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Abstract

Background: The gut microbiome impacts human health through various mechanisms and is involved in the
development of a range of non-communicable diseases. Diet is a well-known factor influencing microbe-host
interaction in health and disease. However, very few findings are based on large-scale analysis using population-
based studies. Our aim was to investigate the cross-sectional relationship between habitual dietary intake and gut
microbiota structure in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 study.

Results: Fecal microbiota was analyzed using 16S rRNA gene amplicon sequencing. Latent Dirichlet allocation
(LDA) was applied to samples from 1992 participants to identify 20 microbial subgroups within the study
population. Each participant’s gut microbiota was subsequently described by a unique composition of these 20
subgroups. Associations between habitual dietary intake, assessed via repeated 24-h food lists and a Food
Frequency Questionnaire, and the 20 subgroups, as well as between prevalence of metabolic diseases/risk factors
and the subgroups, were assessed with multivariate-adjusted Dirichlet regression models. After adjustment for
multiple testing, eight of 20 microbial subgroups were significantly associated with habitual diet, while nine of 20
microbial subgroups were associated with the prevalence of one or more metabolic diseases/risk factors. Subgroups
5 (Faecalibacterium, Lachnospiracea incertae sedis, Gemmiger, Roseburia) and 14 (Coprococcus, Bacteroides,
Faecalibacterium, Ruminococcus) were particularly strongly associated with diet. For example, participants with a
high probability for subgroup 5 were characterized by a higher Alternate Healthy Eating Index and Mediterranean
Diet Score and a higher intake of food items such as fruits, vegetables, legumes, and whole grains, while
participants with prevalent type 2 diabetes mellitus were characterized by a lower probability for subgroup 5.
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Conclusions: The associations between habitual diet, metabolic diseases, and microbial subgroups identified in this
analysis not only expand upon current knowledge of diet-microbiota-disease relationships, but also indicate the
possibility of certain microbial groups to be modulated by dietary intervention, with the potential of impacting
human health. Additionally, LDA appears to be a powerful tool for interpreting latent structures of the human gut
microbiota. However, the subgroups and associations observed in this analysis need to be replicated in further
studies.

Keywords: enable-Cluster, 16S rRNA gene sequencing, Nutrition, Dietary intake, Diabetes, Serum lipids, Obesity,
Hypertension

Background
The last two decades of research have extensively studied
the role of the human gut microbiome in host health [1].
The gut microbiome can be considered as a metabolically
active organ that produces a multitude of metabolites that
either positively or negatively affect human physiology [2].
Additionally, the composition and diversity of the gut
microbiota have been associated with a wide range of dis-
eases, ranging from gastrointestinal disorders such as
Clostridium difficile infection to conditions such as type 2
diabetes mellitus (T2DM), cardiovascular disease, depres-
sion, and rheumatoid arthritis [3–7].
In addition to the many ways the gut microbiome in-

fluences its host, it has become clear that a variety of dif-
ferent factors influence the microbiome itself, including
genetics, geographic environment, medication (especially
antibiotics), nutrition, age, lifestyle, and mode of delivery
at birth [8–13]. The number of modifiable factors associ-
ated with the gut microbiome, combined with its associ-
ation with many disease states, presents the tempting
possibility of influencing the development or progression
of disease by modifying the gut microbiome. Yet this is
complicated by wide interindividual variability [14, 15].
Furthermore, compositional changes do not necessarily
translate into functional alterations, as different bacteria
may perform similar functions [14]. As a result, it has so
far proven difficult to characterize exactly what “healthy”
microbiomes are [15].
Nutrition in particular is accepted as a major modifi-

able factor of the gut microbiome, yet it has also been
independently associated with many of the same diseases
that the gut microbiome is proposed to modulate [16–
20]. In turn, the microbiota can also influence the ab-
sorption and metabolism of nutrients and other food
components [15, 21]. This makes the task of unraveling
the true nature of these associations challenging. While
intense interest has produced a wealth of information on
modifying the microbiome through nutrition, much of
this still needs to be confirmed in large-scale,
population-based cohorts.
We previously characterized the compositional and

functional profiles of the prospective cohort Cooperative

Health Research in the Region of Augsburg (KORA) and
identified bacterial signatures of the development of
T2DM [22]. Our aim in the present analysis was to
evaluate the cross-sectional relationship between gut
microbiota structure and habitual dietary intake in this
large, population-based cohort. To this end, we applied
an unsupervised machine learning method to identify la-
tent structures (microbial subgroups) within the data
and associations between habitual diet and/or metabolic
diseases and these subgroups. In two subanalyses, we
used the bacterial risk signatures of T2DM we previously
established in this population and enterotype-like clus-
ters to demonstrate the ability of LDA to identify latent
features of the microbiota that would inherently be
missed by other methods.

Methods
This analysis is reported according to the “Strengthening
the Reporting of Observational Studies in Epidemiology
- Nutritional Epidemiology (STROBE-nut)” recommen-
dations [23].

Study population
The data used in this analysis originated from the KORA
FF4 study (2013/2014), which is the second in a series of
follow-up surveys of the original KORA S4 study, con-
ducted from 1999 to 2001. KORA S4 is a population-
based study that included 4261 participants recruited
from the southern German city of Augsburg and its two
surrounding counties. The FF4 survey included 2279 in-
dividuals from the original S4 study, ranging from 38 to
88 years old. Details concerning the design of the KORA
studies have been published previously [24].

Collection and processing of biosamples
Participants in KORA FF4 collected a single stool sample
according to paper-based instructions at home. They
were also given instructions over the phone and were
mailed a sterile stool collection kit. One spoonful taken
from two different areas of the stool specimen was to be
deposited into a tube containing 5 ml of DNA stabilizer
(Stratec DNA Stool Stabilizer, No. 1038111100). The
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stool sample was to be collected on the morning of the
study center visit and kept in the refrigerator until the
appointment. If this was not possible, the stool sample
could be mailed in afterward. Additionally, a short ques-
tionnaire was to be filled out regarding details of the
sample collection (consistency, problems, time, storage
conditions, etc.). After transport to the study center,
samples were frozen at − 80 °C until further processing.
Any participants who took antibiotics in the previous 2
months were excluded. Further details of the collection
procedure and handling until analysis were described
previously [25]. Samples were submitted from 2076
participants.

16S rRNA gene amplicon sequencing
Preparation and analysis of the gut microbiota samples
were done as described in Reitmeier et al. [22]. Briefly,
the metagenomic DNA was isolated from 600 μl of stool
in DNA stabilizer solution using a modified version of
the protocol by Godon et al. [26]. A FastPrep-24 instru-
ment fitted with a cooling adapter and 0.1-mm glass
beads was used to lyse microbial cells. NucleoSpin
gDNA columns (Machery-Nagel, No. 740230.250) were
used to purify the DNA. A robotic liquid handler was
used for all pipetting steps after DNA extraction until
sequencing to maximize reproducibility.
Polymerase chain reaction (PCR) runs were conducted

in duplicates. The extracted DNA was diluted in PCR-
grade water and 24 ng was used as a template for ampli-
fication (25 cycles) using a two-step process to minimize
bias [27]. The V3/V4 regions of 16S rRNA genes were
amplified using 341F-ovh and 785r-ovh primers [28].
During cleaning, PCR products were pooled using mag-
netic beads (Beckman Coulter). Fluorimetry was used to
determine PCR fragment concentration, which was ad-
justed to 2 nM. An Illumina HiSeq was used to sequence
multiplexed samples in paired-end mode (2 × 250 bp)
using the Rapid v2 chemistry. Samples with a read count
< 4700 (high-quality, chimera-checked) were re-
sequenced on an Illumina MiSeq using v3. To identify
potential inconsistencies between the platforms, identical
samples were sequenced on both the HiSeq and MiSeq
and were compared. No differences could be identified
between the taxonomic compositions of the runs. Two
negative controls (a PCR control without template DNA
and a DNA extraction control containing 600 μl stool
stabilizer but no sample) and one positive control (mock
community; ZymoBIOMICS, No. D6300) were included
in every batch of 45 samples (processed on a single 96-
well plate) to control for artifacts.

Analysis of amplicon sequences
The 16S rRNA amplicon reads were preprocessed using
the UPARSE-based IMNGS platform [29, 30]. Chimeras

were removed using UCHIME [31]. Five nucleotides on
both the 5′ and 3′end were trimmed for each of the R1
and R2 reads, respectively. The quality trim score was 5
and expected number of errors across assembled reads
was 1. Sequences were clustered into operational taxo-
nomic units (OTUs) at 97% sequence identity using
UPARSE v8.1.1861_i86 [30]. OTUs occurring at a rela-
tive abundance < 0.25% across all samples were removed
to prevent the analysis of spurious OTUs [32]. Taxon-
omies were assigned with adequate confidence (> 80%)
to a maximum of genus level using the RDP classifier
version 2.11 and confirmed using the SILVA database
version 132 [33]. The OTU table containing 2091 OTUs
was then normalized by total count per column to ac-
count for differences in library size. Taxonomic classifi-
cation at the species levels for relevant OTUs was
assigned using EzBioCloud (version 20200513) where
possible [34].

Assessment of dietary intake
Habitual dietary intake was assessed in KORA FF4 par-
ticipants using a two-step method combining informa-
tion from up to three repeated 24-h food lists (24HFL)
and one Food Frequency Questionnaire (FFQ) [35, 36].
The calculation of dietary intake in KORA FF4 is based
on the estimation of consumption probability and con-
sumption amount. Details have been published previ-
ously, but briefly, consumption probability is determined
for each food item for each individual based on the
24HFLs and FFQ, while usual portion size for each item
is estimated based on data from the Bavarian Food Con-
sumption Survey II (BVS II) [37]. Consumption prob-
ability multiplied by consumption amount then results
in the usual intake of each food item on any given day.
Food items were then categorized into 16 food groups
and 21 subgroups based on the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Soft
classification scheme [38]. In addition to the standard
food groups and subgroups that are specified by the
EPIC-Soft criteria, the variable “whole grains” was cre-
ated from the food items “whole grain bread,” “whole
grain toast,” and “muesli.” The variable “refined grains”
was constructed by subtracting intake of whole grains
from the food group “grains and grain products.” For the
purposes of this analysis, the food group “dairy” excludes
cheese and yogurt, as they were investigated individually.
Habitual nutrient intake was calculated based on usual
food intake using the National Nutrient Database (Bun-
deslebensmittelschlüssel; BLS 3.02). Information about
dietary supplement use was collected with the 24HFL,
but was not included in the calculation of habitual diet-
ary intake. Habitual dietary intake data was available for
1602 participants; however, both microbiota and diet in-
formation were available for only 1442 participants.
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Therefore, all nutrition-related analyses were limited to
this sample size. The Alternate Healthy Eating Index
2010 (AHEI, modified to exclude trans fats) and Medi-
terranean Diet Score 2003 (MDS) were calculated for
this subsample of 1442 individuals as performed by
Wawro et al. [39–41].

Assessment of diseases/risk factors and covariates
On the day of the study center visit, a face-to-face inter-
view was conducted, which gathered information on age
(years), sex (male, female), education level (< 13 and ≥
13 years, including vocational training), leisure time
physical activity (> 1 h/week in summer and winter),
smoking habits (current, ex-, never), medical diagnoses,
and medication use, among other variables. Trained ex-
aminers took anthropometric measurements in stan-
dardized fashion. Blood pressure was measured and a
fasting blood sample was drawn for the assessment of
serum LDL-c, HDL-c, total cholesterol, and triglycerides.
A self-reported diagnosis of diabetes or the use of antidi-
abetic medication was confirmed with the participant’s
treating physician. An oral glucose tolerance test was
carried out in all participants who did not have an exist-
ing diagnosis of diabetes. Participants were categorized
based on their glucose tolerance status according to the
2003 American Diabetes Association diagnostic criteria
as either (1) normal, (2) prediabetes, (3) undiagnosed
diabetes mellitus, (4) known T2DM, or (5) other/un-
known [42]. Participants’ hypertension status was classi-
fied according to existing diagnosis, if any, their blood
pressure reading (according to the 1999 International
Society of Hypertension-World Health Organization
diagnostic criteria (≥ 140/90 mmHg) [43]), and use of
antihypertensive medication into five groups: (1) normal
(participant is normotensive); (2) known hypertension,
controlled (participant is aware of hypertension, takes
antihypertensive medication, and blood pressure is <
140/90 mmHg); (3) known hypertension, uncontrolled
(participant is aware of hypertension and takes medica-
tion, but blood pressure is ≥ 140/90 mmHg); (4) known
hypertension, not treated (participant is aware of hyper-
tension, does not take medication, and blood pressure is
≥ 140/90 mmHg); and (5) undetected hypertension (par-
ticipant is unaware of hypertension, does not take medi-
cation, and blood pressure is ≥ 140/90 mmHg). A
detailed description of the assessment of the variables
used in this analysis has already been presented in previous
papers [25, 44].

Statistical analysis
Latent Dirichlet allocation
For the purposes of our analysis, it was necessary to per-
form either clustering or dimensionality reduction in
order to reduce the number of OTUs from 2091 to a

more practical number. The concept of “enterotypes,”
typically a three-cluster solution, is probably the most
commonly employed clustering strategy in regard to
microbiome data [45]. However, the concept of only two
to three clusters that can adequately describe any gut
microbiota sample is very limited in its application and
ability to describe interindividual differences, especially
when it comes to microbiota structure in relation to
health and disease. Therefore, we elected to implement
latent Dirichlet allocation (LDA), a Bayesian probabilistic
generative model proposed by Blei et al. in 2003, which
is used to uncover latent structures present in unlabeled
data [46]. This popular unsupervised machine learning
method has been implemented most commonly in the
field of natural language processing, where it can identify
latent topics (e.g., “sports,” “politics,” “science”) present
in a collection of documents. However, LDA has also
been applied to a variety of biological data types, includ-
ing population genetics data, protein sequence data,
magnetic resonance imaging data, and microbiome data,
where it can learn latent microbial subgroups [47–53].
Assuming there is a total number of O observations

and K subgroups, the generative process modelled by
LDA (described in relation to our analysis) assumes that
the gut microbiota structure of each observation can be
represented by a multinomial distribution, parametrized
by θi, over latent subgroups, where θi is drawn from a
latent Dirichlet distribution parametrized by α:

θi � Dir að Þ;where i∈ 1;…;Of g:
In turn, each subgroup is characterized by a multi-

nomial distribution, parametrized by ϕk, over the OTUs,
where ϕk is drawn from another latent Dirichlet distri-
bution parametrized by β:

ϕk � Dir βð Þ;where k∈ 1;…;Kf g
Given a total number of observations O and a total

number of reads Ni for an observation i, the generation of
all reads, where each read qi,j with the position, i and j,
where i ∈ {1, …, O} and j ∈ {1, …, Ni}, is modelled con-
secutively by sampling the subgroup ki,j ~ Multinomial(θi)
and a corresponding read qi,j ~ Multinomial(ϕki,j). In
both cases, the Multinomial distributions refer to
Multinomial distributions with one trial.
Given a fitted model, the variables θi and ϕk are of

particular interest. For each observation, θi is a vector of
probabilities over all subgroups, the sum of which is 1.
A high probability of a subgroup means that it contrib-
utes to a large part of the microbiota structure of that
observation. Likewise, for each subgroup, ϕk is a vector
of probabilities over all OTUs, the sum of which is 1. In
this case, a high probability of an OTU means that OTU
contributes to a large part of that microbial subgroup.
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When compared to traditional clustering or classifica-
tion methods, θi can also be seen as fractional member-
ship, meaning each observation’s microbiota structure
can be described by a unique composition of several dif-
ferent microbial subgroups. For example, one observa-
tion may have a 45% probability for one subgroup, a
20% probability for a second subgroup, and a 5% prob-
ability for 7 more subgroups; another may have a 10%
probability for 10 different subgroups. Likewise, each
subgroup has a different probability of containing each
of the 1713 OTUs. While fractional membership can
also be achieved by fuzzy clustering methods, LDA dif-
fers from fuzzy clustering as well in that it learns pat-
terns of co-occurrences of OTUs (ϕk) rather than
clustering observations based on distance measures. This
means that each subgroup represents a group of mi-
crobes that tend to appear together, due to similar envir-
onmental requirements, functions, or because they are
modulated by a shared external factor.

Calculation of microbial subgroups
Microbiota data were available for 2033 participants. All
participants who reported taking systemic antibiotics in
the previous 2 months were excluded (n = 41), leaving
1992 participants available for analysis.
After quality controls and reads processing, 2091

OTUs were kept for analysis. Before performing LDA,
the OTU table was filtered so that only OTUs occurring
at a relative abundance > 0.1% and 1% prevalence were
included in order to reduce sparsity in the data set,
resulting in remaining 1713 OTUs. A relatively low cut-
off was chosen due to the nature of the method. LDA is
designed to process data sets with many words (OTUs).
Additionally, because part of our goal was to identify as-
sociations between the gut microbiota and diseases, re-
moving OTUs present only across e.g. less than 10% of
samples could potentially result in the loss of OTUs
present only in a certain disease state.
The LDA model was fitted using Gibbs’ sampling with

the R package MetaTopics version 1.0 [54]. As this pack-
age requires the input matrix to contain count data in
the form of integers, and our OTU table consists of nor-
malized counts that add up to 1 for each participant, we
multiplied the matrix by a factor of 1000 and rounded to
the nearest whole number. The number of subgroups
was selected using 5-fold cross-validation via the
selectk() function (MetaTopics). LDA models for sub-
group numbers between 5 and 190 were fitted and com-
pared based on perplexity and loglikelihood values. Both
parameters continued to improve with increasing sub-
group number without a clear optimum, but the first
jump in model performance was seen between 20 and
25 subgroups. As a relatively small subgroup number
was necessary for this analysis to allow for

interpretability, this subgroup number range was chosen
for further analysis. In a sensitivity analysis performed
with all 2091 OTUs, a small jump was seen between 15
and 20 subgroups. Five models with k = 20 were then
fitted and compared.

Diet-subgroup and disease-subgroup associations
Associations between habitual diet and microbial sub-
groups were assessed using Dirichlet regression models
(R package DirichletReg version 0.7.0), which are able to
evaluate associations between predictor variables and
multiple compositional outcome variables [55]. This was
necessary in our case, as each subgroup corresponds to
one variable, and together the 20 subgroup variables are
compositional (i.e., values across the subgroups add up
to 1 for each observation). One model was fitted for
each of 29 selected food items or nutrients and two diet
quality scores with all 20 subgroups as the response vari-
ables. These models were limited to the 1442 partici-
pants for whom both nutrition and microbiota data are
available. Each model was adjusted for age, sex, energy
intake, education, smoking, and physical activity. All
1442 participants had complete covariate information.
Estimates were given per standard deviation for each
dietary factor.
The associations between selected metabolic diseases or

risk factors (body mass index (BMI), waist circumference,
HDL-c, LDL-c, total cholesterol, triglycerides, diabetes,
hypertension) and microbial subgroups were also evalu-
ated using Dirichlet regression models. One model was fit-
ted per disease or risk factor (8 models). All disease
models were adjusted for age, sex, education, smoking,
and physical activity. The serum lipid models were add-
itionally adjusted for use of lipid-lowering medications.
For each model, any participants with missing covariate
information were excluded from the analysis; for the dia-
betes and serum lipid models, participants who were not
fasted before the blood draw were also excluded (lipids, n
= 20; BMI/waist circumference, n = 2; diabetes, n = 16;
hypertension, n = 3). This resulted in a sample size of n =
1976 for the diabetes model, n = 1972 for the lipid models,
n = 1990 for the BMI and waist circumference models,
and n = 1989 for the hypertension model. Estimates were
given per standard deviation for each continuous variable
(BMI, waist circumference, HDL-c, LDL-c, total choles-
terol, triglycerides). For the diabetes and hypertension
models, the reference categories were normal glucose tol-
erance and normal blood pressure, respectively. P values
for all associations were adjusted using the Bonferroni
correction (α = 0.05 / 39 = 0.00128).

Subanalysis of arrhythmic OTUs
In a previous analysis, we identified time of defecation as
one of the main factors responsible for interindividual
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differences in microbiota composition in the KORA FF4
cohort [22]. A heat map of the normalized relative abun-
dances of 422 OTUs clearly showed daytime-dependent
fluctuations in peak relative abundance. Strikingly, a
subset of 87 of these OTUs lost their daytime-dependent
fluctuations in relative abundance and became
arrhythmic in T2DM and/or obesity. We identified a
diabetes risk signature of 13 of these OTUs that were
linked to disrupted circadian rhythmicity in microbial
profiles. An additional 51 OTUs were identified as losing
their rhythmicity in obesity specifically. A classification
model including the diabetes-specific arrhythmic OTUs
was able to predict type 2 diabetes in participants 5 years
after the initial sampling. This indicates that the loss of
rhythmicity may play a role in the development of these
disease states and contributes significantly to the classifi-
cation and prediction of type 2 diabetes mellitus.
Because LDA is able to identify hidden underlying pat-

terns in a data set, and it was previously determined that
time of defecation was one of the main factors respon-
sible for interindividual differences in microbiota com-
position, we would expect LDA to pick up this effect
and identify subgroups of microbes which are strongly
influenced by circadian rhythm. Therefore, a subanalysis
was done to determine the proportion of each subgroup
comprised of OTUs identified as losing their circadian
rhythmicity in either obesity, T2DM, or both. For each
subgroup, the probabilities for each group of arrhythmic
OTUs were summed up, both for all 87 arrhythmic
OTUs and for the OTUs specific to obesity and T2DM
(51 and 14 OTUs, respectively).

Subanalysis of enterotypes
To further explore the appropriateness of LDA in com-
parison to more traditional methods for identifying diet-
and disease-microbiota relationships, three clusters,
similar to enterotypes originally identified by Arumugam
et al., were identified within the data set [45]. Further
details of the clustering method and characteristics of
the clusters utilized in the present subanalysis are re-
ported in [22]. Briefly, the three clusters identified, C1 (n
= 666), C2 (n = 1076), and C3 (n = 250), were domi-
nated by the genus Bacteroides, Ruminococcus, and Pre-
votella, respectively. In the analyses restricted to
participants with dietary data (n = 1442), clusters 1–3
contained 473, 798, and 171 participants, respectively.
The relationships between diet, metabolic diseases, and
enterotypes were evaluated using multinomial logistic
regression models, with C2 (Ruminococcus) set as the
reference level. The exposure and adjustment variables
were identical to those in the Dirichlet regression
models and again continuous variables were divided by
standard deviation. Reference categories for the diabetes
and hypertension variables were “normal glucose

tolerance” and “normal blood pressure,” respectively. P
values for all associations were adjusted using the Bon-
ferroni correction (α = 0.05 / 39 = 0.00128).

Descriptive statistics and figures
Mean and standard deviation were calculated for con-
tinuous variables, while percentage and frequency were
calculated for categorical variables for the descriptive ta-
bles, for the total population and stratified by sex. The
violin plot, histogram, and bar plots were generated
using ggplot2 version 3.3.1 in R. Hierarchical clustering
of the subgroups was performed on log-transformed
data using the agnes() function (cluster package version
2.1.0) and Ward’s method. The full matrix containing
probabilities for each OTU was used for clustering to in-
clude potential differences in species, which would not
be taken into account if probabilities were collapsed to
the genus level. The dendrogram and cluster
visualization were produced with the factoextra package
version 1.0.7. A feature-expression heat map displaying
the beta coefficients and P values from the Dirichlet re-
gression models was created using the corrplot package
version 0.84 in R and combined in Inkscape, as sug-
gested by Haarman et al. [56]. All statistical analyses
were conducted in RStudio Version 1.1.423 and R for
Windows Version 3.5.1.

Results
Study population
The descriptive characteristics of the study population
are shown in Table 1, for the total population and strati-
fied by sex. On average, men (n = 969) were 61 years old
and women (n = 1023) were 60 years old. Men had a
higher mean waist circumference and BMI (103 cm and
28.3 kg/m2, respectively) than women (91 cm and 27.4
kg/m2, respectively). Women had a lower level of educa-
tion on average (69.8% of women with < 13 years vs.
60.2% of men), but a higher percentage of women were
physically active during leisure time (59.2% of women vs.
55.4% of men) and had never smoked (53.3% of women
vs. 38.8% of men). In men, there was a 12.3% prevalence
of T2DM compared to 7.9% in women (10.0% total).
While this is higher than the prevalence T2DM in the
general population, which was estimated to be between
6.9 and 7.1% in 2009 and 2010, respectively, this is to be
expected as the average age of participants in our study
population was 60.37 years, and the prevalence of
T2DM rises sharply with increasing age [57].
Hypertension was also more prevalent among men

than women, particularly in the uncontrolled and un-
treated categories (8.4% vs. 5.4% and 5.7% vs. 2.4%,
respectively).
A description of habitual dietary intake in the study

population is presented in Table 2, for the total
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population and stratified by sex. On average, women
consumed more fruits (161 g/day vs. 153 g/day), veg-
etables (192 g/day vs. 157 g/day), dairy products
(128 g/day vs. 100 g/day), and yogurt (53.6 g/day vs.
40.0 g/day), whereas men had a notably higher en-
ergy intake (2127 kcal/day vs. 1619 kcal/day) and
consumption of refined grains (170 g/day vs. 121 g/
day), red and processed meat (56.0 g/day and 65.6 g/

day respectively in men vs. 35.4 g/day and 34.5 g/
day respectively in women), sugar and sweets (39.7
g/day vs. 15.8 g/day), sugar-sweetened beverages
(SSB, 77.4 g/day vs. 30.6 g/day), beer (274 g/day vs.
21.9 g/day), and total alcohol (15.9 g/day vs. 4.5 g/
day). Women had a higher AHEI score than men
(45.6 vs. 40.7), but scored slightly lower on the MDS
(4.3 vs. 4.6).

Table 1 Characteristics of the study population by sex

Total Men Women

n = 1992 n = 969 n = 1023

Continuous variables Mean SD Mean SD Mean SD

Age (years) 60.37 12.24 60.83 12.53 59.94 11.95

Waist circumference (cm) 96.95 14.26 102.91 12.28 91.31 13.71

BMI (kg/m2) 27.85 5.01 28.30 4.52 27.43 5.40

HDL-c (mmol/l) 1.70 0.49 1.50 0.40 1.89 0.49

LDL-c (mmol/l) 3.48 0.92 3.45 0.90 3.51 0.94

Total cholesterol (mmol/l) 5.59 1.02 5.43 1.00 5.75 1.01

Triglycerides (mmol/l) 1.39 0.83 1.56 0.98 1.24 0.63

Categorical variables % n % n % n

Education

< 13 years 65.1 1297 60.2 583 69.8 714

≥ 13 years 34.8 693 39.7 385 30.1 308

NA 0.1 2 0.1 1 0.1 1

Physical activity

Active 57.4 1143 55.4 537 59.2 606

Inactive 42.6 849 44.6 432 40.8 417

Smoker

Current 15.2 302 15.7 152 14.7 150

Ex- 38.6 769 45.5 441 32.1 328

Never 46.2 921 38.8 376 53.3 545

Diabetes

Normal glucose tolerance 47.8 952 37.4 362 57.7 590

Prediabetes 34.2 681 42.3 410 26.5 271

UDM 4.2 84 5.2 50 3.3 34

Prevalent T2DM 10.0 200 12.3 119 7.9 81

Unknown/other 3.8 75 2.9 28 4.6 47

Hypertension

Normal blood pressure 60.3 1202 55.3 536 65.1 666

Known HTN, controlled 26.3 523 26.6 258 35.9 265

Known HTN, uncontrolled 6.8 136 8.4 81 5.4 55

Known HTN, not treated 4.0 80 5.7 55 2.4 25

Undiagnosed HTN 2.5 50 3.9 38 1.2 12

NA 0.1 1 0.1 1 0.0 0

Lipid-lowering medication (yes) 16.5 328 19.4 188 13.7 140

SD, standard deviation; BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein; UDM, undiagnosed diabetes mellitus;
T2DM, type 2 diabetes mellitus; HTN, hypertension
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Composition of the subgroups
Figure 1 displays the top five genera for each of the 20
subgroups identified in the study population. The OTU
probabilities were collapsed to the genus level here to
allow for better interpretation of subgroup composition.
Subgroup numbering is random and serves only as an
identifier. While some subgroups (e.g., subgroups 1, 10,

11, 12, 14) were comprised of several different genera,
others (e.g., subgroups 3, 4, 9, 13, 15, 19) were composed
of more than 50% from a single genus. Figure 2 displays
a visual comparison of the composition of subgroups 5
and 14, the two subgroups most strongly associated with
both diet and disease, by genus. Only the 47 genera
representing at least 1% of any subgroup plus are

Table 2 Habitual dietary intake of the study population by sex

Total Men Women

n = 1442 n = 699 n = 743

Mean SD Mean SD Mean SD

Food items

Potatoes (g/day) 60.91 22.45 66.57 23.17 55.59 20.38

Vegetables (g/day) 174.66 57.78 157.03 47.36 191.24 61.68

Legumes (g/day) 6.13 4.43 5.41 3.89 6.82 4.79

Fruit (g/day) 156.86 80.16 152.71 80.75 160.77 79.45

Nuts and seeds (g/day) 7.54 8.09 8.16 8.66 6.95 7.47

Dairy products (g/day) 114.48 86.27 100.05 82.70 128.06 87.40

Yogurt (g/day) 47.00 45.56 39.97 43.26 53.62 46.69

Cheese (g/day) 35.00 18.47 36.63 19.07 34.40 17.89

Refined grains (g/day) 144.52 41.80 169.60 37.85 120.94 29.94

Whole grains (g/day) 23.50 20.63 24.05 22.90 22.97 18.23

Fresh red meat (g/day) 45.41 15.92 56.02 15.03 35.42 8.57

Processed (red) meat (g/day) 49.60 28.21 65.61 29.83 34.54 15.46

Fish and shellfish (g/day) 21.03 13.82 23.63 16.13 18.59 10.68

Eggs (g/day) 17.23 11.56 18.38 12.77 16.15 10.19

Animal fats (g/day) 15.92 6.75 18.73 7.32 13.28 4.87

Plant oils (g/day) 9.09 6.71 10.58 8.23 7.69 4.42

Sugar and sweets (g/day) 37.63 15.27 39.74 35.64 15.77 14.51

Cakes (g/day) 53.85 19.83 58.57 21.52 49.41 16.94

Coffee (g/day) 401.48 133.81 408.95 141.87 394.46 125.45

SSB (g/day) 53.28 132.34 77.40 168.77 30.59 78.45

Wine (g/day) 38.07 51.59 43.24 58.15 33.21 44.03

Beer (g/day) 144.30 208.56 274.39 233.58 21.92 47.24

Nutrients

Energy intake (kcal/day) 1865.35 405.36 2127 350 1619 281

Total fat (g/day) 78.08 17.06 88.41 15.52 68.37 12.00

Total carbohydrates (g/day) 199.66 49.43 223.27 48.31 177.45 39.11

Total protein (g/day) 69.89 14.85 78.31 13.73 61.97 11.00

Total fiber (g/day) 17.85 5.05 18.43 5.14 17.31 4.90

Soluble fiber (g/day) 5.79 1.60 6.11 1.64 5.49 1.51

Insoluble fiber (g/day) 11.96 3.44 12.29 3.48 11.65 3.37

Alcohol (g/day) 10.03 10.07 15.89 10.96 4.51 4.59

Dietary patterns

Alternate Healthy Eating Index 43.23 9.27 40.71 8.75 45.61 9.11

Mediterranean Diet Score 4.43 1.68 4.59 1.45 4.28 1.86

SD, standard deviation; SSB, sugar-sweetened beverages
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displayed, plus an NA category that encompassed all
OTUs for which the genus was unknown. Some of the
main genera in these two subgroups overlap (Faecalibac-
terium, Bacteroides, Coprococcus, Roseburia), though
they are present in very different proportions in each
subgroup. Additionally, some genera are prevalent in
one subgroup but not the other (e.g., Intestinibacter and
Streptococcus in subgroup 5, Barnesiella and Prevotella
in subgroup 14). Notably, subgroup 14 was comprised

52.88% of OTUs that could not be identified to the
genus level. Additional file 1 details the full composition
of each subgroup by genus (97 genera in total were iden-
tified plus one overarching NA category). Figure 3 dis-
plays the results of hierarchical clustering of the
subgroups. The clustering was performed on a matrix
containing the probabilities of each of the 1713 un-
labeled OTUs for each of the twenty subgroups. Eight
clusters are each highlighted with a unique color to aid

Fig. 1 The top five genera (ranked by probability) per subgroup. For each subgroup, the five genera with the highest probability per subgroup
are displayed. All OTUs for which the genus was unknown were grouped into an NA category; the percentage corresponding to NA indicates the
percentage of the subgroup comprised of OTUs which could not be identified to the genus level

Fig. 2 All 47 (of 97 total) genera that contributed to > 1% of any subgroup are shown, plus one NA category which encompasses all OTUs for
which the genus was unknown
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in comparison of subgroup similarity. Interestingly, al-
though subgroups 3, 4, 6, 13, and 15 were all domi-
nated by Bacteroides, they are split into two different
clusters, which may be a result of different Bacter-
oides species which tend to appear in subgroups from
one cluster vs. the other. Furthermore, although sub-
groups 13 and 15 appear very similar in regard to the
composition of their top five genera, they also belong
to different clusters. Additionally, though subgroups 5
and 14 appeared to have vaguely similar taxonomic
compositions in Fig. 2, they were also assigned to dif-
ferent clusters, potentially also due to OTUs that dif-
fer at the species level. This highlights the importance
of microbiota data that can reliably be identified be-
yond the genus level, but also the strength of LDA in
identifying OTUs from a single genus that may repre-
sent different species and may, as a result, have dif-
fering functions or characteristics.
Figure 4a describes the distribution of subgroups

among the study population. Some subgroups were
quite prevalent, with a median probability across the
study population of between 3.1 and 9.2% (subgroups
1, 5, 7, 12, 13, and 16), while others were rarer, with
a median probability of < 0.1% (subgroups 2, 4, 8, 9,
10, 11, 15, 17, 19). Figure 4b shows the maximum
subgroup probability across participants. Participants
had an average maximum subgroup probability of
33.2%, although the highest maximum probability of
any individual for any subgroup was 99.6%, and the
lowest maximum probability of any individual was
13.1% (Fig. 4b). On average, each participant had
10 ± 2.2 subgroups with a probability of over 1%,
4.5 ± 1.1 subgroups with a probability of over 10%,
and 1.5 ± 1.1 subgroups with a probability greater
than 25%.

Habitual diet and subgroups
The associations between habitual diet (22 food items,
seven nutrients, and two diet quality scores) and the 20
subgroups are displayed in Fig. 5. Subgroups 2, 4, 8, 9,
10, 11, 15, and 19 were not associated with any dietary
factors. After adjustment for multiple testing, associa-
tions between diet and subgroups 1, 5, 7, 12, 14, 16, 18,
and 20 remained significant. Subgroups 5 and 14 were
most strongly and consistently associated with several
nutrition factors. Participants with a high probability for
subgroup 5 were characterized by a high intake of vege-
tables, fruits, legumes, nuts and seeds, plant oils, whole
grains, total protein, total fiber, and insoluble fiber, and
a low consumption of animal fat, SSB, and beer. A
higher probability for subgroup 5 was also associated
with a higher MDS and AHEI score. Those with a high
probability for subgroup 14 were characterized by a
higher AHEI score, as well as high consumption of fruit,
cheese, whole grains, and all types of fiber, and a low
consumption of processed meat. Individuals with a
higher probability for subgroup 16 were marked by
greater consumption of whole grains and coffee, while a
higher probability for subgroup 20 was significantly as-
sociated with higher soluble fiber intake. Uniquely, sub-
group 12 was significantly inversely associated with the
AHEI, but not with any individual food item or the
MDS after adjustment with the Bonferroni correction.
Interestingly, many of the associations that lost signifi-
cance after adjustment for multiple testing were with
dietary factors that tend to be associated with adverse
health effects, whereas many of the diet-subgroup asso-
ciations that were the strongest were with dietary factors
considered to be health-promoting. The full results of
the Dirichlet regressions between habitual diet and the
subgroups are shown in Additional file 2.

Fig. 3 Hierarchical clustering of subgroups. a Dendrogram of subgroup clusters for comparison of subgroup similarity. Eight clusters are
displayed, each represented by a different color and outlined by a gray rectangle. b Visualization of subgroup clusters. Cluster colors correspond
to cluster colors from a
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Metabolic diseases or risk factors and subgroups
The associations between selected metabolic diseases or
risk factors and the 20 subgroups are also presented in
Fig. 5 (full results in Additional file 3). Subgroups 1, 3, 5,
6, 7, 12, 13, 14, 16, 18, 19, and 20 were initially associ-
ated with one or more metabolic diseases or risk factors.
After adjustment for multiple testing, only significant as-
sociations with subgroups 1, 5, 6, 13, 14, 16, 19, and 20
remained. The subgroups that showed the strongest/
most numerous associations with diet (subgroup 5 (Fae-
calibacterium, Lachnospiracea incertae sedis, Gemmiger,
Roseburia), subgroup 14 (Coprococcus, Bacteroides, Fae-
calibacterium, Ruminococcus), and, to a lesser extent,
subgroup 16 (Gemmiger, Ruminococcus, Bacteroides,
Dialister)) also showed strong associations with meta-
bolic diseases or risk factors. Participants with lower
serum triglyceride levels and a low prevalence of T2DM
showed a higher probability for any of these three sub-
groups. Individuals with a lower BMI and/or waist cir-
cumference had a higher probability for subgroups 14 or
16, while higher serum HDL-c levels were associated
with a higher percentage of subgroup 14.
As a continuation of our previous analysis, in which

we identified 87 OTUs that normally show daytime-
dependent fluctuations in peak relative abundance but
lose their rhythmicity in T2DM and/or obesity, we cal-
culated the distribution of these arrhythmic OTUs
among the subgroups (Fig. 6) [22]. Subgroups 19
(Escherichia/Shigella, Klebsiella, Streptococcus, Lactoba-
cillus) and 13 (Bacteroides, Dialister, Parabacteroides,
Alistipes) had a much higher percentage of arrhythmic
OTUs than the rest (46% and 44%, respectively),
followed by subgroups 18, 20, 12, and 5 (30%, 30%, 27%,
and 23% arrhythmic OTUs, respectively). The remaining

subgroups ranged between 5 and 17% arrhythmic OTUs.
Regarding the 14 OTUs that were found to be
arrhythmic in T2DM specifically, subgroup 19 had a
notably higher proportion, with 42% of the subgroup be-
ing composed of diabetes-specific arrhythmic OTUs (all
other subgroups contained only between 0 and 7%). Re-
garding the 51 OTUs found to be obesity-specific, sub-
groups 13, 18, and 20 had notably high percentages
(37%, 28%, and 28%, respectively; the remaining sub-
groups ranged from 2 to 12%).
Additionally, we conducted a subanalysis of the associ-

ations between habitual diet, metabolic diseases/risk fac-
tors, and three enterotype-like clusters. After correction
for multiple testing, no dietary factors were significantly
associated with enterotype (Additional file 4). BMI and
waist circumference were positively associated with the
Bacteroides cluster (OR (CI): 1.34 (1.21–1.49); 1.43
(1.27–1.61) respectively), as well as serum triglycerides
(1.29 (1.16–1.43)) and undetected and prevalent diabetes
(2.45 (1.47–4.07), 1.85 (1.28–2.67), respectively). Waist
circumference was positively associated with the Prevotella
enterotype (OR (CI): 1.31 (1.11–1.54)).

Discussion
We used LDA to identify 20 latent microbial subgroups
in human gut microbiota samples from 1992 participants
of the KORA FF4 study. We chose this method because
of its wide use in other fields and its unique applicability
to microbiota data [47]. Unlike clustering, LDA is a gen-
erative machine learning model, which is able to detect
latent, or hidden, groups within data. Rather than using
distance between observations as a measure, it identifies
patterns of co-occurrence. As a result, each subgroup
represents microbes that typically appear together in an

Fig. 4 Distribution of subgroups across the study population. a Violin plot showing the probability per subgroup among the study population.
Each violin displays the distribution of that subgroup across all participants. The median and interquartile range for each subgroup is represented
by a white dot and bar. b Histogram showing the maximum probability for any subgroup per participant. The mean maximum probability was
33.24% ± 1.27% (indicated by vertical line). Each bin represents the participant count for that probability range. The darker the bin color, the
higher the count
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Fig. 5 Feature expression heat map displaying results of the Dirichlet regression models. SSB, sugar-sweetened beverages; AHEI, Alternate Healthy
Eating Index; MDS, Mediterranean Diet Score; DM, diabetes mellitus; HTN, hypertension; DQS, diet quality score. Foods, nutrients, or DQS and
subgroups were analyzed in one set of models, while metabolic diseases or risk factors and subgroups were analyzed in another. Each association
between a dietary factor or metabolic disease/risk factor and a subgroup (as identified in the Dirichlet regression models) is represented by a
circle, where the size of the circle indicates the significance of the association (size inversely proportionate to P value), and intensity of the color
(red, positive; blue, inverse) indicates the effect size. A white dot in the center of a circle indicates that the association remained significant after
Bonferroni correction (P < 0.00128)
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environment (sample), likely due to similar environmen-
tal requirements (e.g., similar nutrient/substrate needs),
similar roles or functions within an environment, or be-
cause the taxa within a subgroup are modulated by a
shared, latent factor (e.g., medication, circadian rhythm,
or other potentially unknown factors). The factors driv-
ing the co-occurrence of taxa within a subgroup may or
may not be clear from a priori knowledge. As a result,
LDA offers a unique advantage over traditional methods
of clustering or drawing associations with individual
taxa, as it can identify patterns within a data set that are
driven by latent factors that researchers may or may not
already be aware of and which can inherently not be de-
tected by other methods of analysis. Additionally, trad-
itional clustering methods are strongly influenced by
dominant taxa, and are likely to miss more obscure fea-
tures, which may be just as relevant. A further advantage
of this strategy is that it is not limited to identifying indi-
vidual taxa which may be beneficial or harmful, but ra-
ther a group of taxa that may act synergistically, have
similar beneficial roles, produce similar metabolites, etc.

Finally, LDA allows for partial membership, meaning
each sample may contain several microbial subgroups,
which is more appropriate to the biological situation and
allows for a more complex description of the microbial
environment than hard clustering methods. These
unique advantages of LDA could prove useful for
informing future studies by identifying subgroups of mi-
crobes within a population that are relevant for human
health and disease, and which may be modulated by hid-
den factors that warrant further investigation. Several re-
cent studies have demonstrated the advantages of LDA
for metagenomic data. One excellent example of this is a
recent analysis by Hosoda et al., in which LDA was uti-
lized to identify four microbial “assemblages” (sub-
groups) within a metagenomic data set [50]. Three of
these assemblages correlated strongly with the classic
three-cluster enterotypes, but the fourth assemblage,
which was present within each of the three enterotypes,
was not as dominant within the data as the three more
distinct assemblages and has therefore missed by classic
analysis methods in the past.

Fig. 6 Percentage of each subgroup from arrhythmic OTUs. a Percentage of each subgroup from any arrhythmic OTUs. b Percentage of each
subgroup from diabetes-specific arrhythmic OTUs. c Percentage of each subgroup from obesity-specific arrhythmic OTUs
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Another paper, by authors Sankaran and Holmes,
demonstrated the applicability of LDA to microbiome
data using both a case study of the effect of two anti-
biotic courses on microbiota composition and a simu-
lated microbiome data set [47]. The authors
demonstrated that LDA was capable of appropriately
modeling the simulation data set and was also able to
identify four microbial “topics” (subgroups) in the data
set, each of which responded uniquely to the antibiotic
courses over time, despite a lack of temporal
information.
In the present analysis, using multivariate Dirichlet re-

gression models, one set that examined diet and sub-
groups, and another set of models that examined
diseases/risk factors and subgroups, we identified a num-
ber of significant associations between habitual diet or
metabolic diseases/risk factors and microbial subgroups.
Subgroups 5 and 14 were most strongly and consistently
associated with dietary factors and at the same time with
metabolic diseases or risk factors. Many of these associa-
tions are consistent with current knowledge on diet-
metabolic disease associations that were newly attributed
to specific microbial subgroups in our analysis. This
gives sound support to the hypothesis that diet-disease
associations are at least partially modulated by the sub-
ject’s microbiota structure, as reflected by these two
main subgroups—though causality remains to be
confirmed.
The dietary associations we identified with subgroup 5

(Faecalibacterium, Lachnospiracea incertae sedis, Gem-
miger, Roseburia) are consistent with that of a diet pro-
tective against T2DM. Interestingly, one study found
that adhering to a Mediterranean diet increased occur-
rence of Faecalibacterium prausnitzii in feces and im-
proved insulin sensitivity [58, 59]. This is consistent with
our findings that closer adherence to a Mediterranean
diet was associated with higher probability of subgroup
5 (44.67% Faecalibacterium; inversely associated with
prevalent T2DM). Furthermore, several additional stud-
ies have shown an increase in F. prausnitzii, often as a
result of modulation with a high-fiber diet, to be associ-
ated with improvement in T2DM parameters [19, 60,
61]. Subgroup 5 has the highest percentage of Faecali-
bacterium, but it is among the top five genera in other
subgroups as well (e.g., subgroups 7, 10, 11). However,
most of these subgroups showed no association with diet
or disease markers, indicating the value of looking at a
group of co-occurring bacteria rather than individual
taxa.
Subgroup 14 (Coprococcus, Bacteroides, Faecalibacter-

ium, Ruminococcus) was significantly positively associ-
ated with fruit, cheese, whole grains, and total, soluble
and insoluble fiber intake after adjustment with the Bon-
ferroni correction, and inversely with processed meat.

These associations with subgroup 14 are logical, as
Coprococcus species are fiber-fermenting butyrate pro-
ducers, and their presence has generally been associated
with positive health states [62–66].
Soluble fiber was the only dietary factor to remain as-

sociated with subgroup 20 after adjustment with the
Bonferroni correction, although subgroup 20 was signifi-
cantly associated with BMI, waist circumference, and
several other metabolic parameters. Subgroup 20 was
also one of the subgroups with a high percentage of
arrhythmic OTUs; 28% of the subgroup was comprised
of OTUs identified as behaving arrhythmically in obesity
(Fig. 6). These findings support the associations we iden-
tified between subgroup 20 and BMI and waist circum-
ference. Unfortunately, subgroup 20 is comprised of
over 75% of OTUs that could not be reliably identified
to the genus level, although its strong associations with
disease and high percentage of OTUs that are
arrhythmic in obesity suggest this subgroup could be of
great interest for further research.
Subgroup 13 (Bacteroides, Dialister, Parabacteroides,

Alistipes) comprised 74.76% of the genus Bacteroides
and was significantly positively associated with BMI.
After adjustment for multiple testing, subgroup 13 was
no longer significantly associated with any food item or
nutrient, which suggests that another factor may be its
main driver. Interestingly, 37% of subgroup 13 is com-
posed of OTUs that were identified in our previous ana-
lysis as losing their rhythmicity in obesity (Fig. 6) [22].
Because subgroup 13 is so strongly associated with BMI,
it warrants further investigation. The high percentage of
obesity-specific arrhythmic OTUs in this subgroup indi-
cates that it may be worth further investigation regard-
ing the importance of arrhythmic OTUs and obesity in
general.
Subgroup 18 (Akkermansia, Alistipes, Ruminococcus,

Bacteroides) was significantly inversely associated with
BMI and waist circumference. Numerous studies have
previously reported inverse associations between Akker-
mansia (27.13% of subgroup 18) and obesity, which is
consistent with our results [67, 68]. Conversely, the
genus Alistipes (19.52% of subgroup 18) has been associ-
ated with both positive and negative health states, poten-
tially depending on the host environment. Our results
suggest a potentially protective effect against obesity
when co-occurring with other taxa in subgroup 18 in
this study population. Additionally, 30% of subgroup 18
was comprised of OTUs previously identified as becom-
ing arrhythmic in obesity (Fig. 6), again highlighting this
subgroup as potentially highly relevant to obesity.
Subgroup 19 (Escherichia/Shigella, Klebsiella, Strepto-

coccus, Lactobacillus) was not associated with any diet-
ary factor. However, there was a significant positive
association between prevalent T2DM and subgroup 19.
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It is possible that this association is driven by the intake
of the drug metformin by participants with prevalent
T2DM. Indeed, one previous study found an association
between the severity of gastrointestinal side effects and
the relative abundance of Escherichia-Shigella in partici-
pants receiving metformin after just 24 h [69], and sev-
eral other studies have found an increase in Escherichia
or E. coli in participants taking metformin [13, 70]. Add-
itionally, 46% of subgroup 19 was comprised of
arrhythmic OTUs, 91% of which were OTUs identified
in our previous analysis as part of a diabetes risk signa-
ture [22]. This is a striking difference to the other sub-
groups, of which only 0–7% were composed of these
diabetes-specific arrhythmic OTUs. The strong associ-
ation of subgroup 19 with T2DM and its large percent-
age of diabetes-specific arrhythmic OTUs demonstrates
how effectively LDA recognized a subgroup of OTUs
previously demonstrated as specific to T2DM and which
lose their rhythmicity in T2DM specifically. Other
prominent OTUs in this subgroup should be investi-
gated for their potential importance in T2DM as well.
Several additional subgroups were initially associated

with one or more nutrition items/factors, but were no
longer significant after adjustment for multiple testing
(subgroups 3, 6, 13, 17). Additionally, many of the stron-
gest diet-subgroup associations were with “healthy” diet-
ary factors, such as whole grains and fruit, rather than
those considered to have negative health effects, such as
sweets, alcohol, and SSB. This indicates that the con-
sumption of the food groups that remained statistically
significant after correction for multiple testing may have
a stronger impact on microbial subgroups than the ones
that did not remain significant. In other words, an in-
crease in consumption of healthy dietary constituents
seems to be a more effective measure to modify gut
microbiota composition (whereas the change in compos-
ition resulting from an increase in unhealthy foods is a
more passive consequence.) Thus, reproduction of these
findings in an independent study is urgently needed.
Several subgroups were not associated with any dietary

factors (subgroups 2, 4, 8, 9, 10, 11, 15, 19) and, with the
exception of subgroup 19, were also not associated with
any of the covariates selected for adjustment. These in-
dependent subgroups are consistent with the idea that
we still do not fully understand the factors responsible
for shaping gut microbiome composition. Further ana-
lyses should seek to identify what latent factors may be
driving these subgroups.
It is highly useful to be able to classify an individual’s

highly complex microbiota structure into a manageable
number of subgroups that can convey information about
health and disease risk. The analysis of diet/metabolic
disease and enterotype-like clusters demonstrated that,
although habitual diet has been associated with

enterotypes in the past, this three-cluster solution is not
appropriate for identifying associations between habitual
diet and microbiota structure in this study population
[71]. While a few significant associations were seen be-
tween BMI or waist circumference, triglycerides, and
T2DM and the clusters, no significant associations be-
tween diet and any enterotype cluster were identified
after adjustment for multiple testing. The limitations of
this clustering strategy have been discussed previously,
and our results also indicate the need for a more sensi-
tive and detailed approach to microbiota analysis [72,
73]. One major advantage that LDA offers over trad-
itional clustering strategies is partial or fractional mem-
bership (similar to fuzzy clustering). A major criticism of
enterotypes is the assignment of an individual into one
cluster, ignoring often gradient-like differences in micro-
biota structure. Methods allowing for partial member-
ship, such as LDA, enable an individual’s microbiota
composition to be described by a combination of several
microbial groups in varying proportions, which is more
likely to reflect the actual complexity of an individual’s
microbiome appropriately. Our results suggest that
LDA, specifically, offers an appropriate alternative for
the identification of latent structures within the micro-
biome that are of relevance to human health and disease.
This method offers a practical way to characterize an in-
dividual’s microbiota and potentially to decipher more
information about an individual’s health state and poten-
tial disease risk. However, the most appropriate use of
this method may be in exploratory analyses, with the
purpose of identifying subgroups of bacteria within a
population that are driven by latent factors, and which
should be investigated with further study.
Our analysis has several additional strengths, including

high-quality nutrition data that characterizes habitual
dietary intake, use of a large, originally population-based
cohort with the opportunity for future longitudinal ana-
lyses, and the implementation of a popular, sophisticated
unsupervised machine learning algorithm. Limitations
include that only one stool sample was available per in-
dividual. Despite the use of a refined nutrition assess-
ment method, measurement error is likely to persist to
some degree. Due to the cross-sectional nature of this
analysis, the causality of the associations cannot be de-
termined. Generalizability of these results cannot be as-
sumed without reproducing this analysis in other study
populations and/or follow-ups of the present study
population.

Conclusions
We described 20 microbial subgroups using an unsuper-
vised machine learning model, several of which were as-
sociated with both habitual dietary intake and metabolic
disease or relevant risk factors. The diet-microbiota and
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disease-microbiota associations identified in this analysis
add insight to the complex relationship between diet,
the human microbiome, and disease. Further analyses
implementing LDA in other populations and in longitu-
dinal studies are necessary to investigate the reproduci-
bility of the present findings.
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