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Abstract

Cannabis has effects on the insulin/glucose metabolism. As the use of cannabis and

the prevalence of type 2 diabetes increase worldwide, it is important to examine the

effect of cannabis on the risk of diabetes. We conducted a Mendelian randomization

(MR) study by using 19 single-nucleotide polymorphisms (SNPs) as instrumental

variables for lifetime cannabis use and 14 SNPs to instrument cannabis use disorder

and linking these to type 2 diabetes risk using genome-wide association study data

(lifetime cannabis use [N = 184,765]; cannabis use disorder [2387 cases/48,985

controls], type 2 diabetes [74,124 cases/824,006 controls]). The MR analysis

suggested no effect of lifetime cannabis use (inverse-variance weighted odds ratio

[95% confidence interval] = 1.00 [0.93–1.09], P value = 0.935) and cannabis use

disorder (OR = 1.03 [0.99–1.08]) on type 2 diabetes. Sensitivity analysis to assess

potential pleiotropy led to no substantive change in the estimates. This study adds to

the evidence base that cannabis use does not play a causal role in type 2 diabetes.
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1 | INTRODUCTION

Cannabis is the most commonly used recreational drug globally.1

Diabetes has a worldwide prevalence of 8.8%, and by 2045, more

than 600 million people are estimated to be living with diabetes.2 As

more countries legalize the sale and consumption of cannabis, the

number of users is continuing to rise.1 Given the increasing preva-

lence of both medicinal and recreational cannabis, it is increasingly

important to understand its impact on public health. Although several

observational studies have reported that cannabis use had favorable

metabolic associations,3–5 including a lower prevalence of diabetes3,6

and lower glucose levels,7 evidence that cannabis is causally linked to

the development of type 2 diabetes is insufficient. The current

literature is limited by a preponderance of cross-sectional study

designs.5 Available prospective observational studies8 may be subject

to social desirability and recall bias and lack of valid cumulative expo-

sure assessment.3,9 Additionally, the available observational research

might further be limited by confounding through other unaccounted

causative agents. However, establishing causality is important, as this

is essential for recommending public policies and clinical interven-

tions. In this study, we use Mendelian randomization (MR) to examine

whether cannabis use may lead to the development of type 2 diabetes.

MR makes use of genetic instrumental variables to represent the

exposure of interest and infers a relationship between exposure and

outcome.10,11 MR is not affected by reverse causation, as genetic

variants are fixed at conception. MR is also less susceptible to
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environmental confounding compared with conventional observa-

tional studies because genetic instruments are assumed to affect the

outcome only via the exposure and to be independent of

confounders.

2 | MATERIALS AND METHODS

We performed two-sample, summary-based MR, in which the

instrument–exposure and instrument–outcome associations were

estimated in different samples. We retrieved associations of single-

nucleotide polymorphisms (SNPs) with lifetime cannabis use and

cannabis use disorder from genome-wide association studies

(GWASs).12,13 SNP–outcome associations were derived from two meta-

analyses of genetic association studies of type 2 diabetes mellitus.14,15

2.1 | Selection of genetic instrumental variables
for lifetime cannabis use and cannabis use disorder

GWAS summary statistics of 184,765 individuals of European descent

for lifetime cannabis use, defined as any use during lifetime, were

used.12 The data consisted of three sources and included the Interna-

tional Cannabis Consortium (ICC), 23andMe, and UK Biobank.

Genotyping was performed on various genotyping platforms and stan-

dard quality control checks were performed before imputation. Geno-

type data were imputed using the 1000 Genomes Phase 1 release

reference set for ICC and 23andMe and the Haplotype Reference

Consortium reference set for the UK Biobank sample. The GWAS

model for lifetime use had been adjusted for principal components,

age, sex, ancestry, and genotype batch. Details regarding ethical

approval and informed consent can be found in the original paper.12 A

GWAS of diagnosed cannabis use disorder (ICD-10 F12.1–12.9)13

included 2387 cases and 48,985 controls of the Lundbeck Foundation

Initiative for Integrative Psychiatric Research (iPSYCH). The model

further included four principal components. Genotyping was per-

formed using Illumina's BeadArrays. We selected independent

19 SNPs associated with lifetime cannabis use at P < 5 × 10−7 and

independent 14 SNPs associated with cannabis use disorder at

P < 5 × 10−6 using a PLINK clumping algorithm (r2 threshold = 0.01

and window size = 10 mB) (Table S1). We additionally adopted an

approach16,17 to increase statistical power by lowering the P-value

threshold (i.e., P < 5 × 10−5) for instrument selection and allowing for

linkage disequilibrium (LD) correlation (r2 ≤ 0.3). This secondary

approach provided 76 SNPs and 104 SNPs as instrumental variables

for lifetime cannabis use and cannabis use disorder, respectively.

2.2 | GWAS summary statistics for diabetes

For the primary analysis, summary-level data for type 2 diabetes were

obtained from a GWAS of 32 studies (DIAbetes Genetics Replication

And Meta-analysis consortium), which included 898,130 individuals

(74,124 cases and 824,006 controls) of European ancestry.14 For a

replication analysis, used summary data from a second meta-analysis of

type 2 diabetes GWAS15 including 62,892 cases and 596,424 controls of

European descent. The GWAS models were adjusted for principal

components.

2.3 | Statistical power

The a priori statistical power was calculated according to Brion et al.18

The 19 SNPs for lifetime cannabis use explained 0.06% of the pheno-

typic variance. Given a type 1 error of 5%, we had sufficient statistical

power (≥80%) when the expected odds ratio (OR) for type 2 diabetes

was ≤0.65 in genetically instrumented cannabis use. In the secondary

approach16 using 104 weak, correlated variants for lifetime cannabis

use, we achieved a power of 81% to detect an OR of 0.77.

2.4 | Statistical analyses

Harmonization was performed to rule out strand mismatches and to

ensure alignment of effect sizes. Wald ratios were calculated by divid-

ing the per-allele log OR for each SNP from the diabetes GWAS by

the corresponding log OR of the same SNP in the cannabis GWAS.19

We estimated the effect of cannabis use on diabetes risk by per-

forming a multiplicative random effects inverse-variance weighted

(IVW) meta-analysis of Wald ratios.17 The original IVW estimate rep-

resents the change in the log hazard for diabetes per unit increase in

the log odds of cannabis. A one-unit increase in the log odds of canna-

bis corresponds to an exp(1) = 2.72-fold multiplicative increase in the

odds of cannabis. To enable clearer interpretation of this relation, we

have multiplied the original IVW estimate by loge2 (=0.693), yielding

the change in log odds per doubling in the prevalence of cannabis.20

Three assumptions must be satisfied to ensure an MR study is

valid which include (1) genetic variants should be robustly associated

with the risk factor of interest (i.e., the relevance assumption), (2) there

are no confounders of the genetic variants–outcome association (the

independence assumption), and (3) the exclusion restriction assump-

tion.10,21 Violations of Assumptions 2 and 3 through horizontal pleiot-

ropy, whereby the instruments exert an effect on the outcome

independent of the exposure can introduce bias. To examine possible

violations of this assumption, we checked each candidate SNP and its

proxies (r2 > 0.8) in PhenoScanner22 for previously reported associa-

tions (P < 5 × 10−8) with confounders or diabetes risk factors (alcohol,

tobacco smoking, physical activity, and diet23) and performed addi-

tional analyses excluding potentially pleiotropic SNPs. Furthermore,

statistical sensitivity analyses more robust to the inclusion of poten-

tially pleiotropic variants can be used to help establish the validity of

causal inference from MR analysis. Valid genetic instruments should

furnish similar estimates of effect.21 This can be assessed using a

modified Q and the I2 statistic.21 If Q and I2 detect heterogeneity

among ratio estimates, this points to pleiotropy. If the pleiotropy is

“balanced” (i.e., pleiotropic effects are independent in the magnitude

of the SNP–exposure associations; and if the mean pleiotropic effect
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is zero), the effect can be reliably estimated by the multiplicative

random effects IVW method.17,21 However, if the mean pleiotropic

effect is nonzero, as shown by the presence of a deviation from a zero

intercept of an MR Egger regression,10 robust meta-analytic methods

are indicated.21,24 Classes of robust methods each relying on different

sets of assumptions can assist in protecting against pleiotropy. We

followed Slob and Burgess24 to report estimates from at least one

method of three classes of robust methods: (1) consensus class

(weighted median10), (2) outlier robust class (MR-Pleiotropy Residual

Sum and Outlier [MR-PRESSO]24 and radial regression25), and

(3) modeling methods class (Robust Adjusted Profile Score24). We also

performed a leave-one-out analysis to assess whether the IVW

estimate was driven or biased by a single SNP and replicated the

analysis using summary data from the second diabetes GWAS.15

Furthermore, we used the multiplicative random effects IVW and

maximum likelihood methods for correlated instrumental variables.16

Analyses were performed using the meta (4.11.0), TwoSampleMR

(0.5.5),26 MendelianRandomization (0.4.3), and MRPRESSO (1.0)

packages in R (version 4.0.2).

3 | RESULTS

In the primary analysis, the ORs from the IVW models for the effect

of cannabis use and cannabis use disorder on type 2 diabetes were

1.00 (95% CI: 0.93–1.09, P value = 0.935) and 1.03 (95% CI:

0.99–1.08, P value = 0.935), respectively (Table 1). The F statistics for

all genetic instruments were 21 or larger consistent with an absence

of weak instrument bias (Table S1). None of the instrumental variables

was associated with tobacco smoking, alcohol consumption, physical

activity, or diet in published GWAS in PhenoScanner (Table S3). There

was moderate heterogeneity between Wald ratios in the IVW

estimates of lifetime cannabis use and cannabis use disorder

(Table S4). The intercept from the MR Egger regression was not dif-

ferent from zero (Table S5). Estimates were similar when using models

more robust to directional pleiotropy (Tables 1). Leave-one-out ana-

lyses revealed that no single SNP drove the results (Table S5). In repli-

cation analysis, when summary data from the second diabetes GWAS

meta-analysis was used, the IVW ORs were 0.94 (95% CI: 0.86–1.04,

P value = 0.217) and 1.04 (95% CI: 0.86–1.04, P value = 0.217) for

lifetime cannabis use and cannabis use disorder, respectively

(Table S6). Estimates were similar when correlated, weak instrumental

variables were used (Table 1).

4 | DISCUSSION

Using genetic instrumental variables for lifetime cannabis use from

GWAS of more than 180,000 individuals and 74,000 cases of diabetes,

we examined the relationship between lifetime cannabis use and type

2 diabetes. We additionally used cannabis use disorder as an exposure

variable that reflects heavy cannabis use. This study provides no evi-

dence for a role of cannabis use in the development of type 2 diabetes.

Several cross-sectional studies have suggested that cannabis has bene-

ficial metabolic effects,3,5,7,27–29 but prospective observational studies

have not supported inverse associations with type 2 diabetes.8 Canna-

bis intake stimulates appetite and increases the use of low nutritional

value carbohydrates, and it promotes adipogenesis, which is expected

to increase insulin resistance.4,30 Consequently, the Coronary Artery

Risk Development in Young Adults (CARDIA)8 cohort found an

increased risk of prediabetes among current (OR: 1.65, 95% CI:

1.15–2.38) and lifetime cannabis users (OR: 1.49, 95% CI: 1.06–2.11)

but no increased risk for manifest diabetes. Another prospective study

of more than 17,000 Swedish men and women found no association

TABLE 1 Mendelian randomization estimates for the relationship between cannabis use and type 2 diabetes mellitus

Exposure No. of SNPs Method ORa (95% CI) P value

Lifetime cannabis use (Pasman et al.12) 19 IVW 1.00 (0.93–1.09) 0.935

19 Weighted median 1.01 (0.93–1.10) 0.828

19 Robust adjusted profile score 1.01 (0.93–1.08) 0.888

19 IVW radial 1.00 (0.93–1.09) 0.935

19 MR-PRESSO 1.00 (0.93–1.09) 0.936

76 IVW (correlated variants) 0.99 (0.93–1.05) 0.747

76 Maximum likelihood (correlated variants) 0.99 (0.93–1.05) 0.725

Cannabis use disorder (Demontis et al.13) 14 IVW 1.03 (0.99–1.08) 0.185

14 Weighted median 1.01 (0.97–1.04) 0.757

14 Robust adjusted profile score 1.02 (0.98–1.06) 0.317

14 IVW radial 1.03 (0.99–1.08) 0.185

12 MR-PRESSO 1.01 (0.99–1.03) 0.422

104 IVW (correlated variants) 1.04 (0.99–1.08) 0.095

104 Maximum likelihood (correlated variants) 1.04 (0.99–1.09) 0.094

Abbreviations: IVW, inverse-variance weighted; MR-PRESSO, MR-Pleiotropy Residual Sum and Outlier; SNP, single-nucleotide polymorphism.
aOdds ratio (OR) comparing cannabis use and nonuse.
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between lifetime cannabis use and diabetes risk.31 A small randomized

double-blind trial32 showed that in patients with type 2 diabetes,

tetrahydrocannabivarin (a CB1 receptor antagonist at low dose)

decreased fasting plasma glucose levels and improved pancreatic β-cell

function. Likewise, in another small randomized trial among healthy

cannabis users,33 cannabis use lowered blood insulin, glucagon-like

peptide 1, and ghrelin levels. However, despite speculation about the

potential metabolic effect of cannabinoids,30,34 previous observational

research has mostly applied cross-sectional designs and did not estab-

lish dose–response associations. Furthermore, existing observational

researchmay have been subject to unaccounted confounding (cigarette

smoking), reverse causation (people who feel unwell and are at risk quit

or cannot tolerate cannabis4), and measurement error (erroneous recall

or social desirability).

Notable strengths of the present study are the large sample size

of the outcome GWAS meta-analyses that enabled considerable sta-

tistical precision. Sensitivity analyses identified that the estimates

from MR were robust to various approaches that tested for stability

and model violations. A limiting factor is that the instrumenting SNPs

explained little phenotypic variance. However, our study had suffi-

cient statistical power to detect the previous observationally reported

effect sizes for cannabis use and diabetes,5,30 and all F statistics

(where F < 10 indicates weak instrument bias) suggested valid instru-

ments. When larger cannabis GWAS will become available, this will

help to identify additional SNPs that could serve as instruments and

improve the precision of our MR estimates. The present study did not

allow us to investigate the route of administration, the composition of

plant components, or the age at exposure to cannabis. The MR models

employed assumed no interaction (e.g., gene–environment) and a

linear relationship between cannabis use and type 2 diabetes. In

summary, our findings provide support for a lack of a causal

association between cannabis use and the risk of type 2 diabetes.
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