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Abstract: This paper comprehensively reviews the emerging topic of optoacoustic imaging 

from the image reconstruction and quantification perspective. Optoacoustic imaging 

combines highly attractive features, including rich contrast and high versatility in  

sensing diverse biological targets, excellent spatial resolution not compromised by light 

scattering, and relatively low cost of implementation. Yet, living objects present a complex 

target for optoacoustic imaging due to the presence of a highly heterogeneous tissue 

background in the form of strong spatial variations of scattering and absorption.  

Extracting quantified information on the actual distribution of tissue chromophores and 

other biomarkers constitutes therefore a challenging problem. Image quantification is 

further compromised by some frequently-used approximated inversion formulae. In this 

review, the currently available optoacoustic image reconstruction and quantification 

approaches are assessed, including back-projection and model-based inversion algorithms, 

sparse signal representation, wavelet-based approaches, methods for reduction of acoustic 

artifacts as well as multi-spectral methods for visualization of tissue bio-markers. 

Applicability of the different methodologies is further analyzed in the context of real-life 

performance in small animal and clinical in-vivo imaging scenarios. 
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1. Introduction 

Nowadays, the terms optoacoustic and photoacoustic are equally used to describe the effect of 

acoustic wave generation by transient light absorption. Optoacoustic sensing and imaging draws its 

roots from the discovery of the photophone by Bell and his assistant Tainter in 1880, which the 

inventors used as the first practical wireless telephony or, in fact, optical communication device [1]. Bell 

also named the effect the photophonic phenomenon [2] and later suggested the so-called spectrophone [3]. 

Following its discovery in solid and liquid media, the effect had been further confirmed by Tyndall and 

Röntgen to occur in gases [4,5]. However, despite multiple early attempts to put the photophone into 

practical use, mainly for military communications [6], it was not until 1938 that Veingerov developed 

the first widely accepted implementation of the phenomenon, which he called method for gas analysis 

based on Tyndall-Röntgen optic-acoustic effect [7,8]. The term photoacoustic was later adopted in 

1970s when sensitive spectroscopy of solids was first demonstrated [9,10]. Rosencwaig was the first to 

suggest the phenomenon for biological sensing [11]. However, due to the lack of appropriate laser 

sources and ultrasound detection technologies, theoretical understanding of the underlying phenomena 

as well as backlogs with the algorithmic and data processing capacities, utilization of optoacoustics for 

imaging of real biological tissues and organisms has only evolved in the last decade [12–14].  

The field of biological optoacoustic imaging is developing tremendously with new technical 

approaches and applications continuously emerging. By combining now commercially available pulsed 

laser technology in the nano-second range and sensitive acoustic detectors, it was shown possible to 

generate opto-acoustic responses from tissue that carry significant spatially-resolved biochemical 

information [15]. Due to its hybrid nature, i.e., optical excitation and acoustic detection, the 

optoacoustic imaging technology benefits both from the rich and versatile optical contrast and high 

(diffraction-limited) spatial resolution associated with low-scattering nature of ultrasonic wave 

propagation as compared to photon propagation [16]. 

In vascularized tissues, highly absorbing hemoglobin manifests good optoacoustic contrast. It is 

therefore natural for optoacoustics to attain high fidelity images of vascular anatomy, dynamic 

microcirculation, tumor neovascularization, as well as blood oxygenation levels deep within highly 

diffuse tissues without introduction of contrast agents [17,18]. Besides blood-related contrast, 

optoacoustics is sensitive to other intrinsic tissue contrast [19]. Nevertheless, imaging of extrinsic 

photo-absorbing agents may offer important contrast advantage and imaging specificity but would 

typically require differentiation of these agents on top of spectrally varying background tissue 

absorption. In response, the so-called multi-spectral optoacoustic tomography (MSOT) technique relies 

on the spectral identification of chromophoric molecules and particles distributed in tissue over 

background tissue absorption [15,20]. Pulses of different wavelengths are used, in a time-shared 

fashion, whereas the wavelengths are selected to sample a certain spectral characteristic in the 
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absorption spectrum of intrinsic bio-markers and reporter agents of interest. Essentially, when operated 

at multiple wavelengths, optoacoustics is capable of resolving spectral signatures of chromophores in 

three dimensions (volumetrically), i.e., it can sense color, or more precisely, listen to color.  

Despite its great promise, like ultrasound, optoacoustic imaging possesses several limitations 

related to imaging through acoustically mismatched areas, such as lungs and bones. Furthermore, even 

though spatial resolution performance here does not directly suffer from light scattering in tissue, it is 

still affected by penetration limits and signal degradation due to light attenuation. Therefore,  

whole-body imaging with optoacoustics is currently only possible in small animals whereas clinical 

applications are limited to relatively superficial, low attenuating or otherwise conveniently accessible 

areas of the body. Optoacoustic imaging is indeed a rapidly evolving area in biomedical imaging 

sciences. Its in-vivo use puts forth a number of challenging problems demanding intensive 

investigations, from imaging instrumentation, quantified reconstruction algorithms, spectral processing 

schemes, detection sensitivity, and other technical issues, to biology-related topics, such as 

effectiveness of imaging contrast approaches or animal handling. We refer an interested reader to  

some of the recently published review articles summarizing on progress of optoacoustic imaging 

applications [15,21,22]. On the technical side, while some focused reviews address the mathematical 

inverse acoustic problem [23] and quantification challenges of multispectral optoacoustic 

reconstruction methods [24], the current paper attempts to comprehensively cover the most recent 

experimentally-driven algorithmic developments in the optoacoustic field and also review some newly 

introduced image acquisition methodologies and selected practical in vivo imaging approaches. 

2. Principles of Optoacoustic Imaging 

2.1. The Optoacoustic (OA) Effect 

Optoacoustic (OA) imaging is based on absorption of light radiation in tissue and conversion of the 

deposited energy into heat (Figure 1(a)). This results in an expansion of the tissue and mechanical 

stress which propagates in the form of pressure waves. Typically, light in the visible or near-infrared 

spectrum (400 nm–1,200 nm) is used for excitation of OA responses due to the relatively weak 

absorption of biological tissues in this spectral region, also known as the optical window. Alternatively, 

tissue can be excited with energy in the radiofrequency and microwave spectra [25,26], which is 

however not included in the scope of this paper. A large variety of chromophores absorb at the optical 

wavelengths of interest, which further leads to a high contrast between different tissues with varying 

chromophore concentration. For biomedical applications, examples of usable contrast include intrinsic 

chromophores (e.g., hemoglobin in its oxygenated and deoxygenated form, melanin, fat), extrinsically 

administered agents (e.g., nanoparticles, fluorophores [27–30]) or genetically encoded markers, such 

as fluorescent proteins [31]. Vast majority of the modern OA imaging setups utilize lasers that emit 

ultra-short pulses, mainly due to a better signal to noise performance and parallelization capacity [32]. 

In this paper, we therefore limit our discussion to the theory and applications of pulsed OA sources, 

although the interested reader is indeed encouraged to explore more about OA imaging using 

modulated continuous-wave sources [33,34]. 
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Figure 1. (a) Illustration of the optoacoustic effect. The object is illuminated with a light 

pulse and photons are absorbed within the object. The optical energy is converted to 

mechanical energy and gives rise to propagating pressure waves; (b) Schematic of the main 

physical processes involved in optoacoustic imaging: The distributions of different 

chromophores contribute to optical absorption and they mix to the spatially varying 

absorption distribution. The transport of light determines the local heat distribution by both 

absorption distribution and light fluence. The deposited heat excites pressure waves which 

propagate to the detectors’ locations according to acoustic wave equation; (c) Schematic of 

a typical setup for optoacoustic imaging: A laser illuminates the object. The pressure waves 

are captured by one or many detector/s and their signals are digitized by a data acquisition 

system (DAQ). A stage moves the object relative to the detector for capturing multiple 

projections. A PC controls the imaging process and stores the data. 

 

To simplify the model of the induced pressure variations, two assumptions are usually made on the 

duration   of the laser pulse: the first is the so-called thermal confinement assuming that the heat 

conductance during a laser pulse in one image voxel does not affect the neighboring voxels  

(        , where    is the dimension of the voxels and    is the thermal diffusivity). The second is 

the so-called stress confinement assuming the volume expansion during the laser pulse to be negligible 

(      , where   is the speed of sound). With these simplifications, the initially induced pressure 

      is generally proportional to the total absorbed optical energy density     : 

                      
   

  
      (1) 
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where   is the dimensionless Grüneisen parameter,   is the isobaric thermal expansion coefficient, and 

   is the isobaric specific heat capacity. In a more general sense,   represents the combined OA 

efficiency of conversion from heat into pressure. In contrast to significant spatial variations in the 

absorption coefficient,   does not normally exhibit dramatic variations among different soft tissues, 

thus it is most conveniently assumed to be constant. Nevertheless, accounting for spatial variations in   

may still benefit the efforts on quantification of optoacoustic images [35,36]. Moreover, some studies 

attempted utilizing the strong dependence of the Grüneisen parameter on temperature in order to sense 

temperature optoacoustically [37,38]. 

For biomedical applications, it is the distribution of the absorption coefficient       that is usually 

directly related to the concentration       of the chromophores rather than the totally absorbed 

energy      . Both are related via the expression: 

                        (2) 

where               is the light fluence (or photon density),    is the scattering coefficient and   is 

the anisotropy factor. Although it might seem that      is a simple product, it depends nonlinearly on 

the absorption coefficient    because the light fluence generally depends on the underlying optical 

properties, among them    itself. Thus, it is important for image quantification purposes to account for 

the light fluence since it may considerably vary as a function of depth. Figure 1(b) summarizes the 

main contributions to the OA signal generation, which need to be accounted for when developing 

accurate image reconstruction algorithms. 

2.2. The Optoacoustic Wave Equation 

The initial goal of optoacoustic imaging is to retrieve the initial pressure distribution inside the 

object due to the absorbed laser energy. However, the generated pressure fields can normally only be 

measured outside the object. Propagation of pressure toward the detection point is described by the 

optoacoustic wave equation, which, for a non-absorbing homogeneous medium, is written as [39]:  

         
 

  

  

   
        

 

  
           (3) 

For tomographic data acquisition, the detectors are placed on a (closed) surface   surrounding the 

volume of interest. The most common detection patterns are a spherical, a cylindrical and a planar 

surface or their 2-D counterparts (Figure 2(a)). On the surface the temporal pressure profile           

          is considered known. To reconstruct an OA image from          , the initial pressure 

      satisfying: 

         
 

  

  

   
                              

                                                                        

 

  
                                                                     

                                                         

(4) 
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has to be found. To solve this partial differential equation, one usually takes advantage of the free-space 

Green’s function             . It relates the pressure at two different spatio-temporal points, i.e., 

             
                  

      
 (5) 

Consequently, the pressure profile          on the detection surface   can be directly related to the 

initial pressure       via a Poisson-type integral: 

         
 

   

 

  
         

      
 
         

 (6) 

This type of equation is known as spherical Radon transform or spherical mean transform. This  

is because contributions of all sources that are located on the surface of a sphere with radius  

             from the detector are integrated (Figure 2(b)). 

Figure 2. (a) Most common OA geometries with detectors located on a spherical, 

cylindrical or planar surface; (b) Schematic of the spherical Radon transform: The detector 

integrates over the pressure from locations with the same time-of-flight   . The pressure 

          is the sum over a sphere with radius     ; (c) Illustration of the time reversal 

principle: The initial pressure        inside the volume propagates starting from      and 

is captured on the detection surface. It becomes zero inside the volume for     . In time 

reversal reconstructions one re-emits the pressure profile on the surface in time reversed 

order starting from zero initial conditions at     and propagates it backwards in time to 

result the initial pressure at     . 
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2.3. Imaging Instrumentation 

A typical optoacoustic setup consists of several key components, an example shown in Figure 1(c). 

In the pulsed excitation mode, the tissue is illuminated by a laser emitting monochromatic pulses of 

light with a typical duration of some nanoseconds. For deep tissue imaging applications, optical 

parametric oscillators are often used to provide a tunable wavelength in the spectrum of interest with 

pulse repetition rate in the order of a few tens of Hertz and per-pulse energies in the millijoule range. 

In optoacoustic microscopy and other superficial applications, where such high per-pulse energies are 

not required, other types of sources in the microjoule and nanojoule range are considered as well, 

including high repetition passive Q-switched and dye lasers [40,41], laser diodes [42] and fiber  

lasers [43]. For tomographic imaging, the optoacoustically-generated pressure profiles are subsequently 

captured with detectors surrounding the object whereas the acoustic coupling between object and 

detector is usually ensured by water or gel medium. In contrast to ultrasonic (US) imaging, OA signal 

amplitudes are relatively low while their spectral content is broad, spanning the frequencies from 

several tens of kHz up to a hundred MHz for micron-scale structures. Thus, high sensitivity, ultrawide 

bandwidth as well as good tomographic coverage are key for ensuring image quality. In addition, for 

acquisition of spatially resolved data with any type of detector, either a single detector is scanned around 

the object or, alternatively, multiple detection elements acquire data in parallel. The latter allows fast data 

acquisition, e.g., for reconstruction of images from a single laser shot with commercially available or 

tailored detection arrays. Figure 3 illustrates the broad variety of OA setups presented in the  

literature [44–49] including OA raster scanning (Figure 3(a,c)), tomography (Figure 3(b,e,f)) and 

endoscopy systems Figure 3(d). The signals were detected optically with an interferometer for the setups 

in Figure 3(c,e), whereas in the other systems conventional piezoelectric detection elements were used. 

Two main categories of sensors are used to detect OA signals: The most commonly used type is 

based on piezoelectric elements [50,51], such as piezocomposite- or polymer-based films, which are 

also widely utilized in US imaging. This well developed technology possesses relatively low cost of 

implementation and can be readily applied for highly sensitive measurements. However their 

sensitivity scales with detector’s size, making miniaturization challenging. Of the second type are 

optical resonators and interferometry detectors like microring resonators [52,53], Fabry-Perot 

interferometers [46], Mach-Zehnder interferometers [48], or fiber Bragg gratings [54], which are 

sensitive to changes in the length of the optical path induced by pressure waves. Interferometric 

detectors usually possess ultrawideband detection characteristics and further allow all-optical 

optoacoustic imaging, in some cases also greatly simplifying delivery of the excitation light to the 

imaged object through transparent optical components. Sensitivity of interferometric detectors is not 

directly dependent upon the physical size of the detection element, which simplifies miniaturized 

designs suitable for small scale imaging, such as intravascular or endoscopic applications. On the other 

hand, interferometric detection approaches are usually difficult to parallelize in order to achieve faster 

tomography while it is also not always possible to increase detection sensitivity by integration  

of signals over large areas. Recently, other detection technologies have been introduced and 

successfully applied for optoacoustic imaging, such as capacitive micromachined ultrasonic 

transducers (CMUT) [55–57]. The advantages and disadvantages of the various optoacoustic sensor 

approaches are summarized in Table 1.  
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Figure 3. Illustration of different OA setups. (a) Schematic of the OA microscope with a 

ring-shaped illumination used by Zhang et al. for functional high resolution imaging [44]. 

Reprinted with permission from Nature Publishing Group; (b) Confocal selective-plane 

light sheet illumination and detection pattern for tomographic multispectral in vivo small 

animal imaging by Razansky et al. [45]. Reprinted with permission from Nature Publishing 

Group; (c) Illustration of the OA raster scanning system by Zhang et al. based on a  

Fabry-Perot interferometer [46]. Reprinted with permission from Optical Society of 

America; (d) Combined endoscopic system presented by Yang et al. for co-registered US 

and dual-wavelength functional OA images in vivo [47]. Reprinted with permission from 

Nature Publishing Group; (e) Schematic of the OA tomography system by Paltauf et al. 

with an integrating line detection based on a Mach-Zehnder interferometer [48]. Reprinted 

with permission from Optical Society of America; (f) Illustration of the three-dimensional 

OA tomography system by Kruger et al. for angiography of the breast based on 128 detectors 

located on a rotating hemisphere [49]. Reprinted with permission from American 

Association of Physicists in Medicine. 
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Table 1. Comparison of different sound detection technologies used in optoacoustic imaging. 

  
Piezoelectric Optical Capacitive 

 

 Bandwidth                 

 Sensitivity     

 Miniaturization     

 Cost efficiency     

 Parallelization     

 Refs [50,51] [46,53,54] [55–57]  

   Good  Medium  Poor 
 

 

Following their detection, the optoacoustic waveforms are pre-amplified and digitized by a data 

acquisition system (DAQ). For tomographic data acquisition, a motion stage can be translated or 

rotated in order to alter the position of the detector/s with respect to the imaged object or vice versa in 

order to increase the amount of the available data points (projections) around the imaged area. A 

sufficiently high number of projections and a suitable detection pattern are crucial for good image 

quality. A PC controls the acquisition process, stores the data and is used to reconstruct and render the 

images. Prior to image formation, an additional signal processing step normally takes place that may 

include some of the following: averaging over multiple pulses to enhance signal-to-noise ratio (SNR), 

denoising the signals [58,59], deconvolving the signals from electrical frequency response of the 

detector [60,61], band pass filtering to remove noise and/or enhance visibility of certain spatial 

frequency components in the images. 

3. Inversion of the Optoacoustic Wave Equation 

The first step to obtain OA images consists in reconstructing the initial pressure distribution, i.e., 

solving Equation (4) or inverting Equation (6). Since the early reconstruction approaches were 

introduced [39,62,63], plenty of research has been done on the problem in the last decade, driven from 

both theoretical interest and the need to improve images acquired from specific experimental setups. 

3.1. Types of Inversion Algorithms 

The inversion schemes are usually based on idealized assumptions of infinitely small point detectors 

located on a closed measurement surface and a non-absorbing homogeneous acoustic medium. 

Modifications for deviations from these idealized assumptions will be further presented below. 

An inversion formula was initially presented by Norton et al. for ultrasonic imaging [62]. The basic 

idea is to represent the solution       as a convergent series: 

          

 

      (7) 

where       are eigenfuctions of the negative Laplacian    in the domain of the measurement 

geometry and    are the so-called Fourier coefficients. The coefficients    can be calculated from 

        . Although it has been shown that series solutions exist for arbitrary closed detection  



Sensors 2013, 13 7354 

 

 

surfaces [64], only the geometries with known eigenfunctions (sphere, cylinder, plane) are usually of 

practical experimental interest [63–67]. 

For a planar detection geometry, this approach results in a fairly simple reconstruction algorithm. 

First, the signals           are transformed to Fourier space in  ,   and   coordinates, resulting in 

           . Second, the temporal component is mapped to its corresponding spatial coordinate with 

the dispersion relation         
    

    
  , resulting in             . Finally, the reconstruction is 

obtained by applying the inverse Fourier transform in all three spatial coordinates. In this way, fast 

reconstructions of 3D volumes can be obtained using an FFT algorithm. A similar FFT-based approach 

has been presented by Kunyansky [64] for a finite cube used as the detection surface instead of an 

infinite planar surface which has to be truncated in practical cases. For a spherical measurement 

geometry, Wang et al. have recently derived a simple FFT-based algorithm in the frequency domain [68]. 

Another approach is based on closed-form analytical filtered back-projection (BP) formulae in the 

time domain [69–73]. This type of formula is commonly used in computed x-ray tomography to invert 

the classical Radon transform. Similar to Equation (7), the initial pressure is obtained by integrating 

the detected signals over spherical surfaces. Prior to or following the integration, a filter function is 

applied. The first exact back-projection formulae were obtained by Finch et al. for a sphere in  

3-D [69] and later also in 2-D [70]. Xu et al. presented an approximate BP formula for a spherical 

detection geometry [72], which was later generalized to the widely used universal back-projection 

(UBP) formula [73]: 

      
 

    
     

 

 
  
        

 
 

         

  
  

         

 (8) 

The latter scheme can be efficiently applied to spherical, cylindrical or planar (with    replaced 

by    ) geometries. In the far-field approximation with detectors located far from the object, only the 

derivative term in Equation (8) contributes significantly.  

Time reversal inverse methods are based instead on the Huygens’ principle [74–76]: In three 

dimensions, the waves from an initial pressure distribution      , confined inside a finite volume  , 

will leave the volume after a finite duration   while the pressure        inside the volume will vanish 

for    . Although Huygens’ Principle does not hold in two dimensions, the pressure inside the 

volume usually decays fast enough to result in good reconstructions for large    . Time reversal 

methods aim in solving Equation (4) backwards in time: Starting from zero initial condition at time 

   , the pressure distribution is propagated backwards in time step-by-step, reemitting the pressure 

profile          on the detection surface for each time point (Figure 2(c)). Arriving at    , the 

pressure distribution        equals the sought-after initial pressure      . Time reversal methods can 

be implemented by finite differences methods [75] or by k-space methods [77], which accelerate 

inversion by using larger time steps, and furthermore offer greater flexibility as they generally work 

for arbitrary closed measurement surfaces. 

Whereas series solution or the back-projection formulae perform an approximated inversion of 

Equation (6) analytically, the so-called model-based (MB) algorithms seek instead for an accurate 

numerical solution [78–80]. Rosenthal et al. presented an algorithm that is based on a discretized  

semi-analytical forward model    of the wave propagation that linearly maps the discretized initial 

pressure     to the corresponding discretized signals     [79]. Numerical models can also be obtained by 
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finite element (FE) calculations of Equation (4), which can be implemented in the time or frequency 

domain [81–83]. The image is then reconstructed by finding a solution that minimizes the difference 

between the measured data     and the pressure corresponding to the forward-modeled image    : 

          
   

            
 

        (9) 

In Equation (9),   is an optional regularization term, such as Tikhonov or total variation regularization, 

which is intended for stabilization of the numerical inversion. The solution can be calculated via the 

Moore-Penrose pseudo-inverse     [84]. Although calculation of     may become burdensome in terms 

of CPU time and memory consumption, it needs to be calculated only once for a given experimental 

system. Then the reconstruction process reduces to a simple and fast matrix-vector multiplication: 

           (10) 

Alternatively, the solutions can be calculated iteratively, for example with the LSQR algorithm [85] 

that takes advantage of the sparse nature of the model matrix. Benefiting from the advances in 

computation technology, MB algorithms have drawn considerable interest in the recent years because 

of their flexibility to account for a broad variety of experimental imperfections in the model. However, 

their drawbacks are often associated with longer calculation times or a considerable consumption of 

memory needed to store the model (or its pseudo-inverse), especially when considering the full three 

dimensional problem [82].  

3.2. Computational Efficiency 

Besides image quality and technical feasibility, computational efficiency is yet another important 

criterion determining applicability of the different methodologies, especially when dealing with large 

3D datasets [86] or in applications involving real-time rendering of images. For instance, different 

approaches can be characterized by their algorithmic complexity in reconstructing 3-D datasets-      

for series solutions,       for BP algorithms,       for time reversal methods and       for 

calculating the pseudo-inverse in MB algorithms. The series solutions can result in particularly fast 

algorithms whenever fast methods for summation of the eigenfunctions are applicable (e.g., FFT), 

resulting in low complexity in the order of            [63,64,67]. In addition to the algorithmic 

complexity, additional implementation aspects include the different memory consumption 

requirements between algorithms that only involve standard linear algebra operations for inversion, 

such as BP, versus the extensive memory size needed to store matrices for some MB schemes. The 

graphic processing units (GPUs), which are increasingly used in medical imaging in the recent years 

due to their vast computational power [87,88], are expected to mitigate or significantly reduce 

complications concerned with computational complexities in optoacoustic imaging. 

As mentioned above, MB algorithms offer better reconstruction accuracy and flexibility in 

accounting various experimental imperfections; however they demand large computational resources. 

Consequently, methods to overcome this problem have been presented. Wang et al. proposed a method 

that circumvents storing the large model matrix by approximating voxels in the image by means of 

spheres, whose corresponding pressure profiles are known analytically [80]. For the GPU 

implementation of their algorithm they reported a runtime of 313 min per iteration for a 3-D high 

resolution data set, whereas the corresponding BP reconstruction took only 46 s [87]. Rosenthal et al. 
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developed an efficient framework for model-based inversions based on wavelet packets [89].  

In this case, both the image and the signals are decomposed into a two-level wavelet-packet basis.  

The model matrix is approximately block-diagonal in this basis and thus an approximate inverse  

matrix can be calculated (and stored) easily. From the obtained inverse, the image is directly  

calculated in a more efficient and faster manner and can be then further improved iteratively.  

The authors reported a runtime of 0.1 s for a 2-D data set by direct reconstruction from the approximate 

inverse, which constituted a 40-fold increase in the reconstruction speed as compared to the regular 

iterative MB algorithm. 

3.3. Reconstructions with Finite-Sized Detection Elements 

Due to mathematical and numerical simplicity, most inversion schemes assume infinitely small 

point detectors. Conversely, in experimental reality, larger detector sizes are often preferable as they 

lead to a better detection SNR, which in many cases scales with detector size. Furthermore, large area 

detectors are also required for focused detection geometries. For instance, if the object is placed in the 

focal zone of a cylindrically focused detector (Figure 4(a)), the signals acquired by the detector 

originate only from a small region close to the imaging plane. The reconstruction is thus effectively 

reduced to a 2-D problem. So data acquisition and image rendering can be performed faster or even in 

real-time [90–92]. OA microscopy setups often use spherically focused detectors which are in first 

approximation only collecting signals from a line, in which case images can be formed without 

complicated reconstruction algorithms. However, simplified assumptions readily lead to out-of-plane 

(out-of-focus) artifacts in the images, loss of quantification, highly anisotropic resolution and 

degradation of the overall image quality. 

Li et al. introduced the virtual detector concept to OA [93–95] in order to improve the reconstructions 

from focused detectors outside the focal point (Figure 4(b)). The detected signals are assumed to 

originate from a virtual point detector located in the focal spot, delayed by the time corresponding to 

the focal distance. These signals can then be used to form an image, e.g., by a simple delay-and-sum 

algorithm for OA microscopy or a back-projection algorithm for tomographic reconstructions. 

A very straightforward reconstruction approach can be applied for flat detectors with dimensions 

much larger than the object (in contrary to point detectors with dimensions much smaller than the 

object). The so-called integrating line detectors (Figure 4(c)) simultaneously record signals along a line 

thus effectively the pressure field of the object integrated along a certain axis [96,97]. A complete 

tomographic data set is subsequently obtained by rotating the detectors’ orientation. The reconstruction 

process is then performed in two steps: First, the integrated 2-D images are reconstructed for a given 

detector orientation with an arbitrary 2-D method. In a second step, the 3-D reconstruction is obtained 

from the integrated 2-D reconstructions for all detector orientations with the inverse Radon transform. 

Alternatively to line detectors, detection elements, that are integrating in two dimensions or integrating 

in one and focused in the second dimension, have been suggested as well [98,99]. 
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An interesting approach, which is also based on detection of integrated pressure fields, was 

presented by Nuster et al. [100]. Instead of detecting a time-resolved integrated field along a certain 

line, the approach consists of recording the full field at a given time instant    using a CCD camera. In 

this way, the integrated acoustic pressure field   
   

            is detected in a direction perpendicular 

to the imaging plane.    is chosen in such a way that essential parts of the waves have already left the 

reconstruction domain. A volumetric image can be then reconstructed from a few simple steps: (1) The 

2-D pressure field is integrated (Radon transform) along a fixed direction in the imaging plane. (2) The 

integrated 1-D signals are back-propagated in time from      to     using D’Alembert’s formula, 

which results an integrated 1-D image. (3) An integrated 2-D image is obtained by the inverse Radon 

transform from the integrated 1-D images for all in-plane directions. (4) A final 3-D image is reconstructed 

by the inverse Radon transform from the 2-D images for all orientations of the imaging plane. 

Figure 4. (a) Selective-plane detection scheme: The object is placed in the focal zone of a 

focused detector. Only the signals arising from a narrow region around the imaging plane 

are detected. Thus the reconstruction is reduced to two dimensions; (b) Illustration of the 

virtual detector concept: Signals measured with a large focused detector are assumed to be 

detected by a virtual point detector in the focal point with the signals delayed by a time 

according to the focal distance; (c) Schematic of an integrating line detector setup: The line 

detectors detect the signals of the object integrated in z-dimension. A complete set of data 

is obtained by rotation of the object relative to the detectors.  
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Rosenthal et al. presented a generalized method that allows accounting for arbitrary-shape  

detectors [101]. It is based on including the effects of the exact detector shape in the forward model of 

a model-based inversion approach by temporal convolution. As a result, image artifacts related to finite 

detector size can be readily eliminated using this universal approach, while also improving spatial 

resolution of the images. 

3.4. Effects of Heterogeneous Acoustic Properties 

In real tissues, acoustic properties may significantly deviate from the idealized homogeneous 

properties initially assumed in the governing equations, which may lead to deterioration of the image 

quality. Indeed, speed of sound   may vary considerably for different types of tissue within a range of 

1,400–1,600 m/s and be also spatially dependent        ) [102]. Information on the speed of sound 

within the object can be obtained using various approaches, e.g., from a priori knowledge on the 

object, ultrasound or hybrid measurements [103,104], auto-focusing approaches [105] or can be 

reconstructed from the signals by a combined FE approach [106]. Although simplified series solutions 

exist in principle for optoacoustic reconstructions with variable speed of sound [107], iterative and 

time reversal methods were further shown efficient for this purpose [75,77,108]. 

An additional effect taking place is attenuation of the optoacoustic waves as they propagate through 

the tissue. Often these effects are also dispersive, i.e., acoustic attenuation increases with frequency, 

which is usually modeled by exponential attenuation with a power-law of   ,       [102]. The 

penetration depth from which acoustic waves can be detected also limits the imaging depth. Since the 

maximum OA resolution is determined by the frequency content of the signals [109], the resolution 

thus scales with depth. Time-gain compensation applied in US imaging cannot be used for OA signals 

because they are generally broadband. Instead, the attenuation is accounted for by adding a dissipation 

term in the time domain for time reversal methods [76] or by a complex frequency-dependent 

dispersion relation in an iterative approach [110]. 

In media with heterogeneous acoustic properties, scattering and reflection of the acoustic waves 

may occur at boundaries of highly mismatching media. Examples include bones or air cavities such as 

the lung. Wang et al. studied the effects of reflection at soft and hard boundaries and were able to 

considerably improve image quality in the presence of reflections at planar boundaries [111], which 

might however not always be applicable to realistic imaging scenarios. Anastasio et al. showed that 

tomographic OA signals, acquired from multiple view angles (projections), contain complementary 

information thus images can be equally reconstructed from truncated signals, which may improve 

image quality in heterogeneous acoustic media due to data redundancy principles [112]. Dean-Ben et al. 

presented a statistically weighted BP algorithm that efficiently accounted for strong acoustic 

reflections [113,114]. The algorithm weights each detected signal by a factor that represents the 

probability of the signal being undisturbed during propagation. In this way, reconstruction artifacts 

arising from scattering can be suppressed (Figure 5). 
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Figure 5. OA reconstruction of a zebra fish in the highly mismatching region of the swim 

bladder by Dean-Ben et al. [113]. (a) Reconstruction with universal back-projection 

algorithm (1–3: reconstruction artifacts; 4: smeared region near the liver; 5 + 6: pectoral 

fins); (b) Reconstruction with the statistically weighted back-projection algorithm 

accounting for the acoustic mismatch and reducing the image artifacts. Reprinted with 

permission from IEEE. 

 

3.5. Tomographic Reconstructions in Limited View Geometries 

Ideal tomographic imaging scenarios assume that the object is fully surrounded by detectors on a 

closed surface, creating the so-called full-view scenario. Full view detection is favorable for the 

reconstruction process but cannot always be realized in experimental conditions, e.g., because the 

imaged region is simply not accessible for efficient detection from all directions or cannot be fully 

immersed in water for efficient acoustic coupling to the detectors. Such scenarios are known as limited 

view reconstructions and the inversion has to be performed with an incomplete set of data. 

Xu et al. investigated the effects of limited view in an OAT setup with detectors on a truncated 

circle (Figure 6(a)) [115]. It has been found that regions enclosed by the detection surface can be 

recovered stably. Sharp boundaries of the object are thus visible in the reconstructions if they are 

facing the detection surface but turn invisible if they are perpendicular to the detection surface.  

Buehler et al. showed that limited view reconstructions suffer from stripe artifacts  

(Figure 6(b)) [116]. The artifacts were reduced using a MB approach with a regularization term that 

suppresses ripples in the direction of the artifacts. Alternatively, total variation regularization terms can 

be applied in limited view scenarios to stabilize the inversion and reduce the artifacts [117]. Closed 

form reconstruction formulae can be also optimized for limited view scenarios. Paltauf et al. presented 

a BP approach that weights the signals with a smooth function before back-projecting [118]. The 

weighting function needs to consider whether complementary data from an opposite direction are 

available or these projections are missing. This approach may reduce artifacts resulting from the 

limited view while also preserving the simple BP implementation. Kunyansky presented an approach 

for non-closed detection surfaces based on single-layer potentials which, however, necessitates a  
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non-trivial step of finding and calculating such potential [119]. Haltmeier et al. presented an efficient 

algorithm for a truncated planar detection geometry based on a nonuniform FFT that reduces the 

limited view artifacts while keeping computational efficiency of the fast Fourier methods [120]. 

Figure 6. (a) Illustration of a limited view setup with detectors located on an open arc 

(solid blue line). Only the region covered by the detectors (shadowed area) can be 

reconstructed in a stable way. Sharp boundaries facing the detection surface (solid red 

lines) are visible whereas boundaries not facing the detection surface (dashed red lines) are 

invisible; (b) Reconstruction of (a) with a model-based inversion without regularization. 

Stripe artifacts arise due to the limited view geometry [116]. Reprinted with permission 

from American Association of Physicists in Medicine. 

 

3.6. Compressed Sensing Reconstruction Approaches 

Recent reconstruction algorithms for OA have been also driven by the rapidly growing field of 

compressed sensing (CS) [121,122], which had been so far successfully applied to biomedical imaging 

in the field of MRI imaging [123]. Provost et al. were the first to suggest a CS scheme in OA  

imaging [124], followed by contributions from other groups [125,126]. The basic idea of CS is that 

images     can be represented by only a few large coefficients in a suitable basis instead of many small 

coefficients. CS exploits sparsity of the images based on a certain model    in that basis. Instead of 

minimizing the residual for an image in   -norm (      , Euclidian norm) only, CS also enforces the 

sparsity of the retrieved image by concurrently minimizing the   -norm (      , Taxicab norm) of the 

image. Thus, instead of Equation (9), one has to minimize: 

          
   

            
 

            
(11) 

where      is the representation of the image in the CS basis and   is a scalar regularization parameter. 

Equation (11) can be solved by nonlinear minimization methods, which typically require longer 

calculation times as compared to just solving Equation (9). In comparison to standard image 

reconstruction methods, CS approaches have further shown reduction of artifacts in images when 

reconstructing from only a few tomographic projections (Figure 7). Thus, by reducing the number of 

acquired projections, these approaches hold great promise for dramatic reduction of image acquisition 

and reconstruction times as well as instrumentation costs. 
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Figure 7. Reconstructions from highly undersampled data by Provost et al. [124]. The left 

and the right column show a Shepp-Logan phantom and a photograph of a cat brain, 

respectively. (a,b) Original images; (c,d) Reconstructions with pseudo-inverse of the 

model matrix; (e,f) Reconstructions using compressed sensing. Reprinted with permission 

from IEEE. 

 

4. Accounting for the Transport of Light 

The last section has been entirely devoted to the acoustic part of the optoacoustic phenomena, i.e., 

reconstruction of the initial pressure distribution and the deposited heat      in the imaged object 

from the detected signals           . Nevertheless, understanding processes behind the optical 

counterpart governing propagation of the excitation light is equally important, mainly for two reasons. 

First, since photons are absorbed as they propagate in tissue, the depth at which a sufficient number of 

photons is left to excite a detectable signal limits the effective penetration depth of the imaging 

modality. Second, as stated earlier, the eventual goal of optoacoustic tomography is retrieving 

distribution of the optical absorption coefficient       in the imaged object, which can be further 

related to distribution of the various chromophores and bio-markers in tissues. But the inversion 
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process, described in the previous section, only retrieves maps of the deposited energy       , 

not       . Both distributions are related by the light fluence              (see Equation (2)), which 

generally depends on the optical properties of the medium. In order to accurately quantify the values of 

the optical absorption coefficients and the corresponding concentrations of tissue chromophores, one 

needs to correct for the light fluence, which may vary considerably versus imaging depth. The reader is 

referred to a review article on that issue by Cox et al., which has been published recently and covers 

the subject of image quantification in more detail [24]. 

4.1. Models of Light Transport 

Several approaches exist to describe transport of light in diffusive tissues, which account for both 

absorption-which is mainly responsible for the contrast-and scattering processes. For visible and  

near-infrared light propagating in biological tissues, scattering can be typically considered as the 

dominant process. As depicted in Figure 8(a), one distinguishes between two main regimes of light 

transport: ballistic photons that have not been scattered and diffuse photons that have undergone 

multiple scattering events before being absorbed. At depths relevant for deep tissue OA tomography, 

typically between several millimeters to several centimeters, diffuse photons are dominant. 

Figure 8. (a) Illustration of different light transport regimes. Light incident on tissue 

exhibits both scattering and absorption processes. Ballistic photons are absorbed close to 

the surface and are not scattered. Photons penetrating deep into the tissue are scattered 

multiple times before being absorbed and their propagation can be modeled by the light 

diffusion equation (LDE); (b) Depth profile of the light fluence with light incident on a 

highly scattering homogeneous object. For an effective absorption coefficient  

(            ) the light fluence drops exponentially to     after    cm, limiting the 

effective penetration of light in tissue to few centimeters. 

 

One frequently applied approach to model the transport of diffuse light is the Monte Carlo (MC) 

method, which simulates a random walk of a great number of photons through the scattering  

tissue [127–129]. The ensemble of all simulated paths results in the light fluence. Although MC 

calculations can be easily parallelized and optimized, they generally require an enormous calculation 

effort, which cannot be performed in real time. 
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An alternative description is given by the time-independent radiative transfer equation (RTE) 

derived from the Boltzmann equation (see Equation (9) in [24]). It models the light transport as 

integro-differential equation and holds for both ballistic and diffuse photons [83,130–132]. 

Because of the dominating scattering process, light transport in OA is most often modeled by a 

simpler approximation to the RTE, the so-called light diffusion equation (LDE) [133,134]: 

                                 (12) 

where       is a source term and              
   

  
 is the diffusion coefficient (with the 

reduced scattering coefficient expressed via   
          ). For light incident upon a  

homogeneous scattering half-space, expression for the light fluence can be readily simplified as  

                     -well known as Beer’s law-with an effective absorption coefficient  

                 
   . For instance, if        cm

−1
, the light fluence will drop to     of its 

maximal value after 1 cm (Figure 8 (b)). In this case, light penetration depth in tissue will be limited to 

a few centimeters. 

If collimated light is incident on the object, the LDE is not accurate for depths close to the surface, 

where the light has not fully diffused. The  -Eddington approximation is a higher order approximation 

to the RTE providing better results in the so-called mesoscopic region, typically up to a few millimeters 

in most tissues [135,136]. 

4.2. Model-Based Correction Schemes 

Given a certain light transport model and      , Equation (2) needs to be solved for retrieving    . 

In general, this means solving a non-linear problem because    also non-linearly and implicitly 

depends on      via the light fluence             . Various methods aim at obtaining both       

and       simultaneously or only       for a given       . 

The solution is trivial for superficial imaging applications where only ballistic photons are of 

interest, e.g., as in case of optical resolution OA microscopy [137]. Alternatively, simple correction 

schemes, accounting for the drop of light fluence with depth, can be applied, e.g., analytical solutions 

to the LDE considering only the average optical properties of the medium [20]. 

A more complex light transport model can be also solved by an iterative fixed point  

calculation [135,136]. Here, the unknown       is first written as an explicit function: 

                        (13) 

A better approximation of the unknown       is then obtained with each additional iteration and is 

subsequently used as an improved estimate for the right-hand term in the next iteration. Similarly, the 

problem can be treated in a linearized way by expanding    and   as a Taylor series  

(            ,           ). The problem can be linearly solved then for small perturbations 

    and    from their known solutions      and   . The fluence deviation     is assumed either as 

unchanged or as being linearly related to     in the Born approximation. The solutions can be then 

obtained by a standard FE method [138,139]. 
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Instead of separately treating the acoustic and the optical inverse problem, the solution can also be 

obtained in a hybrid manner. Laufer et al. presented a combined algorithm for modeling distributions 

of both the light (FE method) and the generated pressure field (k-space method) [140]. The method 

directly recovers the optical parameters quantitatively by iterative non-linear minimization of the 

difference between the computed and the measured pressure profiles. 

Yet, optoacoustics is a high resolution imaging modality, which makes accurate modeling of the 

light transport and quantification of OA images challenging. If the various models and equations used 

in the reconstruction process are not too far away from the experimental reality, the estimate for        

is expected to converge to a stable solution and obtain a good approximate after only a few iterations. 

In some other cases, solution for the absorption coefficient was shown to be divergent [138] or 

otherwise the solution was found to be non-unique and ill-posed when trying to recover    and    

simultaneously [141]. 

4.3. Other Approaches 

The importance of knowing the light fluence in real experiments and the challenges with modeling 

light propagation in optically heterogeneous tissues have led to some alternative approaches attempting 

to correct for light attenuation. 

One method to increase the amount of available information regarding optical properties of the 

imaged tissues is to use multi-illumination patterns [139,141,142]. The object is illuminated from 

different angles with light of the same wavelength. Bal et al. presented an approach that can—under 

some assumptions—recover the optical properties from a multi-illumination pattern in a non-iterative 

way [35]. Alternatively to multi-illumination patterns, the inversion process can also be done simultaneously 

for multi-wavelength illumination with knowledge on the spectral dependence of the optical 

parameters (see next section). 

Rosenthal et al. presented a blind separation approach which does not consider any particular light 

transport model [143]. Instead, it is based on a fairly realistic assumption that the light fluence      is 

a slowly varying function of space whereas the absorption coefficient       has mainly high  

spatial frequency components. The idea is to sparsely represent a logarithmic representation of the 

reconstructed optoacoustic image         in a set of two bases, a wavelet basis       and a Fourier 

basis      , i.e., 

                                   

 

   

          

 

   

 (14) 

where the coefficients    are attributed to the absorption coefficient       and    to the light fluence 

    . In this way, both the absorption and the light fluence can be reconstructed from the OA image 

blindly (Figure 9), without modeling the light propagation in tissues. 
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Figure 9. Sparse decomposition of an OA reconstruction presented by Rosenthal et al. to 

determine both the light fluence and the absorption coefficient [143]. (a) Schematic 

description of the phantom used; (b) OA reconstruction of the deposited heat in the 

phantom; (c) Recovered light fluence represented sparsely in a Fourier basis; (d) Recovered 

absorption coefficient represented sparsely by Haar wavelets. 

 

Cox et al. suggested a method that directly ‘measures’ the local light fluence [144]. Its key 

component is a chromophore whose absorption has a highly non-linear dependence on the light fluence 

at a certain threshold intensity. With increase of the illumination intensity, the chromophores are 

‘switched’ on (or off) at positions where the local light fluence crosses that threshold. The applicability 

of this approach however requires the availability of a contrast agent with such highly  

non-linear absorbance. 

Another approach is to experimentally determine the light fluence using a hybrid imaging approach 

that also accommodates diffuse optical tomography (DOT) [145–147]. Because of their purely optical 

nature, DOT images are heavily affected by light diffusion thus cannot provide the same spatial 

resolution as OA. But they can be instead used to improve quantification of OA images. Maslov et al. 

implanted an absorber with known optical parameter in tissue at depth to investigate the effects of light 

fluence [148]. Although being an interesting experimental exercise, this invasive method seems 

impractical for in-vivo imaging applications. 

5. Multispectral Processing in Optoacoustic Imaging 

The contrast in OA stems from differential light absorption and can be of either intrinsic or extrinsic 

nature. Figure 10 shows the absorption spectra of the most dominant intrinsic absorbers in tissue in the 

visible and near-infrared range. 
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For many applications, the blood-related absorption is of particular interest, providing valuable 

physiological or functional information. The main challenge arises from the fact that, at any given 

wavelength, more than one chromophore contributes to the total absorption coefficient      . For 

instance, at 800 nm, the oxygenated (HbO2) and the deoxygenated (Hb) forms of hemoglobin 

contribute equally to absorption and thus are indistinguishable using single wavelength measurements. 

Therefore, it is the concentrations of the different chromophores       , not the total absorption       , 

which is mainly of interest from the biological point of view. This relation may be expressed via linear 

superposition of the different chromophores: 

                                     

 

 (15) 

where       are their wavelength-dependent molar extinction coefficients and            is the 

residual (background) absorption, which might also include noise. To differentiate between 

contributions of different chromophores, their distinct spectral dependence on wavelength can be 

assessed [11,149]. This multi-wavelength approach is known as multispectral optoacoustic 

tomography (MSOT) or spectroscopic imaging [148,150–152]. The process of recovering       from 

multispectral measurements is known as unmixing. It can be combined with calculation of the light 

fluence or treated as a separate image processing step. 

Figure 10. Spectra of dominant intrinsic absorbers in biological tissue in the visible and 

near-infrared range. Chromophores can be distinguished by their different spectral 

dependence of the absorption coefficient on the wavelength (data taken from [20,153]). 

 

Due to versatility and wide availability of optical molecular agents, sensitive and accurate spectral 

processing to recover concentration of extrinsically-administered agents may enable longitudinal 

molecular imaging studies. This can be done by resolving accumulation of agents with specific  

spectral signatures, such as targeted and activatable fluorescent molecular agents, nanoparticles or  

genetic markers. 
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5.1. Unmixing with Known Spectra 

If spectra of the different components (chromophores) are known, their concentrations can be 

directly calculated from the OA absorption images. In some special cases this step is rather trivial, e.g., 

if the certain chromophore of interest is entirely dominant over other absorbers at a given wavelength 

or if one is only interested in the total blood concentration measured at the isobestic point, for which 

Hb and HbO2 are equally absorbing. 

The simplest multispectral OA imaging approach was presented by Kruger et al. and consisted of 

subtracting the images obtained at two different wavelengths [13]. It was used to recover distribution 

of an optical agent, having sharp variations in its absorption spectrum, over wavelength-independent 

absorbing background. A similar approach proved efficient for detection of dynamic contrast based on 

a pump-probe excitation [154,155]. Here, a phosphorescent chromophore was pumped to an excited 

state with a laser pulse at the pump wavelength. The transient absorption of the excited chromophore 

was then probed with a slightly delayed second laser pulse with a different wavelength. The dynamic 

contrast can be extracted by subtracting the pump-only absorption from the combined pump-probe 

absorption. Also, it is well known that blood oxygenation level      is independent of the total 

concentration of Hb and HbO2 but only depends on their ratio, i.e., 

     
     

     
    

 (16) 

Consequently, the oxygenation level can in principle be obtained from the ratio of OA images 

acquired at two different wavelengths. 

Despite its relative simplicity, the image subtraction method cannot provide quantitative 

measurements of distribution of several chromophores. The approach can be thus generalized to an 

arbitrary number of chromophores with unknown concentrations and known spectra [44,45]. In this 

way, for a given set of wavelengths, the concentrations are linearly fitted to Equation (15) on a per-voxel 

basis using a linear regression method. This can be efficiently realized with a matrix relation: 

        
    

 

 
(17) 

where    and     are respectively the concentrations of the components and the absorption coefficient 

in a certain reconstructed image voxel.    
  is the Moore-Penrose pseudo-inverse of the spectra matrix   

derived from the components’ molar extinction coefficients. In general, the number of measured 

wavelength should be greater than the number of chromophores. 

5.2. Blind Unmixing Methods 

In many cases, the absorption spectra of all the absorbing components present in the imaged object 

may not be exactly known. As a result, the unmixing method needs to simultaneously retrieve both the 

chromophore concentrations and their spectra. In contrary to the previously presented methods, the  

so-called blind unmixing methods do not operate on a per-voxel basis but exploit the statistical 

properties of a set of images without requiring prior knowledge of the spectra. 

Glatz et al. investigated the performance of blind spectral unmixing on OA images using two 

multivariate methods [156]. Principal component analysis (PCA) is based on the assumption that the 
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different chromophore distributions are statistically uncorrelated [157] and yields an orthonormal 

transformation into a new base, in which the largest data variance is projected onto the first principal 

component, the largest remaining variance onto the second one, and so on. In this way, the spectrally 

correlated measurement data are unmixed by being transformed to the uncorrelated components. 

Similarly, independent component analysis (ICA) is based on a more general assumption that  

the source components are statistically independent [158]. Consequently, the spectrally mixed 

measurement data are transformed to statistically independent source components. Both methods are 

able to recover the spectra of the different components via the transformation matrix and their 

concentrations via the transformed images. Figure 11 summarizes the results obtained with the linear 

fitting, PCA and ICA algorithms. 

Figure 11. Comparison of the unmixing performance for different algorithms by  

Glatz et al. [156]. They implanted two insertions containing ICG and Cy7 in the neck area 

of an euthanized mouse and imaged the region multispectrally. The rows (top to bottom) 

show the components corresponding to background, ICG and Cy7, respectively. The 

columns show (left to right) the performance of linear fitting from known spectra and of 

blind methods with a PCA and an ICA algorithm, respectively. Reprinted with permission 

from Optical Society of America. 

 

6. Selected Biomedical Applications 

In this section, we shortly highlight several representative examples of the emerging optoacoustic 

imaging applications while a more comprehensive review on biomedical applications of optoacoustics 

can be gained from other recently published review articles [15,21,22,152]. 
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Figure 12. (a) Functional OA microscopy by Zhang et al. [44]. Structural in vivo image of 

rat vasculature taken at 584 nm (top). Functional vessel-by-vessel       mapping based on 

a linear fitting of four different wavelengths (bottom). Reprinted with permission  

from Nature Publishing Group; (b) In vivo detection of fluorescent proteins by  

Razansky et al. [45]. OA images of the hindbrain area of a mCherry expressing zebra fish 

for five different slices taken at 585 nm (left). Selected slice and its corresponding 

histological section (top right). MSOT image of the brain with mCherry expression shown 

in color and its corresponding epi-fluorescent histology (bottom right). Reprinted with 

permission from Nature Publishing Group. 

 

Naturally, the best intrinsic tissue contrast arises from highly absorbing hemoglobin, thus blood is 

clearly visible in the images. Functional OA microscopy is thus geared towards investigation of 

vascular structures, providing an excellent intrinsic contrast and a high spatial resolution in the order of 

some tens of µm and penetration of several millimeters into scattering tissues. In order to obtain high 

resolution 3-D images, a single spherically-focused high frequency detection element is mechanically 

raster-scanned along a plane [30,44,137,159]. Significantly higher spatial resolution is further achieved 

by using a tightly focused optical illumination spot, resulting in the so-called optical resolution 

microscopy. Despite providing much better spatial resolution in the sub-micron range, similarly to all 

the other optical microscopy techniques, the latter method suffers from limited penetration depth of 

only several hundreds of microns due to intense photon scattering in biological tissues. An example of 

a typical acoustic resolution in vivo functional optoacoustic microscopy system [44] is shown in  

Figure 3(a). A tunable laser generated pulses of 6-ns duration which passed through a fiber and formed 

a ring-shaped illumination pattern to suppress OA signals from the surface. A coaxially aligned 

focused 50-MHz central frequency detector acquired time-resolved one-dimensional signals. The 

transducer was scanned in 50 µm steps in the x-y plane to form a 3-D image without an inversion 

algorithm needed. With this setup, subcutaneous vasculature of a Sprague-Dawley rat was demonstrated. 

Figure 12(a) shows the structural image obtained at the isobestic wavelength of 584 nm in grayscale 

and the functional      image obtained by a linear fitting to four different wavelengths in color. The 

     levels obtained were 0.97 and 0.77 for arterial and venous blood, respectively. Changes in      
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for hypoxic and hyperoxic conditions of the animal were successfully tracked, offering interesting 

prospects for non-invasive functional brain imaging. 

Preclinical whole-body imaging of small animals with multispectral optoacoustic tomography 

(MSOT) systems is yet another key application of OA imaging. These systems can provide tomographic 

images with a resolution in the order of hundred µm for depths between several millimeters to several 

centimeters. Possible applications include monitoring of tumor hypoxia, drug response or molecular 

targets in biological model organisms [14,20,45,160]. The ability of MSOT to visualize deep-seated 

fluorescent proteins with high resolution has also been demonstrated [45]. The setup utilized a  

selective-plane light illumination and a confocal ultrasound detection pattern (Figure 3(b)). An OPO 

laser provided 8-ns laser pulses of tunable wavelength and the signals were captured by rotating a  

3.5-MHz central frequency transducer around the object in 3° steps for multiple slices. The images for 

multiple wavelengths were reconstructed with the UBP algorithm and unmixed with a linear fitting on a 

per-pixel basis. In this way, a transgenic three-month old zebra fish expressing mCherry fluorescent 

proteins in the vertebral column was visualized in vivo. Figure 12(b) shows the structural OA image of 

the hindbrain at 585 nm and its corresponding histological slice (top row). The multispectral OA imaging 

has accurately attained the mCherry expression, which has also well corresponded with the findings from 

epi-fluorescent histology (bottom row). 

Figure 13. Comparison between optical imaging and MSOT for imaging of a targeted 

apoptotic marker (PSS-794) in 4T1 tumor-bearing mice by Buehler et al. [161]. (a) High 

resolution MSOT image shows the superposition of a single-wavelength (anatomical) 

optoacoustic image (in gray scale) and the unmixed component corresponding to the  

PSS-794 signal (in color); (b) Corresponding epi-fluorescent image; (c) Reconstruction from a 

hybrid FMT/XCT modality; (d) Planar trans-illumination image. Reprinted with permission. 

 

Buehler et al. presented the capabilities of MSOT for targeted molecular imaging in real time [161]. 

In the in vivo mouse experiments, a ring-shaped illumination was provided by a tunable OPO  

(680–950 nm, 10-ns, 10 Hz) and delivered through a fiber bundle. A 64 element transducer array  
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(5-MHz central frequency) covering 172° solid angle detected the signals in parallel without 

multiplexing. The CD-1 nude mice containing 4T1 tumor allografts were wrapped in a transparent 

membrane to prevent direct contact of the mouse with water. A near-infrared apoptosis targeting probe 

(PSS-794, 50–100 nanomoles [162]) was injected in three mice at different time points. The images were 

reconstructed using a model-based algorithm and unmixed with an ICA spectral unmixing algorithm. 

Figure 13(a) shows the MSOT image containing both high resolution anatomical and functional 

information for a tumor-bearing mouse with PSS-794 probe. From the MSOT images (Figure 13(a)), it 

was clearly determined that the PSS-794 probe mainly accumulated in the blood vessels surrounding the 

tumors and did not infiltrate into the tumor mass. On the other hand, the use of three-dimensional  

optical tomography (FMT) has not attained the sufficient spatial resolution that would determine the 

precise location of the probe (Figure 13(c)), mainly due to its poor spatial resolution resulting from 

photon scattering. 

At present, the great potential of optoacoustic imaging that was showcased in preclinical research 

has encouraged translation of this technology into clinical practice. The clinical promise of OA is 

greatly supported by its non-ionizing radiation, rich contrast, real-time operation, and relatively low 

cost. It is likely that OA will increasingly enter the clinical imaging segments in areas such as skin, 

breast, vasculature, and ocular imaging, visualization of tumor and inflammation-related pathology  

etc. [17,58,163,164]. Indeed, early detection of breast cancer will capture a significant spot in the 

future developments of OA imaging applications [25,49,50]. One example of such clinical system for 

OA breast angiography without the need for a contrast agent was recently presented [49]. The system 

employed 128 detection elements (5-MHz central frequency) which were placed on a 100 mm radius 

hemisphere in a spiral pattern and acquired the signals in parallel (Figure 3(f)). The hemisphere was 

rotated for higher projection sampling and one complete scan took between 6 to 24 s. The volunteer’s 

breast was immersed into a water-filled bowl from the top and immobilized by an optically and 

acoustically transparent cup. 3-D images were reconstructed from a filtered BP algorithm with prior 

frequency filtering and transducers’ impulse response deconvolution. The system was used to visualize 

the vasculature of a 57 year-old volunteer without a contrast agent and vessels from superficial regions 

up to a considerable depth of several centimeters (Figure 14(a)). 

Naturally, clinical application of OA imaging is limited to regions that can be efficiently 

illuminated with the excitation light. When the imaged region of interest is not reachable from the 

outside, certain areas of the human body can also be imaged with minimally invasive catheter- or 

endoscopy-based techniques. To this end, such systems have been realized for other imaging 

modalities, such as intra-vascular ultrasound (IVUS) [165] or fluorescent imaging (NIRF) [166]. In the 

recent years, similar approaches have been also attempted with OA for intravascular, esophageal or 

colonoscopic imaging [47,151,167–169]. One example is shown in Figure 3(d), where a system for 

simultaneous functional OA and US endoscopy in vivo is presented [47]. The endoscope was able to 

acquire co-registered pulse-echo US and OA images. A-scans were obtained from an ultrasonic  

pulse-echo system while two OA pulses, having different wavelengths for spectroscopic imaging, were 

delivered through a fiber and detected by the focused transducer. 3-D images could be obtained by 

constant rotation of a scanning mirror and a mechanical pullback of the catheter. Using this system, 

rabbit esophagus was imaged in vivo, as shown in Figure 14(b). 
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Figure 14. (a) OA angiography of the breast by Kruger et al. without contrast 

enhancement [49]. Maximum intensity projection of a 57 year old volunteer’s breast 

showing the vasculature from superficial areas (solid arrows) up to considerable depth 

(hollow arrow). Reprinted with permission from American Association of Physicists in 

Medicine; (b) Simultaneous, dual-wavelength OA and US endoscopy by Yang et al. [47]. 

Ultrasonic, optoacoustic and combined cross-sectional in vivo images of a rabbit esophagus 

near the lungs taken at 584 nm. Reprinted with permission from Nature Publishing Group. 

 

7. Limitations and Future Challenges of Optoacoustic Imaging 

Indeed, optoacoustic imaging offers multiple advantages over other imaging modalities. Most 

favorable is the combination of US-diffraction limited spatial resolution and excellent optical 

absorption contrast without any ionizing radiation involved. Clearly, much like all other imaging 

modalities, optoacoustics is limited in certain aspects. As presented in the current review, due to the 

(non-ideal) highly heterogeneous and wavelength-dependent nature of biological tissues, images 

reconstructed from experimental data usually contain artifacts, such as negative values in the images 

which otherwise have no physical meaning. In addition, high noise levels, limited bandwidth of the 

detection system, inaccurate assumptions on the speed of sound, acoustic attenuation, as well as 

limited view in detection, can all alter the signals in a way that the reconstructed image accuracy is 

highly compromised. While some simple algorithms, such as Hilbert transform for envelope detection 

or thresholding of negative values, can be used to keep image values in the positive region, these  

non-linear operations in fact only conceal the underlying problem while not assisting with achieving 

quantitative results. Instead, reliable detection and modeling of signal propagation in tissues is required.  

Imaging at depth brings further challenges and limitations. First, imaging depth is compromised by 

attenuation of the light fluence in optically opaque tissues. Some of it can be compensated by 

increasing the amount of the deposited laser energies. However, for in vivo applications in the  

near-infrared, illumination on the skin surface is limited by the maximum permissible exposure  

(MPE, [170]) to about 20 mJ/cm². As a result, imaging depth is usually restricted to regions where the 
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light fluence is sufficiently high to generate detectable pressure variations, typically up to a few centimeters 

in most soft tissues. In addition, even though spatial resolution of optoacoustic imaging is not affected 

by light scattering, resolution may still deteriorate with increasing imaging depth due to its dependence 

on the frequency content of the detected ultrasonic responses. This is because of the dispersive nature 

of ultrasound waves with high frequency components being rapidly attenuated as they propagate 

through tissues [171].  

In multispectral imaging applications, one also faces the problem of so-called ‘spectral coloring’. 

Due to the non-local and non-linear dependence of light transport on the object’s optical properties, 

spectra of various tissue chromophores and agents, extracted by means of optoacoustics, might be 

corrupted. For improving quantitative determination of chromophore concentrations using their known 

spectra, an accurate correction for the light distribution needs to be employed, which, as discussed 

before, constitutes a challenging problem and an open area of research. Another important aspect 

influenced by depth is the limits of the imaging system with respect to detection of minimal 

concentrations of certain intrinsic tissue chromophores and extrinsically-administered contrast agents. 

To this end, several publications have reported sensitivity in the femtomole to picomole range, 

depending on the molecular weight of the probe employed [20,28], while a recent study has also 

systematically addressed the question of how the detection limits are affected by imaging depth [172]. 

In reality, sensitivity limits are affected by multiple additional factors, such as the total volume, 

spectrum and absorption coefficient of the imaged chromophore, the noise equivalent pressure (NEP) 

of the detectors, level and spectral dependence of background tissue absorption. 

Instrumentation-related limitations are an additional factor in translating optoacoustic imaging 

methods into routine application. One of the important advantages, which helps reducing motion-related 

image artifacts but may also enable powerful applications in in-vivo tracking of dynamic processes, is the 

possibility for reliable measurements and image rendering in real-time. This requires introducing high 

repetition pulsed laser technology and fast wavelength tuning capabilities, especially for multi-spectral 

imaging applications involving real-time visualization of distributions of spectrally distinct contrast 

agents. On the other hand, the detection technology should become increasingly sensitive but also 

parallelized to enable real-time image acquisition. Often a trade-off between acquisition speed and 

quality on the one hand and costs of instrumentation on the other hand has to be found. In this respect, 

optoacoustic imaging has greatly benefited from the advances in both laser and detection technology 

over the last years and significant performance enhancements are expected as the technological frontiers 

advance. Providing information from hybrid US imaging will be of added value for future clinical 

systems. Besides fast data acquisition, fast image rendering is also of great importance to readily provide 

findings for efficient real-time guidance and optimization of diagnostic or therapeutic procedures. 

Recently, extensive research is devoted to the subject of real-time visualization, benefiting both from 

algorithmic developments and advances in parallel computing technology. 

Quantitative rendering of chromophore concentration is perhaps among the most important but also 

among the most challenging tasks of the optoacoustic methods. Hemoglobin in its oxygenated and 

deoxygenated form is omnipresent in tissue and is the most dominant intrinsic absorber in both the 

visible and most of the near-infrared range of the optical spectrum. Thus, quantitative determination of 

blood parameters is of great interest as it is related to a variety of physiological parameters. Prominent 

examples are monitoring angiogenesis or hypoxic states in tumors [173], functional imaging in the 



Sensors 2013, 13 7374 

 

 

brain [44] or responses to environmental changes [174]. In most cases, the oxygen saturation      

(Equation (16)) is of main interest, whose quantitative determination is non-trivial, especially in the 

presence of strong wavelength dependence of the excitation light fluence in tissues. First attempts to 

reliably determine     were conducted in vitro [175,176] whereas accuracy of ±2.5%      and a 

minimum detectable change of ±1%      were reported [176]. Furthermore, oxygenation saturation of 

single blood vessels, embedded deep in tissue mimicking phantom, was determined using numerical 

forward light transport model, reporting an accuracy of ±7%      [150]. Most in vivo results were so 

far obtained from multispectral optical resolution optoacoustic microscopy where light transport issues 

can be effectively omitted. Zhang et al. reported 4%      systematic error for their ex vivo study with 

bovine blood, while accuracy for in vivo determination of arterial and venous blood under hypoxic, 

normal and hyperoxic conditions was not reported [177]. Applications of efficient and practical  

    -determination schemes for experimental data in 3-D in an accurate, robust and computationally 

feasible manner presents therefore one of the key challenges for the current algorithmic developments. 

Finally, when imaging other chromophores or extrinsically-administered contrast agents, the blood 

background needs to be accounted for to enable quantified extraction of biomarker concentrations. 

8. Conclusions 

Owing to its hybrid nature, i.e., optical excitation and ultrasonic detection, optoacoustics benefits 

from both rich and versatile optical contrast and high (diffraction-limited) spatial resolution, associated 

with relatively low scattering of ultrasonic waves. Optoacoustic biosensing and imaging provides an 

excellent platform for multi-scale investigations using the same contrast, from microscopic observations 

at the single capillary and cell level to whole body imaging of small animals and deep tissue imaging of 

humans. Much like other optical imaging modalities, optoacoustics is safe for both small animals and 

clinical use as it utilizes non-ionizing radiation at the visible and near-infrared wavelengths.  

In the last decade, OA imaging is considered to be the fastest growing biomedical imaging modality 

with multiple already implemented and envisioned applications in biomedical research and clinical 

practice, from diagnostic applications in cancer research and brain imaging to drug development and 

treatment monitoring. Clearly, progress of the image reconstruction and quantification methods has 

been central to those developments and has significantly contributed to creation of new exciting 

applications of the OA imaging technologies. As discussed in this review, multiple frontiers are still 

open in the algorithmic areas, where many challenges related to removal of image artifacts, image 

quantification, reconstruction strategies in the presence of acoustically mismatched areas, real-time 

operation, and multi-spectral data processing need to be further addressed. 
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