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Abstract
Expectile regression, in contrast to classical linear regression, allows for het-
eroscedasticity and omits a parametric specification of the underlying distri-
bution. This model class can be seen as a quantile-like generalization of least
squares regression. Similarly as in quantile regression, thewhole distribution can
be modeled with expectiles, while still offering the same flexibility in the use of
semiparametric predictors as modern mean regression. However, even with no
parametric assumption for the distribution of the response in expectile regres-
sion, the model is still constructed with a linear relationship between the fit-
ted value and the predictor. If the true underlying relationship is nonlinear then
severe biases can be observed in the parameter estimates as well as in quantities
derived from them such as model predictions. We observed this problem during
the analysis of the distribution of a self-reported hearing scorewith limited range.
Classical expectile regression should in theory adhere to these constraints, how-
ever, we observed predictions that exceeded the maximum score. We propose to
include a response function between the fitted value and the predictor similarly
as in generalized linear models. However, including a fixed response function
would imply an assumption on the shape of the underlying distribution function.
Such assumptions would be counterintuitive in expectile regression. Therefore,
we propose to estimate the response function jointly with the covariate effects.
We design the response function as a monotonically increasing P-spline, which
may also contain constraints on the target set. This results in valid estimates for
a self-reported listening effort score through nonlinear estimates of the response
function. We observed strong associations with the speech reception threshold.
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1 INTRODUCTION

In classical linear regression, wemodel the expected value 𝜇𝑖 for a response variable 𝑦𝑖 based on covariates 𝒙𝑖 via the linear
predictor 𝒙⊤

𝑖
𝜷 as

E(𝑦𝑖) = 𝜇𝑖 = 𝒙⊤
𝑖
𝜷,

with 𝜷 the vector of coefficients. However, in a linear model we often assume a specific distribution of the response and
homoscedasticity of the error terms. Expectile regression (Newey & Powell, 1987) is one possible model to overcome these
restrictions. With expectiles we do not only model the expected value of the response, but the whole distribution. There-
fore, several models are defined, where emphasis is placed on different parts of the distribution. Overall, an expectile is a
weighted mean, where the weights depend on the responses, the fitted values, and the current asymmetry level 𝜏 ∈ (0, 1),
where a value of 𝜏 = 0.5 results in the expectation/arithmetic mean. The idea of asymmetrically weighting the contribu-
tions to the least squares criterion is conceptually close to the notion of asymmetric maximum likelihood (Efron, 1992)
but has the advantage to avoid an explicit distributional assumption.
More formally, an expectile 𝑒𝜏 is defined as the solution of

argmin
𝑒𝜏

𝑛∑
𝑖=1

𝑤𝜏(𝑦𝑖)(𝑦𝑖 − 𝑒𝜏)
2

with weight

𝑤𝜏(𝑦𝑖) =

{
𝜏 if 𝑦𝑖 ≥ 𝑒𝜏

1 − 𝜏 if 𝑦𝑖 < 𝑒𝜏
.

Similarly, as with the expected value in linear regression, expectiles can be used to set up expectile regression.Wemodel
the expectile as a linear combination

𝑒𝑖,𝜏 = 𝒙⊤
𝑖
𝜷𝜏,

with 𝜷𝜏 the coefficient depending on the chosen asymmetry 𝜏. Since expectiles are weighted means, the restriction on
linear covariate effects can be relaxed as in the linear model by using semiparametric predictors like splines or Gaussian
Markov random fields. This model class is called semiparametric expectile regression and was introduced by Schnabel
and Eilers (2009) and Sobotka and Kneib (2012). As expectiles use the least squares framework, it is easier to include
smooth effects and complex covariate structures with quadratic penalties in expectile regression than in quantile regres-
sion (Koenker & Bassett, 1978). Expectiles also relate to the expected shortfall, a very intuitive tail expectation measure.
Hence, we chose expectile regression for this paper over quantile regression. Formally expectiles generalize the mean in
a similar way as quantiles do for the median. More details on semiparametric expectile regression are given in Section 3.
Even if semiparametric expectile regression is able to capture nonlinear effects of the covariates, it still assumes that the

relationship between the predictor and the expectile is linear. In particular we assume that the underlying link function
is the identity link. If the true underlying relationship is nonlinear, then severe biases can be observed in the parameter
estimates as well as in quantities derived from them such as model predictions. While modeling the distribution of scores
derived from a questionnaire on hearing abilities with expectiles, we observed the problem that expectiles in the upper
tail were fitted to larger values than the maximum of the hearing ability score considered in the questionnaire (von
Gablenz et al., 2018). In theory, expectiles should only be fitted to values inside the support of the response. However,
due to numerical errors and the automatic selection of smoothing parameters for nonlinear effects, some of the estimates
went beyond the maximum. The aim of our analysis was to model associations of sociodemographic covariates as
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well as results from a diagnostic hearing test and scores from the self-administered questionnaire on hearing abilities.
We expected a strong heteroscedasticity in the distribution and aimed to show the different associations in the upper
and lower tail of the hearing score distribution. However, without the possibility to cover restrictions to the target set,
expectile regression may give useless outputs (Rigby et al., 2013). Another application where constraints on the target set
are useful, is when analyzing values with natural lower limit in zero and a distribution that is close to this boundary. As
an illustration for such behavior, we analyze the concentration of mercury in blood samples. Without restricting the fitted
values to the target set, frequently negative (i.e., impossible) predictions occur (see Section 6.2 and in particular Figure 6).
So a similar trick as in generalized linear models (McCullagh &Nelder, 1989) could be applied in expectile regression to

fulfill both constraints, the limits of the response’s support and the nonlinearity between the fitted value and the predictor.
In a generalized linearmodel a prespecified response function defines the relationship between the predictor and the fitted
value and also ensures the constraints on the target set. In a generalized linear or additive model the expected value is
defined as

E(𝑦𝑖) = 𝜇𝑖 = ℎ(𝒙⊤
𝑖
𝜷),

whereℎ is the predefined response function. Thoughℎwill result in biased estimates, if the choice ofℎ does not correspond
to the underlying true response function as it has been discussed by Czado and Santner (1992). Single index (SI) models
as introduced by Ichimura (1993) are often applied to remove the assumptions based on the specification of the response
function. In SI models, kernel density estimates are used to determine the response function. Others like Klein and Spady
(1993), Weisberg and Welsh (1994), Carroll et al. (1997), and Wang et al. (2010) developed further ideas and applied them
to the partially linear SI framework. Several articles includingWu et al. (2010) and Jiang and Qian (2016) provide ideas on
how to include SImodels in quantile regression.Moreover, all discussed SImodels rely on kernelmethods,which regularly
result in wiggly estimates. One approach to obtain smooth response functions is to construct amonotonic P-spline basis to
estimate the response function, as Yu and Ruppert (2002) and Muggeo and Ferrara (2008) suggest. Though these models
still rely on linear predictor structures. Consequently the idea of combining generalized additive models with SI models
might be useful to reduce the bias of assuming a fixed response function or the bias from the linear predictor structure. This
idea has been discussed by Marx (2015), Tutz and Petry (2016), and Spiegel et al. (2019). They all use P-splines to estimate
the response function, but apply different tools to generate the estimates. Overall, we modeled the expected value as

𝜇𝑖 = ℎ̃(𝒙⊤
𝑖
𝜷),

with a semiparametric predictor and P-splines for the response function ℎ̃. Note that appropriate restrictions are required
in this setup to render the model identifiable.
The aim of this paper is to introduce a new type of expectile regression in which we are able to consider constraints on

the target set. Therefore we include a response function in the model definition. Thus, we introduce the new generalized
expectile as

𝑒𝜏 = ℎ̃𝜏(𝒙
⊤
𝑖
𝜷𝜏),

where ℎ̃𝜏 is the flexible response function. The idea of using a fixed response function in expectile regression would imply
the same assumptions as in generalized linear models on the shape of the distribution. We generally want to avoid such
an assumption in expectile regression. Therefore, we propose to estimate the response function jointly with the (semi-
parametric) predictor similarly as in our previous work on generalized additive models with flexible response function
(Spiegel et al., 2019). So ℎ̃𝜏 will be determined as a monotonic P-spline while the predictor 𝒙⊤𝑖 𝜷𝜏 may also be semiparamet-
ric, comprising splines as well as spatial information, etc. We still estimate the coefficients based on the least asymmetric
weighted squares as

argmin
𝜷𝜏,ℎ̃𝜏

𝑛∑
𝑖=1

𝑤𝜏(𝑦𝑖)
(
𝑦𝑖 − ℎ̃𝜏(𝒙

⊤
𝑖
𝜷𝜏)

)2
+ Penalty

including an appropriate quadratic penalty for the smooth components. These smooth components are on the one hand
the estimated response function, but on the other hand the semiparametric covariate effects. The exact definition of the
penalty is described in Section 4.2. As denoted in the index 𝜏, both the response function and the covariate effects depend
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on the asymmetry level 𝜏.We define this dependence to avoid distributional assumptions and to capture heteroscedasticity
in both parts. Moreover, we will include shifts and scalings of the predictor later on to ensure identifiability, see Section 4.3
for details. This includes the omission of an intercept. However, these constraints prevent thatwe can transfer one (overall)
response function to specific asymmetry levels.
In summary, we propose an approach in which all three assumptions on generalized linear models—linearity of the

predictor, fixed response functions, and underlying distribution function—are relaxed jointly. Therefore, we combine
generalized additive models with single index models and semiparametric expectile regression.
To explain generalized expectile regression properly, we need to first recap some establishedmethods. Thus, in Section 2

we will sum up the ideas of splines and additive models. The basic theory on classical expectile regression is shown in Sec-
tion 3. Afterward, we introduce our new approach on generalized expectile regression in Section 4. Next, we compare the
behavior of classical expectile regression and our new approach in a simulation study in Section 5. Finally, in Section 6.1,
we use our approach in the analysis of self-reported hearing scores in a population sample from northern Germany. There,
we also illustrate in detail how to interpret this complex setting. The analysis of mercury concentrations in blood samples
of the general adult population of the United States is further described in Section 6.2. Section 7 concludes the paper with
a discussion of our findings.

2 SPLINES AND ADDITIVEMODELS

In many cases the assumptions of linear covariate effects are not fulfilled. Therefore, several ideas on how to deal with
nonlinear effects have been introduced. One of them are spline bases (Duchon, 1977). We will use the concept of splines
not only for estimating smooth covariate effects, but also for estimating the smooth response function. The methods for
determining a smooth response function and smooth covariate effects are similar, thus we explain the concept of splines
only based on covariate effects. Later we will describe the concept of estimating the response function in more detail.
Let us assume that the effect of the covariate 𝑥 is not linear, but any smooth function. In order to approximate an

unknown smooth functional effect 𝑠(𝑥)with a spline basis, first several basis functions 𝐵(𝑙)
𝑗
(𝑥), for example, B-spline basis

functions, are evaluated at the observed covariate values 𝑥𝑖 . The degree 𝑙 > 0 of the basis functions is chosen in advance.
Then these evaluated basis functions are scaled by regression coefficients �̃�𝑗 and summed up to be the representation of
the smooth effect 𝑠(𝑥) such that the estimated approximation of the function can be written as

𝑠(𝑥) =

𝐽∑
𝑗=1

𝐵
(𝑙)
𝑗
(𝑥)�̃�𝑗.

For a classical spline basis, the number of basis functions 𝐽 and the position of these basis functions need to be opti-
mized to obtain a suitable estimate. Alternatively, a much larger set of basis functions can be constructed to achieve a
flexible curve and a penalty can be added that ensures a smooth estimate by penalizing differences between neighboring
coefficients. This results in P-splines (Eilers & Marx, 1996). The penalty is usually based on the second-order differences
between the neighboring coefficients

𝜆

𝐽∑
𝑗=3

(�̃�𝑗 − 2�̃�𝑗−1 + �̃�𝑗−2)
2.

Moreover, the penalty can be expressed as a quadratic form of the coefficients and a penalty matrix �̃� as �̃�⊤�̃��̃� . In the
following, we will include the smoothing parameter 𝜆 ≥ 0 into the penalty matrix �̃�, to simplify the notation. For estima-
tion, the evaluated basis functions are treated as covariates and the coefficients are the solution of minimizing a penalized
least squares criterion (for more details, see Wood, 2017).
In the estimation of models with a flexible response function, we need the derivative of P-splines. Based on the local

polynomial structure of B-splines, the calculation of the derivative is rather simple (Wood, 2017). Thus, we can obtain the
derivative as

𝑠′(𝑥) =
d𝑠(𝑥)
d𝑥

= (𝑙 − 1)

𝐽∑
𝑗=1

⎛⎜⎜⎝
𝐵
(𝑙−1)
𝑗

(𝑥)

𝜅𝑗+𝑙−1 − 𝜅𝑗
−

𝐵
(𝑙−1)
𝑗+1

(𝑥)

𝜅𝑗+𝑙 − 𝜅𝑗+1

⎞⎟⎟⎠�̃�𝑗,
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where 𝐵(𝑙−1)
𝑗

are the basis functions at the same knots 𝜅𝑗 as for the estimation of 𝑠(𝑥), but of one degree less. To simplify
the notation, we skip the degree of the basis functions in the following.
Another characteristic of the local polynomial structure of B-splines is that monotonicity constraints and constraints

on the target set can be transferred to constraints of the coefficients. Thus, we get a monotonically increasing B-spline by
ensuring that the coefficients are monotonically increasing. Moreover, B-spline basis functions are nonnegative. Positive
coefficients �̃� induce a spline with only positive values. Finally, constraints mentioned in the previous section can be
imposed on B-splines by recognizing that the sum of the unscaled basis functions is 1, such that coefficients �̃� < 1 imply
that 𝑠(𝑥) is smaller than 1. All these constraints are linear inequality constraints on the coefficients and can be included
in the estimation as shown by Wood (1994).
To ease the notation we combine the covariate effects in a design matrix 𝒁. In a semiparametric or additive model,

several smooth effects are combined and also classical linear or categorical effects can be attached to the predictor. The
design matrix 𝒁 consists of covariates and dummies as in an ordinary linear model and evaluated basis functions for
smooth effects. So the row of 𝒁 corresponding to the i-th observation is defined as

𝒛⊤
𝑖
= (1, … , 𝑥𝑖𝑞, … , 𝐵1(𝑥𝑖𝑝), … , 𝐵𝐽𝑝 (𝑥𝑖𝑝), …),

where covariate 𝑥𝑞 has a linear effect on the response while covariate 𝑥𝑝 is modeled to have a smooth effect. Here, 𝐽𝑝 is
the number of basis functions for the smooth effect 𝑠𝑝(𝑥𝑝). The coefficients are similarly concatenated in one vector 𝜸 .
Furthermore, the penalty matrices are combined to one block diagonal matrix 𝑲, which has dimensions corresponding
to 𝜸 . Therefore, unpenalized coefficients correspond to 0 values in the penalty matrix. In our notation the smoothing
parameter 𝜆𝑝 of the smooth effect 𝑠𝑝(𝑥𝑝) is part of the corresponding penalty matrix𝑲𝑝. However, we also discuss the set
of smoothing parameters in a jointed way as vector 𝝀.
In summary, we model the expected value in a linear model with semiparametric predictor as

E(𝑦𝑖) = 𝜇𝑖 = 𝛾0 +⋯+ 𝑥𝑖𝑞𝛾𝑞 +⋯+ 𝑠𝑝(𝑥𝑖𝑝) +⋯ = 𝒛⊤
𝑖
𝜸.

For the optimal predictions we minimize the penalized least squares criterion

PLS(𝜸) =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝒛⊤
𝑖
𝜸)2 + 𝜸⊤𝑲𝜸

via

�̂� = (𝒁⊤𝒁 + 𝑲)−1𝒁⊤𝒚.

The smoothing parameters 𝝀, which are included in the penalty matrix 𝑲 need to be optimized additionally to the
model estimation. Therefore, cross-validation or model selection criteria as generalized cross-validation criterion (GCV)
or Akaike information criterion (AIC) can be applied.

3 EXPECTILE REGRESSION

In a linear model, we assume that the response follows a specific distribution and the error terms are homoscedastic. One
approach to overcome these restrictions is expectile regression (Newey & Powell, 1987). Expectiles allow us to model the
whole distribution without assuming a parametric distribution family. Based on the similarity between expectile regres-
sion and linear models in their estimation, all smooth covariate structures of the latter can also be used in expectile
regression. Then we are talking about semiparametric expectile regression as introduced by Schnabel and Eilers (2009)
and Sobotka and Kneib (2012). A weight is included in the standard penalized least squares approach when estimating
expectile regression such that now the least asymmetrically weighted squares (LAWS) criterion is optimized

LAWS(𝜸𝜏) =

𝑛∑
𝑖=1

𝑤𝜏(𝑦𝑖)
(
𝑦𝑖 − 𝒛⊤

𝑖
𝜸𝜏
)2
+ 𝜸⊤𝜏 𝑲𝜸𝜏. (1)
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Here the weight 𝑤𝜏(𝑦𝑖) depends on the chosen asymmetry 𝜏 ∈ (0, 1), the response 𝑦𝑖 , and the fitted value 𝒛⊤𝑖 𝜸𝜏 via

𝑤𝜏(𝑦𝑖) =

{
𝜏 if 𝑦𝑖 ≥ 𝒛⊤

𝑖
𝜸𝜏

1 − 𝜏 if 𝑦𝑖 < 𝒛⊤
𝑖
𝜸𝜏
.

The minimizer of the LAWS criterion defines the expectile

𝑒𝑖,𝜏 = 𝒛⊤
𝑖
𝜸𝜏.

For the calculation of the coefficients 𝜸𝜏 the interdependence between the weight and the coefficients needs to be solved.
Therefore, an iteratively reweighted least squares (IRLS) procedure is applied.
The smoothing parameters 𝝀 are optimized from outside the LAWS algorithm based on model selection criteria. This

means we fix the first set of smoothing parameters and run the expectile regression based on these parameters. Then
we evaluate the goodness-of-fit and iterate to the next set of smoothing parameters. In this article we use 5-fold cross-
validationwith sumof predictive asymmetric weighted squared errors as criterion for all models to have a fair comparison.
The optimization procedure of the smoothing parameters starts with a small grid search whose output is used as initial
values for a Nelder–Mead optimization. Details on further approaches on optimizing smoothing parameters are described
in Sobotka and Kneib (2012).
For the interpretation of expectiles, the comparison with the ordinary mean is useful. The mean specifies the center of

gravity to the point where the sum of the distances between the fitted value and the observations located above that point
is equal to the sum of distances located below that point. For expectiles we now put more emphasis on a specific part of
the distribution by introducing the asymmetry 𝜏. For the derivative of Equation (1) we get∑

𝑖∶ 𝑦𝑖<𝒛
⊤
𝑖
𝜸𝜏

(1 − 𝜏)(𝑦𝑖 − 𝒛⊤
𝑖
𝜸𝜏) =

∑
𝑖∶ 𝑦𝑖≥𝒛

⊤
𝑖
𝜸𝜏

𝜏(𝑦𝑖 − 𝒛⊤
𝑖
𝜸𝜏). (2)

So 𝒛⊤
𝑖
𝜸𝜏 determines the point where the weighted sum of distances located above is equal to the weighted sum of distances

located below. Based on Equation (2) we see that the expectile is the weighted center of gravity. Rearranging Equation (2)
results in

𝜏 =

∑
𝑖∶ 𝑦𝑖<𝒛

⊤
𝑖
𝜸𝜏

|𝑦𝑖 − 𝒛⊤
𝑖
𝜸𝜏|

𝑛∑
𝑖=1

|𝑦𝑖 − 𝒛⊤
𝑖
𝜸𝜏| .

Thus, the expectile defines the point where the fraction of distances below the predictor is 𝜏. This is in contrast to quantile
regression where 𝜏 is the fraction of the number of observations located below the fitted value. So quantiles are a gen-
eralization of the median while expectiles are a generalization of the mean. Thus, expectile regression is, in practice, a
weighted least squares idea, with asymmetric weights. Due to this, expectile regression can easily comprise the complex
covariate structures that are available for the linear models.

4 EXPECTILE REGRESSIONWITH FLEXIBLE RESPONSE FUNCTION

4.1 Introduction to generalized expectiles

As discussed in the introduction, we generalize the classical semiparametric expectile regression to allow for nonlinear
relationships between the predictor and the expectile and to consider constraints on the support of the response. Therefore,
we introduce generalized expectiles or expectiles with flexible response function as

𝑒𝑖,𝜏 = ℎ̃𝜏(𝒛
⊤
𝑖
𝜸)
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with ℎ̃𝜏 a strictly monotonically increasing function, that may be constrained by the support of the response variable.
Basically, a fixed response function ℎ could be used to consider the constraints on the support of the response. This would
be in line with classical generalized linear (additive) models, see, for example, Efron (1992) where asymmetric maximum
likelihood estimation is combined with a fixed response function to study the distribution of count responses. However,
these models would be dependent on specifying the underlying distribution correctly. We provide more details on this
in Section 4.2. In the following, we always mean generalized expectile regression with flexible response function, when
speaking of generalized expectiles if not specified otherwise. The version with fixed response function is always indicated
as such.
So here we emphasize to estimate, similarly as in generalized additive models with flexible response function (Spiegel

et al., 2019), the function ℎ̃ using a P-spline basis

ℎ̃𝜏(𝒛
⊤
𝑖
𝜸𝜏) =

𝐽ℎ∑
𝑗ℎ=1

𝐵𝑗ℎ (𝒛
⊤
𝑖
𝜸𝜏)𝜈𝑗ℎ,𝜏

with 𝐵𝑗ℎ (𝑗ℎ = 1,… , 𝐽ℎ) B-spline basis functions. We impose monotonicity on ℎ̃ by forcing monotonically increasing coef-
ficients 𝝂𝜏 = (𝜈1,𝜏, … , 𝜈𝐽ℎ,𝜏), which can be written as a linear constraint on the model. The constraints on the support can
also be described in terms of linear constraints on the coefficients 𝝂𝜏. We restrict the coefficients to be positive only in
order to achieve only nonnegative predictions. Based on the fact that B-spline basis functions are always nonnegative, the
combination will result in nonnegative predictions. Additionally, constraints from above could also be included as linear
constraints. Due to the fact that unweighted B-splines basis functions sum up to 1, we only allow for coefficients smaller
than 1. This results in a response function, which is always smaller or equal to 1. Once we apply the linear constraints to
the coefficients, the response function can be estimated based on methods of Wood (1994) for fixed predictors 𝜂𝑖𝜏 = 𝒛⊤

𝑖
𝜸𝜏.

The response function ℎ̃𝜏 may depend on the asymmetry in a similar way as the coefficients of the covariate effects 𝜸𝜏.
We construct one response function per expectile to be able to detect heteroscedasticity in both parts, the predictor and
the response function. We will show the flexibility in a scenario in the simulation study.
Generally, using one estimated response function for all asymmetry levels would ease the interpretation of the results.

However, the estimation is nontrivial. First, the scaling of the predictor prevents the use of one response function estimated
jointly for all asymmetry levels (see next sections for details on the scaling due to identifiability). Sincewe need for example
to cancel the intercept. Second, to get one response function that is valid for all parts of the distribution, we would first
need to run flexible expectile regression models for all different asymmetry levels before we could aggregate the different
response functions. Figure 5 provides some impression that the estimated response functionsmight vary strongly between
the asymmetry levels. So just using, for example, the estimated response function of the 50% expectile will not be sufficient
for the lower or upper tail of the distribution. Furthermore, Figure 5 also shows that it is nontrivial to combine the different
response functions. Therefore, we leave this approach to further research.

4.2 Estimation of generalized expectiles

For the estimation we set up the new generalized least asymmetrically weighted squares (GLAWS) as

GLAWS(𝜸𝜏, 𝝂𝜏) =

𝑛∑
𝑖=1

𝑤𝜏(𝑦𝑖)
(
𝑦𝑖 − ℎ̃𝜏(𝒛

⊤
𝑖
𝜸𝜏)

)2
+ 𝜸⊤𝜏 𝑲𝜸𝜏 + 𝝂⊤𝜏 𝑲𝜈𝝂𝜏,

where 𝑲 comprises the penalty matrices for the covariate effects and 𝑲𝝂 is the penalty matrix for the smooth response
function. Both penalty matrices include their smoothing parameters. Similarly as in generalized additive models with
flexible response functions, the interdependence of the response function and the predictor prevents the existence of an
analytical solution. Thus, we need to adopt the iterative procedure from Spiegel et al. (2019) for the determination of
estimates for generalized additive models with flexible response function to expectile regression. In the new procedure
we additionally need to adjust the asymmetry weights in each step. Informally we define a pseudo log-likelihood 𝑙(𝜸𝜏, 𝝂𝜏)
based on the GLAWS as

𝑙(𝜸𝜏, 𝝂𝜏) = −
1

2
GLAWS(𝜸𝜏, 𝝂𝜏).
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Derivatives of this pseudo log-likelihood define pseudo score functions and pseudo Fisher information matrices. Details
on the pseudo functions are displayed in the supplementary material in Section A. We then calculate working weights
and working responses for the modified Fisher scoring algorithm from these pseudo functions.
We start with the estimation of a classical expectile regression model. This yields the first (scaled) predictor. Using

this predictor we can estimate the first response function ℎ̃(𝑚) as a smooth effect in a classical expectile regression (the
predictor of the initial expectile regression). This smooth effect includes the constraints on the support of the response
and the monotonicity. The estimation of the response function also needs several iterations to account for the asymmetry.
Based on this estimated response function we can build a Fisher-Scoring–type algorithm to estimate the new covariate
effects and cycle back to estimate a new response function. This iteration continues until the estimate of the response
function converges or the goodness-of-fit does not increase anymore. The Fisher-Scoring–type algorithmuses theworking
response 𝑦(𝑘)

𝑖
and working weights 𝜔(𝑘)

𝑖

𝑦
(𝑘)
𝑖

= 𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏 +

𝑦𝑖 − ℎ̃
(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

ℎ̃
′(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

,

𝜔
(𝑘)
𝑖

= 𝑤𝜏(𝑦𝑖) ⋅
(
ℎ̃
′(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

)2
,

where 𝑤𝜏(𝑦𝑖) is the weight depending on the asymmetry and the fitted value via

𝑤𝜏(𝑦𝑖) =

⎧⎪⎨⎪⎩
𝜏 if 𝑦𝑖 > ℎ̃

(𝑚)
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏

)
(1 − 𝜏) if 𝑦𝑖 ≤ ℎ̃

(𝑚)
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏

) .
Furthermore 𝜸(𝑘−1)𝜏 are the coefficients of the previous iteration and ℎ̃′ is the derivative of the response function with
respect to 𝒛⊤

𝑖
𝜸𝜏. The new coefficients are then estimated as

𝛀(𝑘) = diag(𝜔(𝑘)
𝑖
),

𝜸
(𝑘)
𝜏 =

(
𝒁⊤𝛀(𝑘)𝒁 + 𝑲

)−1
𝒁⊤𝛀(𝑘)𝒚(𝑘).

In each step the asymmetry weights, the working response, and the working weights need to be updated and the coeffi-
cients must be scaled as discussed in the next section. A detailed scheme for the estimation is presented in the Appendix.
For the estimationweuse the softwareR (RCoreTeam, 2019). In detailwe built anR-package calledFlexER (see description
of the supplement material), which internally makes use of the mgcv-package (Wood, 2017). In our package the covariate
effects are estimated via the gam function and the response function considering the constraints with the pcls function.
In principle, the estimation of the response function ℎ̃𝜏 can be ignored, and generalized expectile regression with fixed

response function could be used. In consequence, ℎ̃𝜏 is replaced with a prespecified response function ℎ in all previous
equations. This could be the exponential or the inverse of the logit function, for example. So the GLAWS would result in

GLAWS∗(𝜸𝜏) =

𝑛∑
𝑖=1

𝑤𝜏(𝑦𝑖)
(
𝑦𝑖 − ℎ(𝒛⊤

𝑖
𝜸𝜏)

)2
+ 𝜸⊤𝜏 𝑲𝜸𝜏

and a similar Fisher-scoring–type algorithm can be implemented. The only difference would be that we could omit the
estimation of the response function. Furthermore, the constraints to ensure identifiability as introduced in the next sec-
tion can be ignored. We also implemented this approach in the package FlexER. We thereby detected that generalized
expectile regression with fixed response function is superior to classical expectile regression when the response function
is nonlinear. However, we figured out that the fixed version is similar to the flexible version only in specific settings and it
is easy to construct cases where the flexible version is superior to the fixed version. We provide corresponding examples
in Section 5 and the supplementary material Section B.
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4.3 Identifiability of generalized expectiles

In our proposedmodelwith flexible response function, the identification of different effects is amajor issue.Weuse similar
constraints as in generalized additivemodelswith flexible response functions (Spiegel et al., 2019) to achieve identifiability.
There we denote with 𝑥𝑖𝑟 the i-th observation of the r-th covariate and with 𝑠𝑟,𝜏(𝑥𝑖𝑟) the corresponding effect. We use the
index 𝑟 ∈ {𝑞, 𝑝} for the covariate to highlight that the constraints 4 and 5 are used independent whether the covariate is
modeled as linear or smooth effect.

1. We require that at least two additive covariate effects are contained in themodel specification. For illustration, consider
a regression predictor with only one single continuous covariate with nonlinear effect modeled as 𝑠(𝑥). If we plug this
single effect into the response function ℎ̃(⋅), we obtain ℎ̃(𝑠(𝑥)), where changes in 𝑠(𝑥) can be offset by changes in ℎ̃.
This is not possible for ℎ̃(𝑠1(𝑥1) + 𝑠2(𝑥2)) due to the additive combination of the two effects 𝑠1(𝑥1) and 𝑠2(𝑥2).

2. The intercept has to be removed, that is,we restrict 𝛾0 = 0. Otherwise, a shift on the x-axis of the response function could
be compensated by a corresponding change in the intercept. In expectile regression, different parts of the distribution
are usually analyzed. In classical expectile regression this also results in very different intercepts for different expectiles.
Those are not available in generalized expectile regression, but their effect is part of the estimated response function.

3. All smooth effects have to be centered around zero, that is,
∑𝑛

𝑖=1
𝑠𝑝,𝜏(𝑥𝑖𝑝) = 0. In this way, all the intercepts inherent to

the P-spline bases are removed as well such that no constant shift invalidates the identifiability. This is incorporated in
the setup of the smooth effects by including a QR decomposition in their basis functions (for details, see Wood, 2017).

4. The predictor has to be scaled. Otherwise, the predictor can be shifted and stretched arbitrarily and the effect can
be compensated by a shift or stretching in the response function. We scale each effect 𝑠𝑟,𝜏 by the model’s standard
deviation. In detail we apply (similarly as in Tutz & Petry, 2016)

𝑠𝑟,𝜏(𝑥𝑖𝑟) =
𝑠𝑟,𝜏(𝑥𝑖𝑟)(∑

𝑟

𝑛∑
𝑖=1

(
𝑠𝑟,𝜏(𝑥𝑖𝑟) −

1

𝑛

𝑛∑
𝑖=1

𝑠𝑟,𝜏(𝑥𝑖𝑟)

)2
)1∕2

.

5. We scale the coefficients a second time via

𝑠𝑟,𝜏(𝑥𝑖𝑟) =
𝑠𝑟,𝜏(𝑥𝑖𝑟) − 𝑠𝑟,𝜏(𝑥𝑖𝑟)

max (𝜂𝜏) − min (𝜂𝜏)

to be able to fix the knots of the spline of the response function. Fixing the knots also speeds up the convergence of the
algorithm.

6. The response function has to be monotonically increasing, that is, ℎ̃′𝜏(𝜂𝜏) > 0. Otherwise interpretations are not possi-
ble.

During the estimation we apply step-halving to prevent estimation steps that do not improve the model fit. Otherwise,
we end up with wrong solutions or the estimates change back and forth without converging. This problem is well known
from the ordinary generalized linearmodelwithout the canonical response function (see, e.g., Jørgensen, 1984,Marschner,
2011, or Yu et al., 2017). The smoothing parameters are optimized fromoutside the algorithmbased on true cross-validation
with test and training data sets. The usage of the GCV criterion is not possible, since we lack the definition of the effective
degrees of freedom in this complex interdependent two-stage model definition. The problem is similar to what we specify
in Spiegel et al. (2019).
In classical expectile regression, similar to quantile regression, the crossing of expectiles is a well-known problem

(Schulze-Waltrup et al., 2015). Generally, crossing expectiles are hard to interpret, since in theory they should not appear.
In practice, they occur due to numerical deficits. In classical expectile regression they occur less often than in classical
quantile regression. This is based on the fact that expectile regression with its L2-norm uses more information than quan-
tile regression with its L1-norm. In the new approach we cannot exclude the possibility of crossing expectiles. For classical
expectile regression there are approaches like expectile sheets (Schulze-Waltrup et al., 2015), which ensure monotonicity
between the asymmetry levels. We have to leave the implementation of those ideas to generalized expectile regression for
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future research. However, we conclude based on our examples (see Section 6 and supplementary material Sections C and
D), that fixing the smoothing parameters for all asymmetry levels to one set of values reduces the risk of crossing expectiles.
For the interpretation of the effects, we need to combine both the response function and the estimated effects. Therefore,

we check the effect of one covariate ceteris paribus, that is, keep all other covariates and the response function fixed. Due
to the centering of the covariate effects all curves would be overlying. To ease the view on the different asymmetries, we
suggest two methods to adjust the covariates effects. In the first approach, we combine the estimate of the covariate effect
with the estimate of the response function. In the second approach an asymmetry depending constant, similarly to the
classical intercept, is added to the pure covariate effects. Both are applied in Figure 4.
In detail, we display with the first method the effect of the metric covariates of the generalized expectile regression

combined with the response function. Thus, we display ℎ̃𝜏(𝑠𝑟,𝜏(𝑥) + 𝑐𝑟,𝜏)with 𝑟 any covariate. Here 𝑐𝑟,𝜏 is the typical effect
of the other covariates. In our examples 𝑐𝑟,𝜏 ≡ 0, since all covariates are either determined as splines or as categories. In
the general case, so with including linear effects of metric covariates (which we do not recommend), 𝑐𝑟,𝜏 is specific for
each covariate 𝑟, which can be any kind of covariate (smooth, categorical, linear). In detail we determine 𝑐𝑟,𝜏 via

𝑐𝑟,𝜏 =
∑
𝑝∈𝑃

1

𝑛

𝑛∑
𝑖=1

𝑠𝑝,𝜏(𝑥𝑖𝑝)

with 𝑃 the set of smooth or linear effects, but 𝑟 ∉ 𝑃. Categorical effects are not considered in 𝑃, since we suggest to use
their effect of the reference category instead, which is 0. Indeed, if 𝑃 consists only of smooth effects 𝑐𝑟,𝜏 is 0.
In the second approach the covariate effects 𝑠𝑟,𝜏(𝑥) are displayed together with another constant: 𝑠𝑟,𝜏(𝑥) + ̄̂𝑒𝜏. This

constant ̄̂𝑒𝜏 is the average of all the fitted values 𝑒𝑖𝜏:

̄̂𝑒𝜏 =
1

𝑛

𝑛∑
𝑖=1

𝑒𝑖𝜏.

Both approaches help to identify the effects depending on the asymmetry levels. In the secondmethod, the pure covariate
effects can be interpreted, while the first approach allows, to directly see the effect on the response. More details on the
interpretation of the estimates are given in the analysis of the hearing scores in Section 6.1.

4.4 Uncertainty quantification and pointwise confidence bands

Due to the complexmodel set up and the distribution-free approach we are not giving theoretic approximations or asymp-
totics for the variance of the estimates. The key problem in the estimation of the variance is the missing definition of the
effective degrees of freedom. Instead, we apply a nonparametric bootstrap (Efron & Tibshirani, 1994) to consider how sure
we can be about our estimates. Therefore, we draw a nonparametric bootstrap sample of the same size randomly with
replacement from our original data set. Using the bootstrap sample we estimate the model again. We use the same con-
figurations as for the original model. In particular we use the final smoothing parameters of the original model as fixed
smoothing parameters to save computing time. We find that the variation of the coefficients can be estimated with 1000
to 2000 bootstrap replications. Estimating the smoothing parameters in each bootstrap sample would allow to consider
the uncertainty of those. However, with the current algorithm optimizing 1000 times the smoothing parameters takes too
long. One would need to reduce the number of bootstrap samples to 10–20. Moreover, with flexible smoothing parame-
ters, it cannot be ensured that the estimated curve of the main model without bootstrap is always inside the bootstrap
interval.
For the smooth covariate effects and the smooth response function,we applied some additional steps to obtain pointwise

confidence bands thatmay be included in the plots. First, for each covariate a regular grid based on the range of the original
data set is defined.We predict all smooth covariate effects on their grid from the bootstrapmodels in order to calculate their
pointwise confidence bands. Thus, for each point on the grid the quantiles of the predicted effects can be used to determine
the pointwise confidence bands. For the calculation of the pointwise confidence band for the response function we use a
grid based on the linear predictor of the original model. This grid is used to predict the effect of the response function in
each bootstrap replication. Again the pointwise quantiles of the fitted values determine the pointwise confidence bands.
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5 SIMULATION STUDY

5.1 Design of the simulation study

The ideas that we are presenting in this article are rather complex. Thus, the simulation design is complex, too, since it
needs to assess several aspects. Similar to classical expectile regression, generalized expectiles are free from an assump-
tion of the underlying distribution. Therefore, we model five types of responses: Normal, Gamma, Beta, Lognormal, and
Pseudo-Beta distributed responses. Overall, we want to show that the classical expectile regression is only valid if we
assume a linear relationship between the predictor and the expectile. Thus, we present several scenarios with different
response functions in these simulations: the identity link (id), the logarithmic link (log), the logit link (logit), and a link
function that depends on the asymmetry level, thus a heteroscedasticity inducing link function (ht). The identity link
function is the benchmark process to show that the classical expectile regression is a special case of our new approach
for Normal and Gamma distributions. The logarithmic link simulation represents the generalization of the classical gen-
eralized additive model. To check whether our new approach is identifiable, when both the response function and the
coefficients are varying, we included the third scenario where the response function depends on the simulated error
terms. The latter are also simulated with heteroscedasticity. The Lognormal and Pseudo-Beta distributions indicate cases
where the generalized expectile regression with flexible response function returns similar values as with a prespecified
fixed response function.
In total we provide three approaches for Normal distributed data (id, log, ht link), two approaches for Gamma dis-

tributed data (id, log link), one approach for Beta distributed data (logit link), one approach for Lognormal distributed
data (id link), and one approach for Pseudo-Beta distributed data (logit link).
The covariates 𝑥1 and 𝑥2 are drawn uniformly from a grid between 0 and 1 with step size 0.05. The predictor for the

mean effect 𝜂(𝜇)
𝑖

is then constructed as

𝑠1(𝑥𝑖1) = sin(2𝜋𝑥𝑖1)

𝑠2(𝑥𝑖2) = exp(3𝑥𝑖2)∕20

𝜂
(𝜇)

𝑖
= 𝑠1(𝑥𝑖1) + 𝑠2(𝑥𝑖2)

and for the standard deviation as

𝜂
(𝜎)
𝑖

= 0.25 + 0.7𝑥𝑖1 + 0.5𝑥𝑖2.

To simulateGamma distributed responses we calculate the mean 𝜇𝑖 either with the identity or the exponential function
similar to the standard deviation 𝜎𝑖

𝜇𝑖 =

{
𝜂
(𝜇)

𝑖
+ 2.5

exp(𝜂
(𝜇)

𝑖
+ 1)

& 𝜎𝑖 =

{
𝜂
(𝜎)
𝑖

id link
exp(𝜂

(𝜎)
𝑖
) log link

.

Those parameters are used to calculate the shape 𝛼𝑖 =
𝜇2
𝑖

𝜎2
𝑖

and rate 𝛽𝑖 =
𝜇𝑖

𝜎2
𝑖

of the Gamma distribution. Thus, the response

𝑦𝑖 is simulated via

𝑦𝑖 ∼ 𝐺𝑎(𝛼𝑖, 𝛽𝑖).

To generate Normal distributed responses we first generate the standard deviation

𝜎𝑖 =

{
𝜂
(𝜎)
𝑖

for id or ht link
exp(𝜂

(𝜎)
𝑖
) for log link

.
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Then we draw the error term 𝜀𝑖 ∼ 𝑁(0, 𝜎𝑖) before we generate the mean value via 𝜇𝑖 = ℎ(𝜂
(𝜇)

𝑖
) with ℎ either the identity

(id), the exponential (log), or the variance dependent response function (ht).

𝜇𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝜂
(𝜇)

𝑖
+ 2.5 id link

exp(𝜂
(𝜇)

𝑖
+ 1) log link{

𝜂
(𝜇)

𝑖
+ 1 for 𝜀𝑖 ≤ 0

exp(𝜂
(𝜇)

𝑖
+ 1) for 𝜀𝑖 > 0

}
ht link

.

Finally, we calculate the response 𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖 .
To simulate Beta distributed responses we calculate the mean 𝜇𝑖 with the logit function similar to the standard devi-

ation 𝜎𝑖

𝜇𝑖 =
exp(𝜂

(𝜇)

𝑖
+ 0.6)

1 + exp(𝜂
(𝜇)

𝑖
+ 0.6)

& 𝜎𝑖 =
exp(𝜂

(𝜎)
𝑖

− 4)

1 + exp(𝜂
(𝜎)
𝑖

− 4)
.

Those parameters are used to calculate the shapes 𝛼𝑖 = −
𝜇𝑖(𝜇

2
𝑖
−𝜇𝑖+𝜎

2
𝑖
)

𝜎2
𝑖

and 𝛽𝑖 =
(𝜇𝑖−1)(𝜇

2
𝑖
−𝜇𝑖+𝜎

2
𝑖
)

𝜎2
𝑖

of the Beta distribution.

Thus, the response 𝑦𝑖 is simulated via

𝑦𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑖, 𝛽𝑖).

To generate Lognormal distributed responses we first generate the standard deviation

𝜎𝑖 = 𝜂
(𝜎)
𝑖
∕1.5.

Then we draw the error term 𝜀𝑖 ∼ 𝑁(0, 𝜎𝑖) before we generate the mean value 𝜇𝑖 via

𝜇𝑖 = 𝜂
(𝜇)

𝑖
+ 1.

Finally, we calculate the response 𝑦𝑖 = exp((𝜇𝑖 + 𝜀𝑖)∕1.5).
To simulate Pseudo-Beta distributed responses with the logit function we start with simulating the mean 𝜇𝑖 and stan-

dard deviation 𝜎𝑖

𝜇𝑖 = 𝜂
(𝜇)

𝑖
+ 0.6 & 𝜎𝑖 = 𝜂

(𝜎)
𝑖
.

Before we draw normal distributed error terms 𝜀𝑖

𝜀𝑖 ∼ 𝑁(0, 𝜎𝑖).

Finally, we calculate the Pseudo-Beta distributed response 𝑦𝑖 using the logit link

𝑦∗
𝑖
= 𝜇𝑖 + 𝜀𝑖,

𝑦𝑖 =
exp(𝑦∗

𝑖
)

exp(𝑦∗
𝑖
) + 1

.

For more details on the design of the data, please read the attached R-code in the supplementary material.
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5.2 Comparison of classical expectile regression and generalized expectile regression

In the first part of the simulation study we compare classical expectile regression (ER), generalized expectile regression
with flexible response function (FlexER), and generalized expectile regression with fixed response function (Fixed_ER)
based on their goodness-of-fit. Therefore, we use a sample size of 2000 for training the models. We estimate all types of
expectile regression for the asymmetries 𝜏 = 10%, 50%, 90%. For each scenario, the simulations are repeated 100 times.
We estimate the covariate effects 𝑠⋅,𝜏 with penalized B-spline bases of order 3 with maximal 15 degrees of freedom. The
smoothing parameters are optimized via 5-fold cross-validation. For the evaluation of the simulations we calculate the
predictive mean weighted squared error (PMWSE) via a validation data set of size 10,000.
For normally distributed responses, we are not implying a constraint on the response function of FlexER, while for

Gamma distributed responses we include the positivity constraint in the estimation of the response function of FlexER.
In the case of Beta distribution, we specify in FlexER the constraint to have values in the interval [0,1]. In the estimation
of Normal and Gamma distributed data via Fixed_ER we consider a log-link independently of the true link function since
the identity link is represented by the classical expectile regression. For Beta distributed data we specify a logit-link while
applying Fixed_ER. The results for Normal, Gamma, and Beta distributed data are shown in Figure 1.
These results indicate that for the benchmark data with identity link, the PMWSE of the new FlexER approach is

similar to the results by classical expectile regression. If the response function is the log link, our new approach outper-
forms the classical expectile regression for all asymmetry levels. In case of heteroscedasticity-inducing link function, the
differences get clearer with increasing asymmetry level. This is based on the simulation design, where the link function
is set as linear for small error terms (lower asymmetry level) and as log link for larger error terms (higher asymmetry
levels). Thus, the pattern of difference between classical and flexible expectile regression is valid for both Normal and
Gamma distributions. In the Beta distributed design we see a similar pattern. Generalized expectile regression with
flexible response function outperforms classical expectile regression. In the supplementary material (Section B.2.2 and
B.2.3) we also show the estimated response functions and covariate effects, as well as additional asymmetry levels
𝜏. These plots indicate that our new FlexER approach estimates both the response function and the covariate effects
correctly, while the classical expectile regression results in biased estimates or predicts values, which are impossible
by theory.
In all the above settings, except the Gamma distribution with log-link, the generalized expectile regression with flexi-

ble response function has a lower PMWSE than the version with fixed response function. Thus, we now focus on cases
when both approaches are similar. The key point is that the model with fixed response function is dependent on the cor-
rect specification of the response function. Therefore, we provide two additional cases where both models coincide, the
design with Lognormal and Pseudo-Beta distributed response. The remaining design of the simulation study is similar to
above. In detail for the Lognormal case we do not place a constraint for the flexible model, while we specify ℎ(𝜂) = exp(𝜂)

as response function for the fixed version. For the Pseudo-Beta case we place the constraint to be between 0 and 1 for
the flexible approach and specify ℎ(𝜂) = exp(𝜂)∕(1 + exp(𝜂)) for the fixed version. The resulting PMWSE is displayed in
Figure 2.
The similarity of both generalized approaches is visible. Additionally, we see that both approaches are superior to the

classical expectile regressionwhen considering all asymmetries in total. For the Pseudo-Beta approach and low asymmetry
levels, all three approaches perform similarly, which is based on the linear shape of the inverse logit function for values of
the predictor around 0. The estimated response functions and covariate effects are shown in the supplementary material
Section B. Based on these results we emphasize to only use the flexible approach, as we do for the remainder of this
article.

5.3 Identifiability of generalized expectile regression

The last part of the simulation study is designed to check whether our new approach is identified. Therefore, we
build one data set of size 100, 000 and estimate expectiles for the asymmetry levels 𝜏 = 10%, 50%, 90% with ER and
FlexER. Based on these models the prediction/expectiles for each combination of values of 𝑥1 and 𝑥2 are calculated as
(𝑒
(𝐸𝑅)
𝜏 (𝑥𝑢1, 𝑥𝑣2), 𝑒

(𝐹𝑙𝑒𝑥𝐸𝑅)
𝜏 (𝑥𝑢1, 𝑥𝑣2)). Due to the grid structure of the covariates also the empirical expectiles for each com-

bination can be estimated without building amodel (�̂�(𝑥𝑢1, 𝑥𝑣2)). Thenwe compare the fitted values for each combination
of 𝑥1 and 𝑥2 (𝑒

(⋅)
𝜏 (𝑥𝑢1, 𝑥𝑣2)) with the empirical/marginal expectile for this combination (�̂�(𝑥𝑢1, 𝑥𝑣2)) by calculating their
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F IGURE 1 Estimated predictive mean weighted squared errors (PWMSE) for the 100 replications of the simulation study with Normal
(top panels), Gamma (middle panels), and Beta distribution (bottom panel)
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F IGURE 2 Estimated predictive mean weighted squared errors (PWMSE) for the 100 replications of the simulation study with
Lognormal and Pseudo-Beta distribution
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F IGURE 3 Difference between the predicted expectiles and the marginal expectiles for each combination of 𝑥1 and 𝑥2 with Normal
distributed response with identity link and Gamma distributed response with log link

differences

�̂�(𝑥𝑢1, 𝑥𝑣2) − 𝑒
(⋅)
𝜏 (𝑥𝑢1, 𝑥𝑣2), (3)

where 𝑢 and 𝑣 specify elements of the grid of covariates. In Figure 3 the remaining differences of themodels are displayed.
In the graphs each unique combination of 𝑥1 and 𝑥2 is one index on the horizontal axis, while the corresponding difference
according to Equation (3) is shown on the y-axis. In a correctmodel the difference between the empirical and the predicted
expectiles should be zero. In the paperwe show the results of 10% expectile regression forNormal distributed responsewith
identity link and Gamma distributed response with log link. The remaining figures are collected in the supplementary
material (Section B.3.2), since the overall trends are the same.
In the base scenario in which we simulated the data with the identity link both models give a similar estimate. Their

differences show no specific pattern. Moreover, the values of the differences between the fitted values based on classical
or generalized expectile regression and the empirical/marginal expectiles shrink toward zero. However, for the cases with
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nonidentity links the classical expectile regression predicts expectiles that are systematically different from the marginal
ones. The residuals do not shrink toward zero and there are some trends remaining. Contrarily, the generalized expectile
regression predicts expectiles that coincide with themarginal values and has no remaining trends. Furthermore, the resid-
uals shrink to zero. Overall, we conclude that the new approach forecasts the correct values while the classical approach
does not. So our new approach is identified. In the supplementary material (Section B.3.3) the estimated covariate effects
and response functions are displayed. Those also indicate that the new model recaptures the underlying effect, while the
classical expectile regression results in biased estimates. Generalized expectile regression with fixed response function
(Fixed_ER) behaves similarly as classical expectile regression (as displayed in the supplementary material Section B.3), as
long as the response function is correctly specified there is no pattern visible and unbiased estimates occur. If the response
function is not specified correctly the differences do not shrink toward zero and patterns remain.

6 EMPIRICAL APPLICATIONS

The new model class generalized expectile regression allows us to consider constraints on the target set. To emphasize
the use of applying these constraints two examples are discussed in the following two subsections. In the first example,
we apply our model in a study conducted in northwest Germany on the hearing scores (values limited to the range 0 to
10) of the general population. The second example uses publicly available data from the general population of the United
States on mercury concentrations in blood samples. In this data set, the values of the response are strictly positive. Hence,
in both cases our model is more appropriate to use than classical expectile regression.

6.1 Analysis of self-reported hearing

The HÖRSTAT study was a cross-sectional study with 1903 participants recruited in the northwest of Germany between
2010 and 2012. The participants passed a comprehensive protocol including hearing tests of pure tones and speech, an
interview, and a questionnaire survey on hearing abilities. Compared to the general population, middle-aged and older
cohorts as well as high levels of educational attainment were overrepresented in the sample. Details on the conduct of the
study and the sample composition can be found in detail elsewhere (von Gablenz & Holube, 2017).
After the application of exclusion criteria such as nonnative speaker status or missing covariate values, 1 737 complete

cases were obtained. The data for 74 further hearing aid–wearing participants were excluded to avoid the mismatch of
self-reported abilities in the aided condition and audiometric measurements in the unaided condition. In total, data of
1 663 adults (55% women) were included for the present analysis. In examining hearing performance, the participants
conducted the Goettingen Sentence Test in noise (GÖSA, Kollmeier & Wesselkamp, 1997). Everyday sentences were pre-
sented in background noise to the participants whose task was to repeat as many sentences or single words as possible.
The speech level was continuously adapted to the individual participant’s performance to estimate the speech reception
threshold (SRT), which refers to a speech intelligibility of 50%. The better-ear SRT for each individual as well as the abso-
lute difference between the left and the right ear SRT as a quantification of hearing asymmetry (hereafter called “SRT
asymmetry”) were used for the following model calculations. The main focus of this analysis is on the self-reported hear-
ing abilities as collected in the Speech, Spatial and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) which was
used in its German short form (SSQ17; Kießling et al., 2011). The SSQ17 contains five items each for the three subscales as
well as an item addressing hearing abilities in quiet and overall listening effort, respectively. The items describe everyday
situations involving certain listening tasks. The respondents rate howwell they could accomplish these tasks on a discrete
scale from 0 to 10 points. In this paper, we concentrate on one single item, which raises the question of listening effort:
“Do you have to put in a lot of effort to hear what is being said in conversation with others?” In previous analysis we
found that some expectile regression models had fitted values above the possible maximum score of 10 points (no effort).
The violation can be seen in the left plot of Figure 5 for the exemplary item listening effort. The fitted values exceed 1
for 𝜏 = 0.9 and 𝜏 = 0.95. Hence, we rescaled the listening effort score to the standard unit interval in order to apply a
generalized expectile regression. We constructed the model as follows:

𝑒𝜏 = ℎ̃𝜏
(
𝛽1,𝜏Gender + 𝜷2,𝜏Schooling + 𝑠3,𝜏(Age) + 𝑠4,𝜏(SRT) + 𝑠5,𝜏(SRT asymmetry)

)
.
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We approximated the unknown functions 𝑠⋅,𝜏 with penalized B-spline bases of order 3 with maximal 20 degrees of free-
dom. The smoothing parameters were optimized via 5-fold cross-validation for the 𝜏 = 0.5 expectile and the results were
used in the estimation of all asymmetry levels. This simplification is based on the idea that interpretation of the results,
especially between the different asymmetry levels is easier, if at least the smoothing parameters are fixed. We need the
response functions to vary between the different asymmetry level to capture the different shape of the distributions in the
tails, however fixing the smoothing parameters does not impact the flexibility too much. Using models with individually
optimized smoothing parameters would result in a better individual fit, but generalizations are relaxed using the same
set. Another reason, as described in Section 4.3, for using the same set of smoothing parameters for all asymmetry levels
is that this reduced the risk of crossing expectiles. The results of the estimation with individually optimized smoothing
parameters can be seen in the supplementary material Section C.2. There we see that using the individually optimized
smoothing parameters results in similar trends, but more expectile crossings occur.
During the estimation, the smooth covariate effects are all centered around 0. To provide a better impression of the

resulting effect we add constants to the metric covariate effects, when displaying the estimates. For the metric covariates
of the classical expectile regression, as displayed in Figure 4 in the top row, the classical intercept is added to the estimates.
As described in Section 4.3, we display the covariate effects of the generalized expectile regression in two ways. First, we

display them together with the estimated response function ℎ̃𝜏(𝑠𝑟,𝜏(𝑥) + 𝑐𝑟,𝜏) (Figure 4, middle row). Second, we show the
pure covariate effects, wherewe add some intercept based on the fitted values to ease the view on the different asymmetries
𝑠𝑟,𝜏(𝑥) + ̄̂𝑒𝜏 (Figure 4, bottom row). For the original effects see the supplementary material (Section C.2).
As can be seen in the classical expectile regression (Figure 4, top row), a worse performance in the Goettingen Sentence

Test (higher SRT) was associated with higher listening effort (lower scores). Due to a very small number of observations
for very low and very high SRT there is an increased uncertainty to the estimated effects in the extremes. We saw an
increase in variance for higher SRT and a relatively symmetric distribution as shown by the expectiles. Further, we
observed a small negative effect of SRT asymmetry. The effect of age was small and showed a counterintuitive increase at
older age, that is, elderly adults reported less listening effort than middle-aged adults. When interpreting this effect, it is
important to bear in mind that data from participants who were fitted with hearing aids were excluded from the analysis.
As a consequence, the data for this analysis refer to participants who retained comparatively good hearing for their
age.
In the generalized expectile regression model, the interpretation of the covariate effects is similar as in generalized

linear models, that is, the direction of the effects can be interpreted straightforwardly while the size of the effect depends
on the response function. Overall, we found less change in the variance of the listening effort across the covariates than
in the classical expectile regression model. As can be seen in the results (Figure 4, bottom row), the distance between
the expectiles is much larger in the lower tail than in the upper tail. Hence, the expectiles gave additional information
about the skewness of the listening effort scores. The size of the observed effect was similar to classical expectile regression
with negative associations of SRT and SRT asymmetry. Again, there was basically no relevant effect of age. Combining
the covariate effect and the response function (Figure 4, middle row) results in similar estimates as the classical expectile
regression, but ensuring the limits of the support of the scores. The estimated response functions are shown in the right
plot of Figure 5. They are mostly linear in the lower tail. At the upper tail toward the maximum of the listening effort
scale, a small curvature can be found. This curvature helps to ensure that the predicted values stay within the limits of the
support of the response.
The heteroscedasticity of the response is mostly captured by the estimated response functions. Those are not parallel.

In the right plot of Figure 5, we see linear effects for the response functions at the lower tail, while for the upper tail
they comprise the constraint on the target set. Overall, the curves on the lower tail have a steeper slope than at the upper
tail. This highlights the differences in the variance. For example, the variance is increased for combinations of covariates,
which results in a low value of the predictor. For low SRT (read: better hearing) and low SRT asymmetry combined with
an average age we observed a higher variance of the listening effort than for high SRT (read: worse hearing) and more
pronounced SRT asymmetry. This indicates that participants who performed comparatively good in the speech in noise
test have a more volatile impression of their listing effort than participants with poorer test results.
The estimates of thismodel show that the heteroscedasticity ismainly capturedwith the response function.We conclude

that a purely additive effect of SRT and SRT asymmetry is not sufficient.Moreover, the estimation of the response functions
allows for implying some kind of interaction effect between both variables.
We further applied bootstrap as discussed in Section 4.4 to estimate pointwise confidence bands for the estimated effects

and response functions. The results are collected in the supplementarymaterial SectionC.1. Herewe provide four different
confidence intervals, either using smoothing parameters that are estimated for the 50% asymmetry level or separately
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F IGURE 4 Influence of SRT, SRT asymmetry, and age on the self-reported listening effort. In the first row the results from the classical
expectile regression are displayed, while the second and third rows show the results from generalized expectile regression. In detail, the
second row shows the combined effect of the covariate and the response function ℎ̃𝜏(𝑠𝑟,𝜏(𝑥) + 0), while the third row displays the pure
covariate effects on the predictor 𝑠𝑟,𝜏(𝑥) + ̄̂𝑒𝜏

for each asymmetry level. Moreover, we discriminate, whether the smoothing parameters are optimized just outside of
the bootstrapping or also inside. Generally, the results provide similar figures, while the more flexible the smoothing
parameters are, the wider are the intervals. In our example this is especially visible for smaller effects of the covariates.

6.2 Modeling of mercury concentration in blood

The NHANES study (Centers for Disease Control and Prevention (CDC), 2020) consists of a general health survey that is
conducted in the United States on a regular basis. Participants have to fill in a detailed sociodemographic questionnaire
andmultiplemeasurements are performed. This includes classical examinations, likeweight and heightmeasurements, as
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F IGURE 5 Results of the self-reported hearing model. On the left: Fitted values for classical expectile regression with several asymmetry
levels. On the right: Estimated response function of generalized expectile regression with several asymmetry levels

well as laboratory analyses based on blood and urine samples. Additionally, interviews are conducted to evaluate, among
others, the nutritional intake over the previousweeks. In our analysis, we focused on the concentration ofmercury in blood
samples. Mercury is toxic for humans and can cause harmful effects on multiple parts of the body. This includes effects
on the nervous, digestive, and immune systems, as well as lungs or kidneys (WHO, 2017). Here we estimated associations
between concentrations of mercury and a number of covariates characterizing the study participants. Therefore, we did
not only focus on mean effects, but evaluated whether there are differences between effects on the lower or upper end
on the concentration scale to detect, for example, heteroscedasticity. For a better comparison, we applied both, classical
expectile regression as well as generalized expectile regression with flexible response function.
In this application, wemodeled differences of mercury concentration in the human bodymeasured by the total amount

of mercury in a liter of blood in 𝜇g/L (THg). The values range from 0.11 to 50.81. A histogram of the distribution ofmercury
is displayed in the supplementary material Section D. It shows a clearly right skewed distribution with higher frequency
of low concentration, but without actually reaching the boundary of the target set. In the analysis, we used extracted data
from the NHANES study from 2011 and 2012. In the inclusion criteria, we limited the sample to participants who were
between 21 and 79 years old and had a body mass index (BMI) between 16 and 50. We excluded children as their BMI has
to be handled differently. We further excluded extreme values of the BMI for a more consistent estimate of the nonlinear
effect of BMI. Further, we required the income and the highest education to be available as well as self-reported values
for the consumption of fish and shellfish from the questionnaire. The latter are known to be associated with mercury
concentration as described in Garí et al. (2013) and Buchanan et al. (2015). Finally, we required available information in
the variables age and sex. After the removal ofmissing values and further plausibility checks, we had a sample of size 3 965.
The variable household income of the participants is coded in three categories, while the educational level is coded

in five categories. Sex is a binary variable. Fish and shellfish consumption are coded in four categories, depending on
the frequency of intake. THg, age, and BMI are coded as numerical variables. The exact details of sampling and data
preparation are provided in the supplementary material.
Overall, we built generalized expectile models for 𝜏 = 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 with the following structure:

𝑒𝜏 = ℎ̃𝜏
(
𝛽1,𝜏Sex + 𝜷2,𝜏Education + 𝜷3,𝜏Income + 𝜷4,𝜏Shellfish + 𝜷5,𝜏Fish+

𝑠6,𝜏(BMI) + 𝑠7,𝜏(Age)
)
.

Again, the unknown functions 𝑠⋅,𝜏 were approximated with cubic penalized B-spline bases and a maximum of 20 degrees
of freedom. The smoothing parameters were optimized via 5-fold cross-validation for the 𝜏 = 0.5 expectile and the results
were used in the estimation of all asymmetry levels. For comparison, a similarly specified classical expectile regression
model was evaluated.
The resulting predictions for the classical model as well as the estimated response functions are displayed in Figure 6

in the left column. The other columns of this figure show the estimated smooth covariate effects of both models without
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F IGURE 6 In the top row: Estimates of classical expectile regression. In the bottom row: Estimates of generalized expectile regression.
In the left column: Fitted values and estimated response functions for several asymmetry levels. In the two right columns: Estimated smooth
covariate effects

applying the response function, or any kind of shifting. The covariate effects including the response function or intercepts
are displayed in the supplementary material Section D.2. Based on the predictions of the expectiles in the classical regres-
sion, we conclude that this model is not sufficient. Frequently, values below the natural limit of zero are predicted for all
asymmetry levels. Contrarily, generalized expectile regression considers the positivity constraint. The estimated response
functions show a nonlinear effect, which is also increasing more steeply in the upper tail. The covariate effects based on
classical expectile regression would therefore be biased.
In the first row of Figure 6 the effect of age on themercury concentration (THg) for low asymmetry levels would be con-

sidered as being close to constant compared with the upper levels. However, with generalized expectile regression, we see
different estimates. While the concentration is constantly increasing in the lower tail, for higher ages there is a maximum
of the concentration around 50 years of age and then a clear decrease in the upper asymmetry levels. In the generalized
model, the flattening of the effects for low asymmetry levels is captured with the estimate of the response function and
allows us to check the pure covariate effects for differences. Thus, the misspecification of the response function hinders
the detection of potentially interesting patterns due to the shrinkage of the effects on the lower asymmetry levels. For BMI,
both models show a negative impact of increasing BMI on the concentration of THg. Comparing the sizes of the effects
of age and BMI in both models for the upper asymmetry level shows that in classical expectile regression the impact of
BMI is slightly underestimated in comparison to age. The values range from −2 to 1 for BMI and −1 to 1 for age. In the
generalized expectile regressionmodel the values for BMI range from−0.2 to 0.1, while the age effect varies from−0.07 to
0.07. Both models show that the variation of the expectiles between the different asymmetry levels is lower for the lower
tail of the distribution, while the variation increases with increasing asymmetry levels.
Bootstrap confidence intervals, as described in Section 4.4, provide an impression of the variability of the effects. The

estimated effects and their confidence intervals are displayed in the supplementarymaterial Section D.1. We also included
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the estimated regression coefficients of the categorical covariates and their bootstrap confidence intervals in the supple-
mentary material.

7 CONCLUSION

In this paper, we introduced a new approach to estimate expectile regression models for response variables with compact
or otherwise restricted support. Our new generalized expectile regression solves the open question on how to deal with
constraints on the target set in expectile regression and allows for a nonlinear relationship between the predictor and the
expectile. Therefore, we built a bridge between expectile regression and single index models. This results in interpretable
estimates from a very flexible model. The analysis of data on hearing abilities shows the necessity to consider the con-
straints of the response. A comparison of generalized and classical expectile regression in the hearing questionnaire data
shows that both approaches estimate similar trends while the generalized expectiles are restricted to the support of the
response. The latter ensures valid audiological results. Similarly, the analysis of mercury concentration in blood samples
is less biased, when considering the positivity of the estimates. Due to its flexibility and freedom from any distributional
assumption generalized expectile regression is widely applicable, but the drawbacks are a computationally burdensome
algorithm and rather slow convergence rates. Moreover, the interpretation of the results is not straightforward.
Themodel is a littlemore complex than usual such thatmodel selection is ofmajor importance. Furthermore, themodel

is sensitive to the choice of the smoothing parameters. We started by using cross-validation to select the optimal values.
However, using a GCV criterion for expectiles (Schnabel & Eilers, 2009), or a modified Schall algorithm (Wood & Fasiolo,
2017) could reduce the computation time significantly. Since the smoothing parameter selection offers a wide variety of
options, the best criterion and algorithm for the smoothing parameter choice should be the next step in the research of
this model class.
Overall, we reduced the assumptions in classical expectile regression by showing a path to generalized additive models.

Hence, generalized expectiles could also be a valuable alternative to Generalized Additive Models for Location Scale
and Shape (GAMLSS) (Stasinopoulos et al., 2017). Both models allow for the estimation of all details of a response’s
distribution. However, with generalized expectiles we can avoid a possibly false parametric distributional assumption
or the selection of an inappropriate link function. Instead we now estimate the link semiparametrically. In practice, we
also often find that the convergence of GAMLSS is not guaranteed despite its likelihood-based approach. Nevertheless,
GAMLSS have found a wide field of applications in recent years. Thus we conclude that generalized expectiles can be the
model of choice in various scenarios.
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APPENDIX
Algorithm
Please consider the centering in each step.

1. Initialize Algorithm: Estimate Classical Expectile Regression:
∙ Start:

𝜸
temp
𝜏 = (𝒁⊤𝒁⊤ + 𝑲)−1𝒁⊤𝒚

∙ Iterate until convergence of𝑾 and 𝜸 temp𝜏 :

𝑤𝜏(𝑦𝑖) =

{
𝜏 if 𝑦𝑖 > 𝒛⊤

𝑖
𝜸
temp
𝜏

(1 − 𝜏) if 𝑦𝑖 ≤ 𝒛⊤
𝑖
𝜸
temp
𝜏

𝑾 = diag(𝑤𝜏(𝑦𝑖))

𝜸
temp
𝜏 = (𝒁⊤𝑾𝒁⊤ + 𝑲)−1𝒁⊤𝑾𝒚

∙ After convergence the first estimates are:

𝑾,𝜸
(0)
𝜏

2. Iterate (a) and (b) until the convergence of ℎ̃(𝑚)𝜏 and 𝜸(𝑚)𝜏

(a) Estimation of response function ℎ̃(𝑚)𝜏 for fixed 𝜸(𝑚−1)𝜏 :
∙ Iterate until convergence of ℎ̃temp𝜏 and𝑾:

ℎ̃
temp
𝜏 (𝒛⊤

𝑖
𝜸
(𝑚−1)
𝜏 ) = pcls(𝒚 ∼ 𝑠(𝒛⊤

𝑖
𝜸
(𝑚−1)
𝜏 , bs =′′ ps′′) | 𝑨𝝂 ≥ 𝒃, weights=𝑾)

https://www.who.int/en/news-room/fact-sheets/detail/mercury-and-health
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𝑤𝜏(𝑦𝑖) =

⎧⎪⎨⎪⎩
𝜏 if 𝑦𝑖 > ℎ̃

temp
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑚−1)
𝜏

)
(1 − 𝜏) if 𝑦𝑖 ≤ ℎ̃

temp
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑚−1)
𝜏

)
𝑾 = diag(𝑤𝜏(𝑦𝑖))

∙ After convergence the estimates are: ℎ̃(𝑚)𝜏 ,𝑾

(b) Estimation of covariate effects 𝜸(𝑚)𝜏 for fixed ℎ̃(𝑚)𝜏 :
∙ Initial 𝜸(𝑘−1)𝜏 = 𝜸

(𝑚−1)
𝜏 :

∙ Iterate until convergence of 𝜸(𝑘)𝜏 :

𝑤𝜏(𝑦𝑖) =

⎧⎪⎨⎪⎩
𝜏 if 𝑦𝑖 > ℎ̃

(𝑚)
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏

)
(1 − 𝜏) if 𝑦𝑖 ≤ ℎ̃

(𝑚)
𝜏

(
𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏

)
𝜔
(𝑘)
𝑖

= 𝑤𝜏(𝑦𝑖) ⋅
(
ℎ̃
′(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

)2
𝑦
(𝑘)
𝑖

= 𝒛⊤
𝑖
𝜸
(𝑘−1)
𝜏 +

𝑦𝑖 − ℎ̃
(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

ℎ̃
′(𝑚)
𝜏 (𝒛⊤

𝑖
𝜸
(𝑘−1)
𝜏 )

𝑾 = diag(𝑤𝜏(𝑦𝑖))

𝛀(𝑘) = diag(𝜔(𝑘)
𝑖
)

𝜸
(𝑘)
𝜏 =

(
𝒁⊤𝛀(𝑘)𝒁 + 𝑲

)−1
𝒁⊤𝛀(𝑘)𝒚(𝑘)

∙ After convergence the estimates are: 𝜸(𝑚)𝜏 ,𝑾

3. The final estimates after iterating (2) are 𝜸𝜏 and ℎ̃𝜏

Centering
Here 𝑠(𝑘)𝑟 (𝑥𝑖𝑟) is any kind of predictor using the current estimates 𝜸(𝑘). Here 𝑟 is the index of an arbitrary covariate. To
avoid cluttering the index 𝜏 is skipped.

𝜁
(𝑘)
𝑟 =

1

𝑛

𝑛∑
𝑖=1

𝑠
(𝑘)
𝑟 (𝑥𝑖𝑟),

𝜃(𝑘) =

(∑
𝑟

𝑛∑
𝑖=1

(
𝑠
(𝑘)
𝑟 (𝑥𝑖𝑟) − 𝜁

(𝑘)
𝑟

)2)1∕2

,

𝜸
(𝑘)
𝜏 =

𝜸
(𝑘)
𝜏

𝜃(𝑘)
and 𝑠(𝑘)𝑟 (𝑥𝑖𝑟) =

𝑠
(𝑘)
𝑟 (𝑥𝑖𝑟) − 𝜁

(𝑘)
𝑟

𝜃(𝑘)
,

𝜂
(𝑘)
𝑖

=
∑
𝑟

𝑠𝑟(𝑥𝑖𝑟),

𝜸
(𝑘)
𝜏 =

𝜸
(𝑘)
𝜏

max (𝜼(𝑘)) − min (𝜼(𝑘))
and 𝜂(𝑘)

𝑖
=

𝜂
(𝑘)
𝑖

max (𝜼(𝑘)) − min (𝜼(𝑘))
.
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