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ABSTRACT 

A novel designed x-ray CT scanning geometry is proposed. Composed of a specially designed tungsten collimation mask 
and a flat panel detector, which is placed inside the mask, this scanning geometry provides high efficient data acquisition 
allowing dose reduction potential by a factor of two.  

In recent years a first prototype of the CTDOR geometry (CT with Dual Optimal Reading) has been evaluated. It 
consisted of a discontinuous ring of detectors fixated on X-Ray absorbing material. The source and an outer detector 
were mounted on a gantry rotating around the inner static detector and the patient. Despite many drawbacks, resulting 
images have shown promising potential of dual reading. Based on those results, the present work presents further 
development and improvement of the recommended scanner geometry. The main idea consists of collimating the X-ray 
beam through a specially designed shielding mask thereby reducing radiation dose and structuring data without 
compromising image quality. An especially developed high precision laser-beam cutting process assures an accurate 
mask crafting with tungsten shielding and window sizes of 300µm.  

Additionally, simulation data were obtained with Monte Carlo calculations to test the dose reduction potential of the 
scanning device. Retaining advantages of the CTDOR geometry such as 3D-capability, built-in capacity of scatter 
correction and radiation structuring, a high-precision manufactured collimation mask of novel designed CT-scanner 
enables high resolution images for breast-imaging in low energy ranges.  

 

1. Introduction 

Digital x-ray mammography is the today’s standard approach for early and reliable detection of breast carcinoma. 
However, there is an intense debate on its sensitivity and specificity regarding superimposition of anatomical structures. 
This still remains a challenge.  

Consequently, different alternative approaches are of great interest. Among these, Computed Tomography (CT) provides 
a promising technology. The proclaimed imaging procedure should meet the demands of breast imaging [1], i.e. 3-D-
capability, good soft-tissue differentiation, high spatial resolution and low patient dose. Although it would be justified to 
increase the dose to the patient if there is a valid indication such as higher diagnostic information for cases of suspected 
breast cancer. Nevertheless it is worthwhile to stay within the dose limit frame imposed or screening, where the benefit-
to-risk-ratio is very high [2]. Furthermore the ICRP recommends following ALARA principle, i.e. patient dose has to be 
kept “As Low As reasonably Achievable” [3].  

Medical Imaging 2013: Physics of Medical Imaging, edited by Robert M. Nishikawa, Bruce R. Whiting, Christoph Hoeschen, 
Proc. of SPIE Vol. 8668, 86684H · © 2013 SPIE · CCC code: 1605-7422/13/$18 · doi: 10.1117/12.2007832

Proc. of SPIE Vol. 8668  86684H-1



 

 

In this contex
to have dose r
the principle 
order to yield
according to 
the reconstruc
radiation can
correction [9]

 

Fig.1: P

A first proto
detectors, wh
ring, gathers 
discontinuous

Fig.2: 

Although ima
of dual readin
detector type
count of 394 
irregular wind

In order to o
acquisition is

xt, a new type
reduction pote
of CTDOR (

d two complem
the zeros of C
ction algorithm

n be obtained 
].    

Parallel beam d

otype of CTD
hich were mou

the second s
s absorbing rin

 Schematic view

ages presented
ng, this proto
s. The size of
for the demo

dow sizes hav

overcome thes
 being develo

e of scanner ge
ential by a fac
CT with dual

mentary sets o
Chebyshev po
m OPED (Ort
without any 

distribution acco

DOR has alrea
unted on struc
set of data. T
ng, permitting

w of CTDOR (

d by de las He
type has som
f mask detect
onstrator. Due
ve led to incor

se drawbacks 
ped. This desi

eometry has b
ctor of two, wi
l Optimal Rea
of data. The co
lynomials in e
thogonal Poly
additional ef

ording to zeros 

ady been buil
ctured lead sh
Together with
g x-rays passin

CT with dual O

eras et al., 200
me drawbacks: 

tors, in additio
e to its constru
rect data read

a novel desig
ign is especial

been presented
ithout compro
ading). Two g
ollimation typ
each projectio

ynomial Expan
ffort or expos

of Chebyshev p

lt [5]. The fi
hielding, wher
h mask detect
ng through 3m

Optimal Reading

08 [6] and Br
 first, mask a
on, defines th

ruction, the pr
dout. 

gn of CT sca
lly made up fo

d at SPIE Me
omising image
groups of dete
e (Fig.1B) res
on [4]. Such a
nsion on Disc
sure and henc

polynomials (A

irst subset of 
reas the gantry
tors, 197 coll
mm holes as sh

g) prototype (A

runner et al., 2
and arc data a
he maximum 
roposed scann

anning geome
or breast-CT i

dical Imaging
e quality [4,5]
ectors are coll
sults in paralle

distribution i
) proposed in 
ce entails a b

A) and suitable c

data is colle
y detector, wh
limators with 
hown in Fig.2

A) and demontra

2012 [8] have 
re difficult to
number of vie

ner is only cap

etry using the
in low energy 

g 2006 [4] and
]. This geomet
lecting collim
el beams that 
is exactly wha

n 2006 [4]. Mo
built-in capac

 

collimation type

ected by ring 
hich was plac

size of 2.5m
2.  

 

ator’s mask des

e shown prom
o match due to
iews and resu
apable of 2-D.

e principle of 
 ranges. 

d was reported
try is based on

mated x-rays in
are distributed
at is needed in
oreover scatter
ity for scatte

e (B) [4] 

center facing
ed outside the

mm built up a

sign (B) 

ising potentia
o the differen
lts in a sparse
. Furthermore

CTDOR data

d 
n 
n 
d 
n 
r 
r 

g 
e 
a 

al 
nt 
e 

e, 

a 

Proc. of SPIE Vol. 8668  86684H-2



 

 

2. New Scanner geometry 

For high resolution capability we designed a collimation mask that is built up by shielding rods with diagonal sizes of 
300µm. The collimators are, in cross section, shaped as quadrature structures with their diagonals pointing towards the 
ring center. Hence, each radiation absorbing element admits radiation beam structuring and efficient data collection, 
while maintaining a maximum of radiation protection. 

Similar to 3rd generation of CT scanners, source and detector are co-rotating around the object, whereupon the mask 
collimators remain stationary. Traversing radiation is collected by a flat-panel detector, whose pixel size is about one 
order lower than the size of absorbing elements and windows respectively. The detector is located within the mask and 
can therefore acquire the two independent subsets of data. Hence, the same amount of information as acquired by 
CTDOR can be obtained here without any need of matching two types of detector sampling.  

 

Fig.3: Sketch of the new scanning principle. A flat panel detector is placed inside a special designed tungsten mask. X-ray tube and 
detector are rotating around the object in a similar manner yielding an interlaced grid of radiation (a). Chords are configured to collect 

two sub-sets of data (b) 

With a given angle to the central beam of the projection each ray contributes to a certain parallel beam. Suggesting 
windows and shielding elements as points uniformly distributed over the circle, where the number of windows is 
denominated as N, sub-sets of data are made up by the configuration of the chords connecting two N points. For each of 
subsets, one example of a chord is pictured in Fig.3b. After reordering the data to parallel geometry with sinusoidal 
lateral sampling, one obtains the matrix P:= {p(i,j)| i=0,…,N-1, j=0,…,N-1}, where  p(i,j) = 0 if i+j is even. Hence, the 
data is defined on an interlaced grid. It is known [12] that the data defined on such a grid are equivalent to the data 
defined on the full rectangular grid (i.e. p(i,j) with even i+j are known as well). The missing data, p(i,j) with i+j being 
odd, is recovered following the method described in Ref.13 and one obtains the completed matrix of parallel data that 
can be reconstructed with OPED [11]. 
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3. Methods 
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Table 2: Parameters set for attenuation performance studies of collimator geometry 

Cone angle 14.8° 
Pixel size 0.0748mm 
Focal spot size 0.070mm 
Source to detector distance 324.382mm 
Source to collimator distance 40.0mm 
Number of collimators 1 
Number of pixels 100x100 
Number of views 1 
Number of photons 10000000 

 

 

 

 

The yielding values of transmitting particles, the dose reduction factor can be estimated by following equation: 

ݎ݋ݐ݂ܿܽ	݊݋݅ݐܿݑ݀݁ݎ	݁ݏ݋ܦ = ݕ݃ݎ݁݊݁	݀݁ݐݐ݅݉ݎ݁݌ݕ݃ݎ݁݊݁	ܾ݉ܽ݁	݈ܽݐ݋ݐ  

 

 

 

4. Results and Discussion 

The attenuation profile of collimator geometry has been simulated for an incident angle of 0° and 45° to point out  the 
necessity of  the proposed mask collimator design . Fig.6 shows an example of the intensity profiles for a single view. It 
can be seen, that, the shielding elements of the tungsten form a uniform distribution of intensity chords. For both types of 
geometry, the collimation mask offers the same attenuation performance in the middle of the detector region (not shown 
here). Contrary to that, in outer detector regions (see Fig.7), the data output of 45° cut shielding rods is higher than the 
data output of zero cutting angle. At the same time, the dose reduction factor was estimated to be similar for both 
geometry variations at a value of about 2.2 (see Table 3 and Table 4). Thus, in order to get maximum data output, 
maintaining dose reduction at highest possible level, one has to decide for rotated quadrature structures, i.e. for a laser 
beam cutting incident angle of 45°. 

However, the penumbra regions of the proposed collimator design are significantly wider than the quadrature shaped 
shieldings that result from cutting angle of 0°. Therefore a second simulation study was performed to compare another 
type of collimator geometry to the proposed one (see Fig.5).  Apart from primary and attenuated radiation, Compton 
scatter as well as Rayleigh scatter had been taken into account.  

All collimator geometries produce low portion of scatter radiation (results are not shown in here). Fig.8 depicts detector 
images of the three kinds of shielding elements yielded by traversing primary particles. Compared to the laser cutting 
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angle of 45°, penumbra regions of hexagonal design are significantly improved (Fig.8). In order to maintain maximum 
output of data, thereby ensuring perpetuation of x-ray absorbing, the minimum incident angle of laser cutting (Fig.5) has 
to be calculated by the following equation: 

ߚ = sinିଵ ൬ܴݎ൰ 

where r is denoted as the mask radius and R as half of maximum FOV size. In our case, β is determined to be at 
minimum 26°. Changing the cutting angle even more, i.e. to 16° (not shown here), attenuation performance is 
deteriorating again. 

 

 

 

Table 3: Dose reduction estimation for zero set laser cutting angle  

 View 1 View 2 

Source/detector rotation 0.0° 0.1° 
Total beam energy [keV] 2.74972·108 2.75030·108 
permitted energy [keV] 1.21073·108 1.22213·108 
Dose reduction factor 2.2711 2.2504 

Estimated reduction factor 2.2606 
 

Table 4: Dose reduction estimation for proposed scanner mask design 

 View 1 View 2 

Source/detector rotation 0.0° 0.1° 
Total beam energy [keV] 2.74985·108 2.74918·108 
permitted energy [keV] 1.49170·108 1.10903·108 
Dose reduction factor 1.8434 2.4789 

Estimated reduction factor 2.1611 
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5. Conclusion and Outlook 

A novel design of CT scanning geometry is recommended. An accurate laser processing technique has been evaluated to 
ensure high quality data-readout with an estimated dose reduction factor of two. Hexagonal shielding geometry also 
reduces the width of penumbra regions allowing high efficient data collection at maximum attenuation.  

Due to its construction principles, the proposed scanner maintains the advantages of the CTDOR scanning principle 
while avoiding its drawbacks by limited resolution and the use of separate detectors. The efficient data collection and 
data structuring in combination with the reconstruction algorithm OPED could yield images of high resolution. The 
intrinsic scatter-correction potential will prove valuable when the system would be operating in 3D mode. The proposed 
scanner geometry may therefore provide comprehensive diagnostic assessment of microcalcifications and soft-tissue 
structure at one half reduced dose levels.  

A scanner prototype is currently assembled and is expected to give evidence of high resolution possibility, scatter 
correction potential and helical imaging mode at low-dose level. 
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