Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR *Acinetobacter baumannii* and *Staphylococcus*

aureus

Ivan V. Semenyuta ¹, Maria M. Trush ¹, Vasyl V. Kovalishyn ¹, Sergiy P. Rogalsky ¹, Diana M. Hodyna ¹, Pavel Karpov ², Zhonghua Xia ², Igor V. Tetko^{2,3,*}, Larisa O. Metelytsia¹

- ¹ V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine; ivan@bpci.kiev.ua (I.V.S.); maria@bpci.kiev.ua (M.M.T); vkovalishyn@bpci.kiev.ua (V.V.K.); sergey.rogalsky@gmail.com (S.P.R.); hodyna@bpci.kiev.ua (D.M.H); metelitsa@bpci.kiev.ua (L.O.M.)
- ² Institute of Structural Biology, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; i.tetko@helmholtz-muenchen.de; (I.V.T.); pavel.karpov@helmholtz-muenchen.de (P.K.); zhonghua.xia@helmholtz-muenchen.de (Z.X.)
- ³ BIGCHEM GmbH, Unterschleißheim, Valerystr. 49, D-85716, Germany; (I.V.T.)
- * Correspondence: i.tetko@helmholtz-muenchen.de; Tel.: + 49-89-31873575

1.1 Computational Machine Learning results

Regression models from Table 1

Model name: M1_AcinBaum_MIC_TRANSNN_10/10 - 351229 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 824

Predicted property: AcinBaum_MIC modeled in -log(M) Training method: TRANSNN

Train	ing	meth	nod:	TR
-------	-----	------	------	----

Model name: M2_AcinBaum_MIC_ASNN_[ALogPS, CDK2 (constitutional, topological... - 364680 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 825

Predicted property: AcinBaum_MIC modeled in -log(M) Training method: ASNN

b)

Model name: M3_AcinBaum_MIC_ASNN_[Dragon7 (3D blocks: 1-30)] - 364719 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 826

Predicted property: AcinBaum_MIC modeled in -log(M) Training method: ASNN

Data Set	#	R2	q2	RMSE	MAE
• Training set: A_Baumanii_Set_II (training)	862 records	0.67 ± 0.02	0.66 ± 0.02	0.51 ± 0.02	0.37 ± 0.01
• Test set: A_Baumanii_Set_II (test) [x]	216 records	0.7 ± 0.04	0.7 ± 0.04	0.47 ± 0.03	0.35 ± 0.02

c)

Model name: M4_AcinBaum_MIC_XGBOOST_[ALogPS, CDK2 (constitutional, topologi... - 364720 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 827

Predicted property: AcinBaum_MIC modeled in -log(M) Training method: XGBOOST

Data Set	#	R2	q2	RMSE	MAE
• Training set: A_Baumanii_Set_II (training)	862 records	0.67 ± 0.02	0.67 ± 0.02	0.5 ± 0.02	0.35 ± 0.01
• Test set: A_Baumanii_Set_II (test) [x]	216 records	0.73 ± 0.03	0.73 ± 0.03	0.45 ± 0.03	0.31 ± 0.02

Model name: M5_Consensus AcinBaum_MIC - 374840 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 828

MAE

RMSE Data Set R2 # q2 862 records 0.75 ± 0.02 0.75 ± 0.02 0.44 ± 0.02 0.31 ± 0.01 Training set: A_Baumanii_Set_II (training) • Test set: A_Baumanii_Set_II (test) [x] 0.8 ± 0.03 0.79 ± 0.03 0.4 ± 0.02 0.28 ± 0.02 216 records 7.0 6.5 6.0 5.5 5.0 4.5 4.0 0 3.5 3.0 2.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Measured value e)

Predicted property: AcinBaum_MIC modeled in -log(M) Training method: Consensus

Figure S1. QSAR models developed using the OCHEM [1] (http://ochem.eu). a-d) Statistical coefficients calculated for analyzed machine learning models; e) Consensus model calculated on the basis of four models.

Regression models from Table 2

Model name: M1_ASNN_[ALogPS, EState,Type of anion] - 364549 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 829

Predicted property: MIC modeled in -log(M) Training method: ASNN

Data Set	#	R2	q2	RMSE	MAE
• Training set: Data_Set_S_Aureus (training)	164 records	0.74 ± 0.04	0.73 ± 0.05	0.55 ± 0.04	0.41 ± 0.03
• Test set: Data_Set_S_Aureus (test) [x]	48 records	0.74 ± 0.06	0.7 ± 0.08	0.6 ± 0.1	0.45 ± 0.07

Model name: M2_ASNN_[CDK2 (constitutional, topological, geometrical, electronic, hybrid)] - 365851 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 830

Pi Ti	redicted pr raining met	operty: M hod: ASN	IC modele N	d in -log(N	1)							
	Data Set						#	R2		q2	RMSE	MAE
	o Training	set: Data	_Set_S_A	ureus (tra	ining)	142	2 records	0.7 ± 0.05 0.7 ± 0.05		0.59 ± 0.05	0.43 ± 0.03	
	• Test set	Data_Se	t_S_Aure	us (test) [x]	40 records		0.74 ± 0.06		0.69 ± 0.08	0.64 ± 0.09	0.47 ± 0.07
6.	5									a .		
6.	0							• •	8	88		
5.	5			0				°		• •		
5.	0		° 0	• •		•	°			0 0		
4.	5	0	•••	•••	•	8		0				
4.		۰		80	• •	, °	° °			0		
3.	•	• •	0000	90 00 00			°					
з. Э	000	80,00	°°°	•	٥							
2.	00											
	2	2.5 3	3.0 3	.5 4 Mes	.0 sured	4. vali	5 5.	0 5	5.5	6.0	6.5	

Model name: M3_RFR_[ALogPS, EState, Type of Anion] - 364558 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 831

Predicted property: MIC modeled in -log(M) Training method: RFR

Model name: M4_Consensus MIC - 374841 [rename], published in Structure-Activity relationship modeling and experimental validation of the imidazolium and pyridinium based ionic liquids as potential antibacterials of MDR Acinetobacter baumannii and Staphylococcus aureus Public ID is 832

Predicted property: MIC modeled in -log(M) Training method: Consensus

Figure S2. QSAR models developed using the OCHEM [1] (http://ochem.eu). a-d) Statistical coefficients calculated for analyzed machine learning models; e) Consensus model calculated on the basis of three models.

1.2. Evaluation of the Mode of Action (MoA) and Descriptor Importance

Table	S1.	Statistical	coefficients	calculated	for	А.	Baumannii	and	S.	Aureus	following
descrip	otor	selection w	ith ASNN m	odel							

Target	Study	Number of descriptors]	Fraining set		Test set				
		1	Q ²	RMSE	MAE	Q ²	RMSE	MAE		
A. Baum.	Without pruning	38 ^a	0.72 ± 0.01	0.47 ± 0.01	0.33	0.72± 0.01	0.46 ± 0.01	0.34		
	Pruning of	27 ^b	0.71 ± 0.01	0.47 ± 0.01	0.33	0.73± 0.01	0.45 ± 0.01	0.32		
	descriptors	15°	0.66± 0.01	0.51 ± 0.01	0.37	0.64± 0.01	0.52± 0.01	0.39		
S. Aureus	Without pruning	38ª	0.74 ± 0.01	0.54 ± 0.01	0.39	0.66± 0.01	0.69 ± 0.01	0.43		
	Pruning of	15°	0.74 ± 0.01	0.53 ± 0.01	0.38	0.67± 0.01	0.68 ± 0.01	0.44		
	descriptors	27 ^b	0.74 ± 0.01	0.55 ± 0.01	0.39	0.66 ± 0.01	0.69 ± 0.01	0.43		

^aModels based on the initial set of descriptors. ^bModels based on 27 descriptors selected using *A*. *Baumannii*. ^cModels based on 15 descriptors selected using *S*. *Aureus*. RMSE – Root Mean Squared Error; MAE - Mean Absolute Error; Q^2 – coefficient of determination.

No	Acinetobacter Baumannii	Staphylococcus aureus	Description
1		ALogPS_logP	octanol/water partition coefficient
2	ALogPS_logS	ALogPS_logS	solubility in water
3	SssCH2	SssCH2	Atom-type E-state index for -CH2- groups
4	SddssS	SddssS	Atom-type E-state index for >S== groups (sulfate)
5	SsssN	SsssN	Atom-type E-state index for >N- groups
6	SsH	SsH	Atom-type E-state index for -H groups
7	SaasN	SaasN	Atom-type E-state index for aaN- groups (e.g., substituted imidazole)
8	SaasC	SaasC	Atom-type E-state index for -Caa groups
9	SsOH	SsOH	Atom-type E-state index for -OH groups
10	SaaaC	SaaaC	Atom-type E-state index for aCaa groups
11	SssO	SssO	Atom-type E-state index for -O- groups
12	SsssCH	SsssCH	Atom-type E-state index for >CH- groups
13	SstC	SstC	Atom-type E-state index for #C- groups
14		SdO	Atom-type E-state index for =O- groups
15		SssssSi	Atom-type E-state index for >Si< groups
16	SssNH		Atom-type E-state index for -NH- groups
17	SddsN		Atom-type E-state index for -N== groups (nitro)
18	SaaO		Atom-type E-state index for aOa groups
19	SaadC		Atom-type E-state index for =Caa groups (e.g., C=O in theophylline)
20	SaaCH		Atom-type E-state index for aCHa groups
21	SdssC		Atom-type E-state index for =C= groups
22	SdS		Atom-type E-state index for =S- groups
23	SsF		Atom-type E-state index for -F groups
24	SssssC		Atom-type E-state index for >C< groups
25	SdsN		Atom-type E-state index for =N- groups
26	SaaNH		Atom-type E-state index for aNHa groups
27	SsNH2		Atom-type E-state index for -NH2 groups
28	SssS		Atom-type E-state index for -S- groups
29	SdNHC		Atom-type E-state index for =NHC groups
30	SdsCH		Atom-type E-state index for =CH- groups

Table S2. Molecular descriptors selected by pruning methods

^aDescriptors selected for both bacteria using pruning methods from the common set of 38 descriptors.

1.3 Predicted activity of new compounds

Compound No	Chemical Structure	Weight	Chemical Name
1	H ₃ C	272.22	1-octylpyridinium bromide
2	H ₃ C	300.28	1-decylpyridinium bromide
3ª	H ₃ C	283.88	1-dodecylpyridinium chloride
4	H ₃ C	356.38	1-tetradecylpyridinium bromide
5	H ₃ C O O O	285.81	1- octyloxycarbonylmethylpyridiniu m chloride
6	H ₃ C	313.86	1- decyloxycarbonylmethylpyridiniu m chloride
7	H ₃ C O O O	341.92	1- dodecyloxycarbonylmethylpyridi nium chloride
8	H ₃ C	327.93	2-(2-hydroxyethyl)-1- dodecylpyridinium chloride
9	H ₃ C	400.44	2-(2-hydroxyethyl)-1- tetradecylpyridinium bromide
10	H ₃ C	385.97	2-hydroxyethyl-1- dodecyloxy carbonylmethylpyridinium chloride
11	H ₃ C	288.81	1-(octyloxycarbonylmethyl)-3- methylimidazolium chloride
12	H ₃ C	316.87	1-(decyloxycarbonylmethyl)-3- methylimidazolium chloride

Table S3. Structures of the 24 ILs analyzed in this work.

13	H ₃ C	344.92	1-(dodecyloxycarbonylmethyl)-3- methylimidazolium chloride
14	H ₃ C	445.04	1,3- bis(octyloxycarbonylmethyl)imida zolium chloride
15	H ₃ C	402.96	1-dodecyloxycarbonylmethyl-3- methyloxycarbonylmethylimidaz olium chloride
16	H ₃ C Ct OH	316.91	1-(2-hydroxyethyl)-3- dodecylimidazolium chloride
17	H ₃ C	389.41	1-(2-hydroxyethyl)-3- tetradecylimidazolium bromide
18	H ₃ C Ct	346.89	1-(2-hydroxyethyl)-3- decyloxycarbonylmethylimidazoli um chloride
19	H ₃ C	374.95	1-(2-hydroxyethyl)-3- dodecyloxycarbonylmethylimidaz olium chloride
20	H ₃ C Ct HN	289.89	2-dodecylaminoimidazoline hydrochloride
21		319.87	2-nonylcarbonyloxyethylamino imidazoline hydrochloride
22	H ₃ C Cr NH ₂	263.85	N-dodecylguanidine hydrochloride
23		293.83	N-nonylcarbonyloxyethyl guanidine hydrochloride
24	H ₃ C	321.87	N-undecylcarbonyloxyethyl guanidine hydrochloride

^aFinal set compounds are represented in bold.

Comp.	Acinetob	acter Baun	ıannii	Staph	ylococcus au	reus	
No.	log(1/MIC), M	RMSE	AD	log(1/MIC), M	RMSE	AD	
1	3.9	0.5	TRUE				
2	4.4	0.5	TRUE	3.8	0.6	TRUE	
3ª	4.4	0.5	TRUE	4.3	0.6	TRUE	
4 ^a	4.4	0.5	TRUE	4.3	0.6	TRUE	
5 ^b	3.9	0.4	TRUE				
6 ^b	4	0.4	TRUE				
7 ^b	4	0.5	TRUE				
8	4.4	0.5	TRUE	4.4	0.6	FALSE	
9 ^b	4.4	0.5	FALSE				
10	4.1	0.5	TRUE	3.9	0.6	TRUE	
11 ^b	3.9	0.5	TRUE				
12	4.2	0.4	TRUE	3.9	0.6	TRUE	
13ª	4.2	0.5	TRUE	4.1	0.6	TRUE	
14	4	0.5	TRUE	3.8	0.6	TRUE	
15	4.2	0.5	TRUE	3.8	0.6	TRUE	
16ª	4.2	0.5	TRUE	4.4	0.6	TRUE	
17ª	4.2	0.5	TRUE	4.4	0.6	TRUE	
18	4.2	0.5	TRUE	3.7	0.6	TRUE	
19	4.2	0.5	TRUE	3.8	0.6	TRUE	
20 ^a	4.6	0.5	TRUE	4.3	0.6	TRUE	
21	4.4	0.5	TRUE	3.6	0.6	FALSE	
22ª	4.5	0.5	TRUE	4	0.6	TRUE	
23	4.3	0.4	TRUE	3.5	0.6	FALSE	
24	4.5	0.5	TRUE	3.6	0.6	FALSE	

Table S4. Prediction of 24 ILs using consensus model developed against both bacteria

^aFinal set compounds are represented in bold. ^bCompounds with the low activity or outside of the applicability domain that were filtered out following the application of *Acinetobacter Baumannii* model and thus were not considered for the *Staphylococcus aureus* model. MIC - minimum inhibitory concentration, MIC values are in mol/L; RMSE – predicted root mean square error; AD –applicability domain.

No	Species	Administration	Toxi-city	Average			Te	sted I	Ls,		
		route	endpoint	toxicity							
				drugs	3	4	13	16	17	20	22
1	guinea	oral	LD_{50}								
	pig			2.57	3.2	3.2	2.6	2.7	2.7	2.9	2.9
2	mammal,	unreported	LD ₅₀								
	species			2.64	3.6	3.6	2.8	3	3	3.2	3.2
3	man	oral	TDL	4.17	4	3.9	4	4	4	4.2	4.4
4	mouse	intraperitoneal	LD ₅₀	2.9	4	4	3.3	3.4	3.4	3.6	3.6
5	mouse	intraperitoneal	LDL	2.97	4	4.1	3.4	3.5	3.5	3.7	3.7
6	mouse	intraperitoneal	TDL	4.29	4.7	4.7	4.5	4.6	4.5	4.7	4.8
7	mouse	intravenous	LD ₅₀	3.45	4.4	4.5	4	4.1	4	4.2	4.2
8	mouse	oral	LD ₅₀	2.4	3.1	3.1	2.4	2.6	2.5	2.7	2.8
9	mouse	oral	LDL	2.51	3.1	3.1	2.5	2.7	2.6	2.8	2.9
10	mouse	oral	TDL	4.2	4.1	4.2	4.1	4.1	4.1	4.2	4.3
11	mouse	subcutaneous	LD ₅₀	2.64	3.7	3.8	3	3.1	3.1	3.3	3.3
12	mouse	subcutaneous	LDL	2.79	3.6	3.6	3	3.1	3	3.3	3.3
13	mouse	unreported	LD ₅₀	2.73	3.8	3.8	3.1	3.2	3.1	3.4	3.4
14	rat	intraperitoneal	LD ₅₀	2.91	4	4.1	3.3	3.5	3.4	3.6	3.6
15	rat	intraperitoneal	LDL	3.01	3.9	3.9	3.3	3.4	3.4	3.5	3.5
16	rat	intraperitoneal	TDL	4.4	4.7	4.7	4.6	4.7	4.7	4.8	4.9
17	rat	intravenous	LD ₅₀	3.41	4.5	4.6	3.9	4.1	4	4.3	4.3
18	rat	intravenous	TDL	5.12	5.5	5.5	5.6	5.7	5.6	5.8	5.9
19	rat	oral	LD ₅₀	2.34	3	3.1	2.3	2.4	2.4	2.6	2.6
20	rat	oral	LDL	2.56	3	3.1	2.4	2.6	2.5	2.7	2.8
21	rat	oral	TDL	4.03	4.2	4.2	3.9	4	4	4.1	4.3
22	rat	subcutaneous	LD ₅₀	2.54	3.5	3.6	2.7	2.9	2.9	3	3
23	rat	subcutaneous	TDL	4.75	4.8	4.9	4.8	4.8	4.8	4.9	5.1
24	rat	skin	LD ₅₀	2.03	2.3	2.4	1.8	1.9	2	2	2.1
25	rabbit	unreported	LD ₅₀	2.69	3.5	3.5	2.8	3	2.9	3.1	3.2
26	rabbit	intravenous	LD ₅₀	3.7	4.7	4.7	4.2	4.3	4.2	4.5	4.5

Table S5. Comparative analysis of toxicity predictions for drugs (DrugBank) and tested ILs using <u>http://ochem.eu/multitox</u> model [2].

27	rabbit	oral	LD ₅₀	2.43	3.1	3.1	2.4	2.6	2.5	2.8	2.8
28	rabbit	skin	LD_{50}	2.06	2.8	2.9	2.2	2.4	2.4	2.5	2.5
29	woman	skin	TDL	4.06	3.9	3.9	3.9	3.9	3.9	4	4.2

LD₅₀- Lethal Dose Fifty; TDL -Toxic Dose Low; LDL- Lethal Dose Low.

Table S6. The toxicity predictions of oral toxicity (LD₅₀, mg/kg) of tested ILs to different animal species (values were converted to mg/kg from Table S5)

ILs	Guinea pig	Mouse	Rat	Rabbit
3	188	236	297	247
4	215	258	310	258
13	907	1370	1900	1250
16	577	873	1200	834
17	852	1120	1620	1120
20	365	552	728	504
22	317	459	633	418

Table S7. The prediction of dermal toxicity (LD₅₀, mg/kg) of tested ILs to different animal species (values were converted to mg/kg from Table S5)

	0	0)
ILs	Rat	Rabbit
3	1420	410
4	1560	449
13	4990	2080
16	3640	1320
17	4270	1620
20	2900	917
22	2300	834

2. Molecular docking of ligands as potential inhibitors of A.baumannii and S. aureus Enoyl-ACP reductase

The alignments (Figure S3) indicated a significant enzymes similarity of AFabI and SFabI: 47% sequence identity, 64% sequence similarity and low number of gaps (1%). The enzyme secondary structures of AFabI (PDB ID: 6AH9) and the SFabI (PDB ID: 3GR6) were also compared using the UCSF Chimera program [3] (Figure S3).

Figure 3S presents a comparative analysis of the primary structure of FabI *A.baumannii* (AFabI) (UniProtKB: D0CAD5) [4] and FabI *S. aureus* (SFabI) (UniProtKB: Q6GI75) [5] using NCBI Protein BLAST [6].

Score		Expect	Method		Identities	Positives	Gaps
224 bi	ts(571)	1e-77	Compositio	onal matrix adjus	st. 120/254(47%)	164/254(64%)	4/254(1%)
Query	27		LIAGVASKL	SIAYGIAQALHREG	AELAFTYPNEKLKKR	VDEFAEQFGSKL	VF 84
Sbjct	4	LENKTY	VIMGIANKR	SIAFGVAKVLDQLG	AKLVFTYRKERSRKE	LEKLLEQLNQPEAH	ILY 63
Query	85	PCDVAV	DAEIDNAFA	ELAKHWDGVDGVVH ++ K +DGV H	SIGFAPAHTLDGDFT	DVTDRDGFKIAHDI	ISA 144
Sbjct	64	QIDVQS	DEEVINGFE	QIGKDVGNIDGVYH	SIAFANMEDLRGRFS	E-TSREGFLLAQDI	ISS 122
Query	145	YSEVAM	ARAAKPLLQ A AK L+	ARQGCLLTLTYQGS G ++ TY G	ERVMPNYNVMGMAKA E + NYNVMG+AKA	SLEAGVRYLASSLO	SVD 204
Sbjct	123	YSLTIV	AHEAKKLM-	PEGGSIVATTYLGG	EFAVQNYNVMGVAKA	SLEANVKYLALDLO	PD 181
Query	205	GIRVNA	ISAGPIRTL	AASGIKSFRKMLDA +A G+ F +L	NEKVAPLKRNVTIEE E+ APLKRNV E	VGNAALFLCSPWAS	GI 264
Sbjct	182	NIRVNA	ISAGPIRTL	SAKGVGGFNTILKE	IEERAPLKRNVDQVE	VGKTAAYLLSDLSS	GV 241
Query	265	TGEILY TGE ++	VDAGFNTV VD+GF+ +	278			
Sbjct	242	TGENIH	VDSGFHAI	255			

Figure S3. Protein BLAST results of AFabI (278 amino acid residues) and SFabI (255 amino acid residues).

Figure S4. The enzyme secondary structures of AFabI (PDB ID: 6AH9) (blue) and SFabI (PDB ID: 3GR6) *(*beige).

Figure S4 also shows a high similarity of the secondary structures of studied enzymes. The triclosanbinding region AFabI and SFabI were used in the docking procedure based on the structural analysis data of 6AH9 and 3GR6.

Ligands **3**, **4**, and **16**, as the most active against both microbial pathogens, were docked into the triclosan-binding region of AFabI and SFabI (Figure S5-S7 and Table S8, S9).

Figure S5. Molecular docking of the ligand 3 into the active site of AFabI and SFabI.

Figure S6. Molecular docking of the ligand 4 into the active site of AFabI and SFabI.

Figure S7. Molecular docking of the ligand 16 into the active site of AFabI and SFabI.

Compound Docking Score,		<i>Ki,</i> (uM)*	Hydrogen bonds	Electrostatic interaction	Hydrophobic interactions
	(kcal/mol)		,		,
3	-6.72	12.31	NADP (3.56Å)	NADP (4.66Å)	NADP (4.27Å),
					TYR149 (4.53Å),
					ALA199 (3.61Å)
4	-6.70	11.92	NADP (3.62Å)	NADP (5.23 Å)	NADP (4.63Å),
					TYR149 (4.59Å),
					ALA199 (4.19Å)
16	-6.50	13.6	NADP (2.15Å)	NADP (3.80Å),	NADP (4.67Å),
				NADP (4.57Å)	TYR149 (3.69Å),
					ALA199 (4.46Å),
					ALA199 (5.45Å)

Table S8. Docking results of ligands 3, 4, 16 into AFabI active sites.

*The *K*^{*i*} values were estimated based on the dockings scores.

Compound	Docking Score, (kcal/mol)	Ki, (uM)*	Hydrogen bonds	Electrostatic interaction	Hydrophobic interactions
3	-6.93	8.3	NADP (4.13Å)	NADP (4.75Å)	NADP (4.02Á), TYR147 (4.52Á), ALA95 (3.89Á)
4	-6.71	12.1	NADP (4.17Å)	NADP (4.88Å)	NADP (4.13Á), TYR147(4.38Á), TYR147(4.72Á), ALA95 (3.69Á)
16	-6.60	12.7	NADP (2.48Å)	NADP (4.51Å), NADP (5.07Å), TYR147(3.56Å)	NADP (4.67Å), NADP (4.25Å), ALA95 (4.49Å)

Table S9. Docking results of ligands 3, 4, 16 into SFabI active sites.

*The *K*^{*i*} values were estimated based on the dockings scores.

Thus (Table S8, S9) the formation of ligand-protein complexes is accompanied by estimated binding energies in the similar ranges from – 6.5 to – 6.72 kcal/mol (AFabI) and from – 6.6 to – 6.93 kcal/mol (SFabI). The measured *in silico* enzymes inhibition constant (Ki) as a binding affinity of ligands 3, 4, 16 for AFabI and SFabI target enzymes, are the values equal order (8.33 - 13.55 uM). The ligand-protein complexes were stabilized through hydrogen bonds (2.15 - 4.17Å), electrostatic (3.56 - 5.23Å) and hydrophobic (3.61 - 5.45Å) interactions. The key role in complexation belongs to ALA95, TYR147 (TYR149), ALA199 amino acids and cofactor NADP.

References

- 1. Sushko, I.; Novotarskyi, S.; Korner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y., et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. *J. Comput. Aided. Mol. Des.* **2011**, *25*, 533-554, doi:10.1007/s10822-011-9440-2.
- 2. Sosnin, S.; Karlov, D.; Tetko, I.V.; Fedorov, M.V. Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space. *J. Chem. Inf. Model.* **2019**, *59*, 1062-1072, doi:10.1021/acs.jcim.8b00685.

- 3. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comp. Chem.* **2004**, *25*, 1605-1612, doi:10.1002/jcc.20084.
- 4. UniProtKB. Enoyl-[acyl-carrier-protein] reductase [NADH]. Availabe online: <u>https://www.uniprot.org/uniprot/D0CAD5</u> (accessed on 25 December 2020).
- 5. Enoyl-[acyl-carrier-protein] reductase [NADPH] FabI. Availabe online: <u>https://www.uniprot.org/uniprot/Q6GI75</u> (accessed on 25 December 2020).
- 6. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **1997**, *25*, 3389-3402., doi:10.1093/nar/25.17.3389.