  

As any other neural network, our DABC-Net can result in bias for lesion segmentation when there 
is a domain shift between training and testing data.  Hence, we estimate the uncertainty of DABC-
Net predictions in a pixel-wise fashion  (Fig. 2d), using an approximate Bayesian inference by 
Monte Carlo dropout11. More specifically, we consider two types of uncertainty measures here, 
i.e. epistemic uncertainty (also known as model uncertainty) that is raised when the input sample 
is outside of the training distribution, and aleatory uncertainty (also known as data uncertainty) 
that is caused by the intrinsic randomness of the real data generating process (Fig. S3, the 
derivation of both uncertainty measures can be found in Online Methods). We find a strong 
negative correlation between uncertainty and prediction accuracy, which suggests that the 
uncertainty estimation can be used to infer prediction accuracy in the real testing scenario when 
the ground-truth segmentation is not available (Fig. 2e, Fig. S4).  
 

https://paperpile.com/c/AzONJ5/E9Vm
https://paperpile.com/c/AzONJ5/1sPS
https://paperpile.com/c/AzONJ5/A4mI
https://coronacases.org/
https://paperpile.com/c/AzONJ5/zy25
https://paperpile.com/c/AzONJ5/fnpY
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Based on DABC-Net segmentation, we can predict the disease progression  

From Shanghai Public Health Clinical Center, we obtain 656 longitudinally measured CT scans 
from 117 patients (usually one CT scan per three days is taken, see Table S3 and Fig. S5 for 
more details). Each scan is classified according to the clinical diagnosis as mild vs. severe status. 
It should be noted that these labels are not based solely on the CT appearance, but rather indicate 
the severeness of the clinical symptoms of the patient. Based on the segmentation results of 
DABC-Net, we can easily visualise the pneumonia progression for individual patients plotting their 
lesion volume ratios (lesion volume/lung volume) over time (Fig. 3a). Despite large individual 
variabilities, patients who progress into the severe status generally show a sharp increase of 
lesion volume ratio in the first week of hospitalisation, reaching a peak around day 7-10 before 
slowly recovering in the following days (Fig. 3b). By contrast, patients who only show mild 
symptoms during their hospitalisation have a consistently lower lesion volume ratio (Fig. 3b, Fig. 
S6). 
 
Based on DABC-Net segmentation results, we aim to predict disease progression, i.e. whether 
one patient will develop into a severe status, using extracted features from CT images. Besides 
lung and lesion regions outputted by DABC-Net, we further delineate the area of consolidations 
by intensity thresholding and morphological operations as additional features (see Methods). 
Consolidations were found more common in patients >50 years old12 and could be a warning sign 
of a severe progression. Using ensemble learning of multiple classifiers on features extracted 
from the first two CT scans, we achieve an accurate prediction with an area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.93 (Fig. 3c).  We can further improve our 
prediction by adding additional scans and reach an AUC of 0.97 with the first three scans (Fig. 
S6). Even with only the first CT scan, we can still achieve an AUC of 0.84 (Fig. S7). It should be 
noted that the prediction accuracy is strongly affected by CT segmentation quality. For example, 
when we use DeepLabv3+ instead of DABC-Net for lung and lesion segmentation, we get AUCs 
of only 0.76, 0.88 and 0.90 for the first scan, first two-scan and three-scan predictions, 
respectively, which correspond to a 6-8% drop in performance (Figs 3e, S6, S7, Table S4). 
Practically, we can use the prediction of disease progression as guidance for hospital triage to 
distribute the limited hospital beds to patients who are predicted to have a severe disease 
progression. By moving along the ROC curve, we can adapt the trade-off between sensitivity and 
specificity to the number of available hospital beds. For example, we can aim at more sensitivity 
if we have an abundant number of beds, but have to focus on more specificity if we have a 
restricted number. For explainability, we identify the 10 most features that contribute to the 
prediction (Fig. 3d). In addition to the CT-related features, we also find age to be a key factor that 
leads to different disease progression patterns, consistent with previous studies 13,14.  
 

Discussion 

How to optimise the triage of COVID-19 patients is a critical issue in clinics during this world-wide 
pandemic. So far, several machine learning studies have addressed this issue and attempt to 
assess the risk of critical illness for COVID-19 patients at the hospital admission 4,15,16. Although 
these studies are very promising to identify patients at high risk, they usually rely on clinical 

https://paperpile.com/c/AzONJ5/2YT3
https://paperpile.com/c/AzONJ5/XaOI+tdkx
https://paperpile.com/c/AzONJ5/d701+ngkq+uWVs
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measurements from laboratories for their prediction, which can be laborious and delayed in time. 
By contrast, our triage system is based on chest CT examination, which is widely available in 
many clinics, relatively fast and can be easily integrated into a routine examination workflow for 
COVID-19 patients. Therefore, our tool is fast and complementary to existing AI tools for COVID-
19 triage and prognosis. 
 
We found that our prediction accuracy increased from 84% to 97% as we increased the number 
of included CT scans from the first single scan to the first three scans (Figs 3e, S6, S7). This 
demonstrates the necessity of continuous monitoring of pneumonia progression as some patients 
can have rapid progression in a short time. E.g. patient 1 in Fig. 3a shows a fast enlargement of 
lesion volume ratio from less than 2.5% (scan I and II) to 15% (scan III) within 3 days. Such a 
dynamic progression will make it difficult for prediction based on only a single CT scan at hospital 
admission, e.g. other studies that use single CT scans for severity prediction achieve a 75-85% 
AUC 4,17. As a comparison, by measuring a second CT scan with a three-day interval, we can 
achieve a much more reliable prediction with 93% AUC.  
 
We also found that our new volumetric segmentation algorithm, DABC-Net, increases the 
prediction accuracy by 6~8% over the current state-of-the-art method, DeepLabV35,18. Yet 
DeepLabV3 is a pure 2D segmentation algorithm that neglects the rich inter-slice contexts in CT 
scans. By contrast, DABC-Net is a hybrid 2D-3D segmentation network that combines classical 
2D intra-slice feature extraction and a bidirectional ConvLSTM network for inter-slice feature 
learning, yielding an improved performance. On the other hand, compared to full 3D volumetric 
segmentation such as 3D U-Net, DABC-Net is several orders of magnitude faster, lower in 
memory consumption, and  robust with respect to thick-slice CT as well as thin-slice CT. Hence 
it is more generalisable in clinical settings where different CT scanners and computing resources 
are used.   
 
In clinics, although chest X-ray examination is the predominant method for screening lung 
diseases because of easy access with low-cost, it can only provide 2-D images and can not show 
the exact location and the volume of lesions within the lung. As a tomography method with high 
resolution and the ability to generate 3-D views, CT scans, substituted for X-rays, can produce 
quantitative information for both lungs and lesions, which play an important role in diagnosing and 
monitoring COVID-19 patients. Therefore, our CT-based tool would facilitate the clinical workflow 
to fight COVID-19. 
 
We release our segmentation and prediction tools as open-source code 
(https://robin970822.github.io/DABC-Net-for-COVID-19/ ) as well as a GUI shown in Fig. S8 
(https://github.com/Robin970822/DABC-Net-for-COVID-19/tree/master/APP） that facilities the 
usage without a deep learning and coding background. In the future, we will explore the 
combination of CT features and other clinical features to further improve the prediction accuracy. 
Another potential usage of DABC-Net based CT quantification is to evaluate the efficiency of 
different treatments.  
 
 

https://paperpile.com/c/AzONJ5/uWVs+BRiS
https://paperpile.com/c/AzONJ5/Zis7+KrIX
https://robin970822.github.io/DABC-Net-for-COVID-19/
https://github.com/Robin970822/DABC-Net-for-COVID-19/tree/master/APP
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Methods 

 
DABC-Net Architecture 

 
DABC-Net is a hybrid 2D-3D network, which combines a U-shaped network (UNet) with shared-
weighted encoder and decoder to process in-plane context and a DABC-Module that uses dual 
attention bidirectional convolutional LSTM to integrate cross-plane context. We explain both 
components in detail below. 
 
U-Net with share-weighted encoder and decoder to process in-plane context 
 
2D U-Net has been successfully applied in many medical image segmentation tasks19. It has an 
encoder that contracts the original input and a symmetrical decoder to restore the compressed 
feature maps into the initial size. In our DABC-Net, we use a share-weighted convolution operator 
in the encoding and decoding paths of 2D U-Net to extract intra-slice features. More specifically, 
each convolution and transposed convolution block consists of two  shared convolution 
filters followed by a  max pooling layer and ReLU function. These parameters are shared 
between all input slices. 
 
DABC-Module uses bidirectional convolutional LSTM to integrate cross-plan context 
 
Although the 2D U-Net structure works well on processing in-plane context, it does not account 
for the context along the z-axis that could be also useful for semantic segmentation.  Alternatively, 
3D U-Net was proposed to process 3D volumetric data 20. However, due to the memory limits, 3D 
U-Net usually uses a small patch size, which only covers a very small fraction of an image and 
thus cannot sufficiently capture large-scale context.  In this case, the original high-resolution xy 
in-plane information becomes fragmented in 3D U-Net. Therefore, in our approach, we use a 
convolutional long-short term memory (C-LSTM) 21 to integrate in-plane features extracted by 2D 
U-Net, with methodological details given below: 
 
Unlike the standard LSTM that considers the input information as vectors, C-LSTM keeps 
abundant spatial semantic features by replacing the matrix multiplication with the convolution 
operator in input and recurrent transformations. More specifically, C-LSTM consists of a memory 
cell , an input gate , a forget gate 𝑓𝑓𝑡𝑡, and an output gate  and can be expressed as: 
 

 
 

 
 

   
where  is the sigmoid function,  stands for the input that is passed from the previous layer,  
and  are 2D convolution filters,  denotes the Hadamard product and  denotes convolution 
operator.  is the hidden state preserving the information to the next unit and determined by the 

https://paperpile.com/c/AzONJ5/ROQ0
https://paperpile.com/c/AzONJ5/VThZ
https://paperpile.com/c/AzONJ5/aVZL
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cell state and the output of the current unit. It can be observed that C-LSTM is able to retain spatial 
features as well as encoding temporal dependency (in our case, z-axis dependency). Unlike 
temporal sequential data (e.g., video clips), where information flows in only a forward direction, 
structural CT scans have two orientations that need to be considered. Hence, we use Bidirectional 
C-LSTM (BC-LSTM) to model both forward and backward information transfer.  
 
Dual attention mechanism in DABC-Module 
 
Due to the large channel size of the input feature map, the conventional BC-LSTM module has a 
large parameter size and hence a high computational cost. To solve this problem, we propose 
here a dual attention mechanism, namely, a spatial attention module (SABC-Module) and a 
channel attention module (CABC-Module).  
 
SABC-Module is motivated by the fact that the adjacent slices have similar saliency maps. As 
shown in Fig. 1b, SABC-Module gets the concatenation of two different level feature maps,

, as input. Note that those feature maps only contain in-plane xy context 
because they are encoded by the 2D U-Net encoder that independently processes each 2D CT 
slice.  Since the high dimension channels of the feature map often have redundant information, 
we apply here a channel-dimension squeeze procedure with a depthwise convolution followed by 

 kernel to distill information. Consequently, we acquire a feature map 
 which represents refined details in intra-slice context consisting 

of local feature response for each slice. We generate a slice-specific spatial attention 
map  by feeding  to BC-LSTM units to capture inter-slice context. Generally, 
similar spatial feature maps of adjacent slices contribute to higher attention scores among them. 
Formally, the spatial attention is formulated as: 

 
where  denotes the sigmoid activation function, ,  stand for the  
depthwise convolution kernel,  normal convolution kernel,  convolution kernel in BC-
LSTM, respectively. 
 
Besides SABC-Module that highlights spatial relationships between adjacent slides, we also use 
a channel attention mechanism, CABC-Module, to highlight important channels for image 
segmentation. The channel-wise information is complementary to spatial saliency maps captured 
by SABC-Module and hence improves  the understanding of overall representation.  
As shown in Fig. 1b, we first use a global average pooling to generate channel-wise maps 

 from original features . Note that those channel-wise maps already 
contain multi-slice context, which represents spatial statistics in consecutive slices. Formally, 
CABC-Module is reformulated as: 

 
where , same as above, denotes the sigmoid activation function,  stand for the  
convolution kernel in BC-LSTM. 
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It should be noted that our CABC-Module differs from the squeeze-and-excitation network 
proposed in previously work22, which has only one-dimension channel map  whilst our 
network can utilize receptive fields in higher dimension space and hence is more efficient in 
capturing target response across different slices. Empirically, the attention of information from 
multiple slices leads to improved performance as compared to using each channel map 
independently. With such a channel attention mechanism, the memory cell in BC-LSTM is 
superior in modelling spatial-temporal interdependence between adjacent slices than fully 
connected layers or normal convolution layers 8 23.  
 
Finally, we add both spatial attention map  and channel attention map  to the input  to 
generate output   with integrated multiple slice context. 
 
 
Uncertainty quantification of DABC-Net segmentation 

Like any neural network, predictions of DABC-Net are not always reliable, particularly when 
testing samples are out of training distribution, or corrupted with noise. Uncertainty estimation can 
measure model robustness on a particular testing sample, hence providing valuable insights of 
model performance to clinicians or medical experts. In DABC-Net, we approximate Bayesian 
inference using DropBlock 6,  a form of Monte Carlo dropout. Standard dropout where random 
units are dropped independently does not work well for convolutional layers as spatial features 
are highly correlated and hence information can still be sent to the next layer via neighbouring 
pixels. By contrast,  DropBlock drops units in a contiguous region of a feature map together and 
hence allows for more feature variability of convolution layers.  
 
There are two principal types of uncertainty that can be quantified in neural networks24: Aleatoric 
uncertainty captures potential inherent noise of the input data, which means it remains 
comparatively constant with even more given data. The prototypical example of aleatoric 
uncertainty is coin flipping where the data-generating process is completely stochastic and cannot 
be reduced by any additional information. As opposed to this, epistemic uncertainty describes 
uncertainty in the model parameters, which represent the lack of knowledge of the best model. In 
deep learning models, epistemic uncertainty can be caused by the lack of training data in certain 
areas of the input domain and will decrease when training data is large and diverse. Quantification 
of epistemic uncertainty is particularly important for safety-critical systems such as clinical 
applications, where operators are sensitive to the errors in model prediction, hence epistemic 
uncertainty can be used to measure qualities of model outputs. 

In our DABC-Net, we estimate both uncertainties with multiple inference results via Monte Carlo 
dropout, as in 25: 

 

https://paperpile.com/c/AzONJ5/lQCp
https://paperpile.com/c/AzONJ5/1sPS
https://paperpile.com/c/AzONJ5/XN40
https://paperpile.com/c/AzONJ5/yBzL
https://paperpile.com/c/AzONJ5/vgJU
https://paperpile.com/c/AzONJ5/R5lF
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Where  is the softmax outputs in the final layer at th inference and  is the average of the entire 
 inferences.  In this work, we choose , which is a good trade-off between the reliability of 

uncertainty estimation and temporal consumption made by Monte Carlo sampling. 

 
Comparison to other state-of-the-art segmentation methods 

We compared DABC-Net with four state-of-the-art medical segmentation methods, namely 
DeepLabV3+, Sensor3D, nnUNet 2D & nnUNet 3D. DeepLabV3+ 7 is a popular network that is 
primarily used for semantic segmentation in computer vision tasks and also achieved promising 
performance in COVID-19 segmentation 5. nnUNet 9 is an integrated framework for biomedical 
image segmentation, which contains 2D U-Net and 3D U-Net as backbone and includes extensive 
preprocessing and postprocessing steps, hence can be used as an out-of-the-box tool. Sensor3D 
8 is a novel 3D segmentation method which also combines BC-LSTM and U-Net, yet it has a high 
computational cost due to the lack of an attention mechanism. Furthermore, there is no open-
source Sensor3D implementation, which makes it difficult to be used in practice. In this study, we 
implement Sensor3D 8 on our own using Keras/Tensorflow framework. Table s1 summarizes 
individual features of all five methods including DABC-Net in terms of model architecture, 
parameter size, inference speed, code availability. 
 
Segmentation of lung, pneumonia lesion and consolidation region 

In this work, we train two DABC-Nets, one for lung segmentation and the other for lesion 
segmentation. We further multiply the output of lesion DABC-Net with the corresponding output 
of lung DABC-Net to remove possible false positive lesions outside the lung organ. Within the 
lesion region, we further outline the consolidation region thresholding at 0.5 on normalised 
intensity and denoising with open and close morphology operation. 
 
Feature extraction  
We quantify the lung volume, lesion volume and consolidation volume for left and right lung, 
respectively, and obtain the consolidation/lesion volume ratio by dividing by the corresponding 
lung volume. Additionally,  we calculate the weighted volume from the inner product of the lesion 
and the intensity, determine the center of lesion in the z-axis (z-position of lesions is also 
suggested to be important for prognosis 26). Together with non-image based features such as age 
and gender, we obtain 14 features per CT scan. 
 
Ensemble learning for prediction of disease progression  

We implemented an ensemble learning method to classify the mild vs. severe status. We use 
SVM, KNN, naive bayes, MLP, random forest, gradient boost, logistic regression, adaboost, and 
xgboost as base learners, and calculated the averaged-output from all base learners as the final 
output. We attempt to use the CT scans in a very early stage of patients to predict the disease 
progression27. We predict the occurrence of severe illness within a 35-day follow-up using 
features of the first scan, first two scans and first three scans via ensemble learning (each scan 
is usually obtained in a three-days interval). Additional to prediction, we also highlight important 

https://paperpile.com/c/AzONJ5/E9Vm
https://paperpile.com/c/AzONJ5/KrIX
https://paperpile.com/c/AzONJ5/A4mI
https://paperpile.com/c/AzONJ5/1sPS
https://paperpile.com/c/AzONJ5/1sPS
https://paperpile.com/c/AzONJ5/Vmxd
https://paperpile.com/c/AzONJ5/S7sx
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features that mostly contribute to our prediction using random forest, gradient boost, adaboost, 
and xgboost. Moreover, through multiple lung/lesion segmentation with Monte Carlo dropout, we 
obtain multiple sets of features for each scan, which is then used to calculate the predictive 
entropy 25, 28. 
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Figures and caption 

 
 
Fig. 1 | A robust and real-time AI-empowered tool for quantitative and confident COVID-19 CT image 
analysis, based on a DABC-Net for automatic volumetric segmentation of lung and pneumonia lesions. 
a, Workflow of our study. From top to bottom: Our multicentre data comprises CT images from four 
different sources. Due to variation in CT scanners and imaging protocols used in different hospitals, these 
images vary in terms of quality,  intensity distribution, and slice thickness. Despite this variation, we 
achieve a robust and real-time volumetric segmentation of lung (transparent) and COVID-19 lesion (red) 
with DABC-Net. With an accurate lesion volume quantification, we derive a pneumonia progression score 
for each patient to predict whether the patient will progress into severe status. b, Our DABC-Net combines 
a 2D U-net to process intra-slice spatial information with an LSTM to leverage inter-slice context. DABC-
Net uses the share-weighted 2D convolution in both encoding and decoding paths, avoiding 
computational expensive 3D convolution. Instead, it uses a DABC-Module (bottom) to combine inter-slice 
context from multiple CT slices. The DABC-module consists of two paths: i) a spatial attention bidirectional 
convolutional LSTM (BC-LSTM) path that uses a depthwise 2D convolution and a 1 x 1 convolution to 
aggregate C channels into a single channel resulting in only S x H x W BC-LSTM units, and ii) a channel 
attention BC-LSTM path that uses a global average pooling to eliminate spatial information, resulting in S 
x C BC-LSTM units. For a normal four-level 2D U-net, the channel number in the bottom level is 512 (C = 
512), so our DABC-module reduces the number of BC-LSTM units by more than two orders of magnitude. 
Additionally, we add Dropblock modules at the end of convolution operations to allow for uncertainty 
assessment with Monte Carlo dropout.  
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Fig. 2 | DABC-Net outperforms state-of-the-art methods in terms of accuracy and inference time and  
estimates segmentation uncertainty. a, Representative CT images of three COVID-19 patients in mild 
(top), severe (middle) and critical (bottom) stages and corresponding segmentation results of five 
methods. DABC-Net achieves highest dice coefficient (DC) in all three cases (bold) and robustly segments 
small lesions in the mild stage, which are often missed by other methods (see false negative (FN) regions 
marked by orange). b, DABC-Net achieves significantly higher DC than other methods in all three datasets 
(**p<0.01, ***p<0.001, ns: p>0.05, Friedmann test with adjusted significance level). Note the superior 
segmentation performance on Coronacases dataset as compared to the other two datasets. This occurs 
since Coronacases represents intra-center evaluation whilst the remaining three datasets, Radiopaedia, 
Wuhan and Shanghai hospitals are cross-center evaluation: The cases in the training set come from 
different centers as the test set cases. c, A particular highlight of DABC-Net is its fast speed. With an 
average inference time of 16 ms/slice, it needs less than 5 seconds to segment a conventional CT scan 
with about 300 slices in clinics. In comparison, nnUnet3D, due to its computational expensive 
interpolation preprocessing step, needs almost 20 minutes to process the same CT image. d, Besides, 
being faster and more accurate, DABC-Net also allows for estimating an uncertainty map, which highlights 
the region where the network is unsure of its segmentation. Indeed, those regions overlap with the 
regions where DABC-Net makes mistakes (see a right column). e, We divide image pixels into different 
intervals according to their estimated uncertainty and calculate the average pixel-wise prediction accuracy 
through bootstrapping. The negative correlation between uncertainty and prediction accuracy suggests 
that we can use uncertainty estimation to infer prediction accuracy in the testing phase when the ground-
truth segmentation is not available.  
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Fig. 3 | Based on DABC-Net segmentation of longitudinal CT scans of a patient, we can quantify 
the development of lesion volume over time, and predict disease progression using the first 
two scans. a, Temporal trajectories of lesion volume of individual patients illustrates strong 
variability in the COVID-triggered pneumonia progression. Severe patients tend to have larger 
lesion volume as compared to mild ones. Note that severe patients also include patients who 
only show mild symptoms when admitted to hospital (marked by green triangles) but develop 
severe symptoms (red triangles) during hospitalisation. b, Averaged trajectories of mild vs. severe 
patients (shaded area represents 25%-75% percentiles). Severe patients generally show a more 
acute disease progression than mild ones. c, By segmenting lesion volume from the first two CT 
scans with DABC-Net, we can predict whether a patient will develop severe symptoms during 
hospitalisation with an AUC (area under the receiver operating characteristic, ROC curve) score 
of 0.93. As a comparison, a less accurate segmentation method, e.g. with DeepLabV3+, would 
only lead to an AUC of 0.86, though we use the same features and classifier. By moving along the 
ROC curve, we can reach different (sensitivity, specificity) pairs (examples marked by red, green 
and blue dots), which adapts the availability of hospital beds and optimises the assignment.  d, 
Top 10 important features selected by our classifier to distinguish severe patients from mild ones, 
with the most important feature being the consolidation volume of the second scan.  e, Patients 
who are predicted wrongly are associated with a higher uncertainty than patients who are 
predicted correctly (*p<0.05, Wilcoxon ranksum test).    
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Supplementary information:  

 
 
 

Method Multi-slice 
fusion 

Parameter Speed 
(ms/slice) 

Dice(%) for 
lesion 

Dice(%) for 
Lung 

Additional 
preprocessing 

DeepLabV3+ N/A 41,252,497 85 0.7271±0.1598 0.9783±0.0096 N/A 

Sensor3D ConvLSTM 18,657,857 50 0.6529±0.2231 0.9682±0.0940 N/A 

nnUNet2D N/A 17,802,945 3000 0.7800±0.1147 0.9640±0.0285 Interpolation 

nnUNet3D 3D 
convolution 

kernel 

30,350,177 3200 0.8163±0.0640 0.9164±0.1162 Interpolation 

DABC-Net DABC block 19,507,640 16 0.8401±0.0565 0.9821±0.0071 N/A 

 
 
Table S1. Comparison of different network architectures and segmentation performances. In addition 
to DABC-Net, we tested four state-of-the-art segmentation methods, including DeepLabV3+, Sensor3D, 
nnUNet2D and nnUNet3D. Among all these methods, DeepLabV3+ and nnUNet2D are purely 2D 
segmentation methods; nnUNet3D is a full 3D volumetric segmentation method with 3D convolution 
kernels; both Sensor3D and DABC-Net are hybrid 2D-3D methods, whilst Sensor3D fuses 2D segmentation 
with convolutional LSTM (ConvLSTM). Unlike these methods, our DABC-Net uses a DABC module with an 
additional dual spatial and channel attention mechanism. Compared to other methods, DABC-Net 
achieves the highest dice score for both lung and lesion segmentation as well as the fastest inference 
speed.  
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 Patients Scans Slices Labeled 
scans 

Labeled slices Slice 
thickness 

(mm) 

Lesion Lung  

Coronacas
e.org* 

10* 10 2581 10 2581 2581 1.0-1.5 

Radiopaed
ia.org 

19 19 1342 19 1342 1342 4.0-6.0 

Wuhan  27 27 3805 27 3805 - 3.0 

Shanghai  146 679 293349 43 2717 10007 1.0-6.0 

Total 202 735 301077 99 10445 13930 N/A 

 
 
Table S2. A short summary of our multicentre datasets used to develop and evaluate our image 
segmentation algorithm, DABC-Net. Four datasets, Coronacases, Radiopedia, Wuhan and Shanghai were 
collected independently, uploaded by individual community users, Wuhan Tongji hospital and Shanghai 
Public Health Clinical Center (Coronacases and Radiopedia are publicly available).  Among these datasets, 
over 14,000 slices labelled by two radiologists were used to train and test DABC-Net and other competitive 
segmentation models. Moreover, the Shanghai dataset contains longitudinal scans of the same patients 
which reflects the progression of corona-triggered pneumonia over time. Built upon DABC-net acquired 
segmentation, we extract features such as lesion volume ratio (lesion volume/lung volume) and train a 
classification model to predict different progression patterns between mild vs severe patients.   
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   Mild patients Severe patients  Total 

Male 27 31 58 

Female 34 25 59 

Total 61 56 117 

 
 
 
Table S3. COVID-19 patients with longitudinal CT scans used for disease progression prediction. All 117 
patients are from Shanghai Public Health Clinical Center. Most patients receive CT examinations every 
three days during their hospitalisation, with exception of critically-ill patients who are in ICU and may have 
difficulty receiving CT examinations. Note that clinicians annotate individual scans by mild/severe/critical 
not only based on CT appearance, but based on patients’ clinical symptoms.  
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Task Method ROC-AUC Sensitivity Specificity 

Prediction of mild 
status vs. severe 
status from single 
scan 

DeepLabV3+ 0.895 0.696 0.900 

DABC-Net 0.924 0.785 0.946 

Prediction of 
patient label from 
first scan 

DeepLabV3+ 0.759 0.694 0.703 

DABC-Net 0.840 0.696 0.820 

Prediction of 
patient label from 
first two scans 

DeepLabV3+ 0.881 0.842 0.833 

DABC-Net 0.931 0.857 0.918 

Prediction of 
patient label from 
first three scans 

DeepLabV3+ 0.902 0.825 0.850 

DABC-Net 0.967 0.865 0.951 

 
Table S4. Performance comparison of ensemble learning on DABC-Net and DeepLabV3+ segmentation. 
In all three experiments, DABC-Net enhances the classification accuracy by 3 ~ 10% as compared to 
DeepLabV3+ segmentation, which may warrant the robustness of DABC-Net in subsequent  prediction 
and analysis.    
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Fig S1. The box plots present the performances of different methods for lung segmentation on multi-
center datasets. DABC-Net achieves higher dice coefficient than other methods in all three datasets 
(**p<0.01, ***p<0.001, Friedmann test with adjusted significance level). Note that DABC-Net achieves a 
robust performance of 0.95+ dice coefficient in all datasets. By contrast, nnUNet3D could completely fail 
in cases of Radiopaedia where the corresponding image header files are not available.  
 
 
 
 
 
 
 
 
 
 
  



Yu et al.  - DABCNet manuscript 23 

 

 
 
Fig S2. Compared to nnUNet3D, DABC-Net is more robust to various CT thickness. To evaluate the effects 
of CT volumes thickness, we test 1mm, 3mm and 6mm CT scans with different methods. 3mm and 6mm 
volumes are uniformly-spaced sampling from 1mm volumes. The performance of nnUNet3D remarkably 
suffers from the increasing slice thickness, while the performance of our DABC-Net remains stable, 
suggesting its robustness to different slice thickness. 
 
 
 
 
 
 



Yu et al.  - DABCNet manuscript 24 

 
 
 
Fig S3. Visual comparisons of uncertainty distributions generated via DABC-Net. Aleatoric uncertainty 
captures potential inherent noise of the input data, while epistemic uncertainty describes uncertainty in 
the model parameters. Predictive uncertainty is composed of aleatoric and epistemic uncertainty. 
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Fig S4. The violin plot of uncertainty distribution of slices with high (dice>=0.8) vs. low (dice<0.8). 
Segmentation accuracy demonstrates that slices with higher segmentation accuracy have lower 
uncertainty as compared to those with less accuracy in segmentation. Uncertainty is quantified by 
stimulating Monte Carlo dropblock during inference in DABC-Net.  
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Fig S5. Comparison of segmented lesion volume ratio between different gender and age groups. Elderly 
patients tend to have a significantly larger lesion volume radio as compared to younger patients (*p<0.01 
**p<0.001). In addition to age, lesion volume ratios of male patients are significantly higher than those of 
female patients. 
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Fig S6. We predict disease progression using the first three scans with an AUC of 0.97. a, ROC 
curves of our classifiers based on segmentation of DABC-Net (AUC = 0.97) and segmentation of 
DeepLabV3+ (AUC = 0.90). b, Top 10 important features selected by our classifier based on DABC-
Net segmentation to distinguish severe patients from mild ones, with the most important feature 
being the left lesion volume at second scan. 
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Fig S7. We predict disease progression using the first scan with an AUC of 0.84. A, ROC curves 
of our classifiers based on segmentation of DABC-Net (AUC = 0.84) and segmentation of 
DeepLabV3+ (AUC = 0.76).  b, Top 10 important features selected by our classifier based on DABC-
Net segmentation to distinguish severe patients from mild ones, with the most important feature 
being the left lesion volume.  
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Fig S8. The graphical user interface (GUI) of toolbox is publicly available (download link: 
https://github.com/Robin970822/DABC-Net-for-COVID-19/tree/master/APP), which is also friendly for 
users without an AI background. Our toolbox provides lung lesion segmentation with  uncertainty 
quantification, and prediction of disease progression. 
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