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Abstract: Background  Inconsistent associations between long-term exposure to fine particulate
matter (PM2.5) components and mortality/morbidity have been reported, partly related
to challenges in exposure assessment. No studies have compared health effect
estimates using exposure models developed with linear regression and the more
flexible machine-learning algorithms.
Objectives  To investigate the associations between long-term exposure to PM2.5
elemental components and mortality in a large pooled European cohort, estimating
exposure with Supervised Linear Regression (SLR) and Random Forest (RF) models.
Methods  We pooled data from eight European cohorts with 323,782 participants.
Residential exposure to 2010 annual average concentration of eight PM2.5
components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) was
estimated with Europe-wide SLR and RF models at 100x100m scale. We applied Cox
proportional hazards models to investigate the associations between components and
natural and cause-specific mortality. Additionally, two-pollutant analyses were
conducted by adjusting each component for PM2.5  mass and nitrogen dioxide (NO2)
separately.
Results  We observed 46,640 deaths with 6,317,235 person-years and average follow-
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up of 19.5 years. All SLR-modeled components were statistically significantly
associated with natural-cause mortality in single pollutant models with hazard ratios
(HRs) from 1.05–1.27. Similar HRs were observed for RF-modeled copper, iron,
potassium, sulfur, vanadium and zinc with wider confidence intervals (CIs). HRs for
SLR-modeled nickel, sulfur, silicon, vanadium and zinc remained elevated and
(borderline) significant after adjustment for both PM2.5  and NO2  . HRs only remained
(borderline) significant for RF-modeled potassium and vanadium in two-pollutant
models. The HRs for vanadium were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02,
1.10) for SLR- and RF-modeled exposures respectively per 2 ng/m3  adjusting for
PM2.5  mass.
Conclusion  Long-term exposure to vanadium in PM2.5  was most consistently
associated with increased natural-cause mortality. Associations for the other
components were weaker for exposure modeled with RF than SLR in two-pollutant
models.
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Abstract 255 

Background Inconsistent associations between long-term exposure to fine particulate matter 256 

(PM2.5) components and mortality/morbidity have been reported, partly related to challenges 257 

in exposure assessment. No studies have compared health effect estimates using exposure 258 

models developed with linear regression and the more flexible machine-learning algorithms. 259 

Objectives To investigate the associations between long-term exposure to PM2.5 elemental 260 

components and mortality in a large pooled European cohort, estimating exposure with 261 

Supervised Linear Regression (SLR) and Random Forest (RF) models. 262 

Methods We pooled data from eight European cohorts with 323,782 participants. Residential 263 

exposure to 2010 annual average concentration of eight PM2.5 components (copper, iron, 264 

potassium, nickel, sulfur, silicon, vanadium, and zinc) was estimated with Europe-wide SLR 265 

and RF models at 100x100m scale. We applied Cox proportional hazards models to investigate 266 

the associations between components and natural and cause-specific mortality. Additionally, 267 

two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and 268 

nitrogen dioxide (NO2) separately. 269 

Results We observed 46,640 deaths with 6,317,235 person-years and average follow-up of 270 

19.5 years. All SLR-modeled components were statistically significantly associated with 271 

natural-cause mortality in single pollutant models with hazard ratios (HRs) from 1.05–1.27. 272 

Similar HRs were observed for RF-modeled copper, iron, potassium, sulfur, vanadium and zinc 273 

with wider confidence intervals (CIs). HRs for SLR-modeled nickel, sulfur, silicon, vanadium 274 

and zinc remained elevated and (borderline) significant after adjustment for both PM2.5 and 275 

NO2. HRs only remained (borderline) significant for RF-modeled potassium and vanadium in 276 

two-pollutant models. The HRs for vanadium were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 277 

1.02, 1.10) for SLR- and RF-modeled exposures respectively per 2 ng/m3 adjusting for PM2.5 278 

mass. 279 

Conclusion Long-term exposure to vanadium in PM2.5 was most consistently associated with 280 

increased natural-cause mortality. Associations for the other components were weaker for 281 

exposure modeled with RF than SLR in two-pollutant models.  282 
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1. Introduction 283 

The most recently available Global Burden of Disease (GBD) study estimated that exposure to 284 

ambient particles with an aerodynamic diameter less than 2.5 µm (PM2.5) was the fifth-285 

ranking mortality risk factor, contributing to 4.2 million deaths per year (Cohen et al., 2017). 286 

PM2.5 is a mixture of a large number of components related to specific sources. Identifying 287 

which components of PM2.5 are main contributors to adverse health effects is important for 288 

targeted policy making. So far, only a limited number of studies have assessed associations of 289 

long-term exposure to PM2.5 components and mortality with inconclusive results. The 290 

California Teachers Study (Ostro et al., 2015) found an increased risk of Ischemic Heart 291 

Disease (IHD) mortality in associations with exposure to nitrate, elemental carbon (EC), 292 

copper and secondary organics in PM2.5. The American Cancer Society (ACS) Cancer 293 

Prevention Study-II (CPS-II) suggested that long-term PM2.5 exposure from coal combustion 294 

and its key emission tracer elements (i.e., selenium and arsenic) were associated with 295 

increased IHD mortality risk, whereas exposure to silicon and potassium was not associated 296 

with mortality (Thurston et al., 2013; Thurston et al., 2016). In the Medicare population, the 297 

excess mortality risk associated with long-term PM2.5 exposure increased with relative 298 

concentration of EC, vanadium, copper, calcium and iron and decreased with nitrate, organic 299 

carbon and sulfate (Wang et al., 2017). The large European Study of Cohorts for Air Pollution 300 

Effects (ESCAPE) reported a robust relationship between natural-cause mortality and PM2.5 301 

sulfur, and some evidence of associations with iron and copper in PM2.5 (Beelen et al., 2015). 302 

No statistically significant association with PM2.5 components was found for cardiovascular 303 

mortality in the ESCAPE study (Wang et al., 2014). 304 

Long-term exposure assessment for particle components is more challenging than for PM2.5 305 

mass because of limited routine monitoring (with the exception of nitrate, ammonium and 306 

sulphate) and less data on emission rates used as input to dispersion models. To date, the 307 

available epidemiological evidence used different exposure estimates, including direct 308 

monitoring (Ostro et al., 2011; Thurston et al., 2013; Thurston et al., 2016), chemical transport 309 

models at 4x4 km scale (Ostro et al., 2015) and fine spatial scale land use regression (LUR) 310 

models (Beelen et al., 2015; Wang et al., 2014). Different exposure assessment methods may 311 

lead to component-specific differences in exposure estimation error, potentially leading to 312 

bias.  Studies have suggested that risk estimates of PM2.5 mass differed between exposure 313 

assessment methods (Jerrett et al., 2017; McGuinn et al., 2017). Studies comparing exposure 314 

assessment methods in their associations with health outcomes mainly focused on the 315 

comparison between direct monitoring, satellite products, dispersion/chemical transport 316 

models and LUR models. Recent developments in exposure assessment include combining 317 

different methods such as land use or chemical transport modeling and monitoring data using 318 

a variety of approaches including linear regression and machine learning algorithms (Hoek, 319 

2017). Comparisons have been made between exposure predictions developed with different 320 

algorithms in terms of prediction accuracy (Brokamp et al., 2017; Chen et al., 2019; Kerckhoffs 321 

et al., 2019). However, a simulation study suggested that improving the prediction accuracy 322 
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of exposure models did not always improve the accuracy of health effect estimation (Szpiro 323 

et al., 2011). To our knowledge, no studies have compared exposure models developed with 324 

different algorithms regarding their relation with health outcomes. 325 

The current study is part of the Effects of Low-level Air Pollution: a Study in Europe (ELAPSE). 326 

ELAPSE builds on the elemental composition, mortality and covariate data of the ESCAPE 327 

study (Beelen et al., 2014; Beelen et al., 2015; Wang et al., 2014). In ESCAPE each cohort was 328 

analyzed separately, whereas in ELAPSE respective ESCAPE cohorts were pooled to represent 329 

a contrast in low-level air pollution exposures. In addition, the ELAPSE project incorporated 330 

updated mortality follow-up data (from typically up to 2008 in ESCAPE to up to 2011–2017 in 331 

ELAPSE), which substantially increased the number of deaths and hence study power. The 332 

combined ability to do pooled analyses, plus accounting for new insights in the robustness of 333 

LUR models related to the number of monitoring sites (Basagaña et al., 2012; Wang et al., 334 

2012), strengthened the exposure assessment in ELAPSE. Specifically, Europe-wide models 335 

covering combined study areas for PM2.5 mass, nitrogen dioxide (NO2), Black Carbon, ozone 336 

(De Hoogh et al., 2018) and the eight PM2.5 elementals modeled in ESCAPE (Chen et al., in 337 

revision) were developed. The models furthermore allowed better coverage of those ESCAPE 338 

cohorts in large study areas of which typically only a fraction was covered by dedicated 339 

monitoring campaigns (e.g. only Paris in the national French E3N cohort) (de Hoogh et al., 340 

2013; Tsai et al., 2015). The Europe-wide models for PM2.5 composition were developed using 341 

two algorithms – the supervised linear regression (SLR) algorithm (De Hoogh et al., 2018) and 342 

the random forest (RF) algorithm, a machine-learning algorithm (Chen et al., in revision). The 343 

RF models outperformed the SLR models at the Europe-wide level, while the two models 344 

performed similarly explaining variability within individual study areas. Despite the similar 345 

within-area performance, the exposure predictions at random sites derived from SLR and RF 346 

models correlated only moderately at the national level.  347 

We previously observed significantly positive associations between PM2.5 and natural and 348 

cause-specific mortality using the same pooled cohort in the framework of ELAPSE (Strak et 349 

al., submitted). The first aim of this study was to evaluate whether specific components of 350 

PM2.5 were associated with mortality. The second aim was to compare health effects 351 

estimated with two different exposure modeling approaches, namely SLR and RF algorithms.  352 
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2. Methods 353 

2.1 Study populations 354 

The ELAPSE pooled cohort contains eight cohorts across seven European countries able to 355 

participate in data pooling, areas with low-level air pollution exposure, and relatively recent 356 

recruitment date (Table 1 and Figure S1). The cohorts are the following: Cardiovascular Effects 357 

of Air Pollution and Noise in Stockholm (CEANS) cohort in Sweden, which was constructed 358 

from four sub-cohorts: Stockholm Diabetes Prevention Program (SDPP)(Eriksson et al., 2008), 359 

the Stockholm Cohort of 60-year-olds (SIXTY) (Wändell et al., 2007), Stockholm Screening 360 

Across the Lifespan Twin study (SALT) (Magnusson et al., 2013) and Swedish National Study 361 

on Aging and Care in Kungsholmen (SNACK) (Lagergren et al., 2004); the Diet, Cancer and 362 

Health cohort (DCH) (Tjønneland et al., 2007) in Denmark; the Danish Nurse Cohort (DNC) 363 

(Hundrup et al., 2012) in Denmark, consisting at baseline of two surveys conducted in 1993 364 

and 1999; the European Prospective Investigation into Cancer and Nutrition-Netherlands 365 

(EPIC-NL) cohort in the Netherlands, including the Monitoring Project on Risk Factors and 366 

Chronic Diseases in the Netherlands (MORGEN) and Prospect (Beulens et al., 2010); the Heinz 367 

Nixdorf Recall study (HNR) in Germany (Schmermund et al., 2002); the Etude Epidémiologique 368 

auprès de femmes de la Mutuelle Générale de l’Education Nationale (E3N) in France (Clavel-369 

Chapelon and Group, 2015); the Cooperative Health Research in the Region of Augsburg 370 

(KORA) in Germany, consisting at baseline of two cross-sectional population-representative 371 

surveys conducted in 1994–1995 (S3) and 1999–2001 (S4); and the Vorarlberg Health 372 

Monitoring and Prevention Programme (VHM&PP) in Austria (Ulmer et al., 2007). The study 373 

areas of most cohorts constituted a large city and its surrounding areas. Some cohorts 374 

covered large regions of the country such as the French E3N cohort and the Danish DNC 375 

cohort. All included cohort studies were approved by the medical ethics committees in their 376 

respective countries. Detailed information of each individual cohort is described in the 377 

supplemental material. For data pooling, we harmonized individual and area-level variables 378 

between cohorts according to a joint codebook.  379 

2.2 Air pollution exposure assessment 380 

Eight components were a priori selected in the ESCAPE study to represent major pollution 381 

sources: copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulfur 382 

(S) representing long-range transport of secondary inorganic aerosols; nickel (Ni) and 383 

vanadium (V) representing mixed oil burning/industry; silicon (Si) representing crustal 384 

material; and potassium (K) representing biomass burning (de Hoogh et al., 2013; Tsai et al., 385 

2015). We assessed exposure to these eight elements in PM2.5 at the participants’ baseline 386 

residential addresses using Europe-wide LUR models developed with two algorithms. The 387 

models have been described in detail elsewhere (Chen et al. in revision). Briefly, we estimated 388 

2010 annual mean concentrations of PM2.5 elemental composition based on the standardized 389 

ESCAPE monitoring data. We offered large-scale satellite-model and chemical transport 390 

model estimates of components as predictors to represent background concentrations and 391 

land use, traffic, population and industrial point source data to model local spatial variability. 392 
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We applied the supervised linear regression (SLR) (De Hoogh et al., 2018) and the random 393 

forest (RF) algorithm (Chen et al., 2019) to develop models for each component. The models 394 

explained a moderate to large fraction of the measured concentration variation at the 395 

European scale, ranging from 41% to 91% across components. The RF models consistently 396 

outperformed the SLR models in explaining overall variability, including both between and 397 

within study area variability. The models explained within-area variability less well, with 398 

similar performance for RF and SLR models. The SLR and RF model predictions correlated 399 

moderately at national level.  400 

Exposure to 2010 annual mean concentration of PM2.5 mass and NO2 was assessed by Europe-401 

wide LUR models developed previously (De Hoogh et al., 2018). The models were developed 402 

based on the European Environmental Agency (EEA) AirBase routine monitoring data with 403 

satellite-derived and chemical transport model air pollutants estimates, land use, traffic and 404 

population data as predictors. The PM2.5 model explained 72% of measured spatial variation 405 

in the annual average concentration across Europe while the NO2 model explained 59%.  406 

We applied the exposure models to create 100x100 m grids of the predicted concentrations 407 

of the pollutants covering the entire study area, and transferred these to participating centers 408 

for exposure assignment. After assignment, anonymized data were returned to the Utrecht 409 

University for checking and pooling. 410 

We performed truncations to deal with unrealistic SLR predictions of elemental composition 411 

concentrations: predictions at the high end (mostly related to close distance to industrial 412 

sources) were truncated to the maximum modeled value, calculated by fitting the SLR model 413 

with the maximum predictor values at ESCAPE monitoring sites for positive slopes (or the 414 

minimum predictor values for negative slopes). Negative predictions were set to zero (Chen 415 

et al., in revision). Truncation was performed in the main model population for SLR-modeled 416 

exposure: 11.3% for Cu, 0.5% for Fe, 11.6% for Ni, 14.3% for V and 2.6% for Zn. The truncation 417 

was mostly performed for predictions below zero. No truncation was needed for RF-modeled 418 

exposure (Table S1). 419 

2.3 Mortality outcome definition  420 

Identification of outcomes was based upon linkage to mortality registries. Natural mortality 421 

was defined based on the underlying cause of death recorded on death certificates as ICD-9 422 

(International Classification of Diseases, 9th Revision) codes 001–779 and ICD-10 (10th Revision) 423 

codes A00–R99. We further defined mortality from cardiovascular disease (ICD-9: 400–440, 424 

ICD-10: I10–I70), respiratory disease (ICD-9: 460–519, ICD-10: J00–J99) and lung cancer (ICD-425 

9: 162, ICD-10: C34).  426 

2.4 Statistical analyses 427 

To estimate hazard ratios (HRs) and 95% confidence interval (CIs) for associations of PM2.5 428 

component exposure with natural and cause-specific mortality, we applied Cox proportional 429 

hazards models following the general ELAPSE analytical framework (Strak et al., submitted). 430 

We used strata for sub-cohorts contributing to the pooled cohort to account for differences 431 



12 
 

in baseline hazard between the sub-cohorts unexplained by the available covariates. We used 432 

strata because the assumption of proportional hazards did not hold with respect to sub-433 

cohort. Strata had a substantially better model performance compared to alternative 434 

specifications such as sub-cohort indicators. The decision to account for between cohort 435 

heterogeneity using strata implies that we mostly evaluate within-cohort exposure contrasts. 436 

Each PM2.5 component was included as a linear function in the Cox models. Censoring 437 

occurred at the time of the event of interest, death from other causes, emigration, loss to 438 

follow-up for other reasons, or at the end of follow-up, whichever came first. We a priori 439 

specified three confounder models with increasing control for individual and area-level 440 

covariates: Model 1 included only age (as the time scale), sub-cohort (as strata), sex (as strata), 441 

and year of enrollment; Model 2 added individual-level covariates including marital status 442 

(married/ cohabiting, divorced/separated, single, widowed), smoking status (never, former, 443 

current), smoking duration (years of smoking) for current smokers, smoking intensity 444 

(cigarettes/day) for current smokers, squared smoking intensity, body mass index (BMI) 445 

categories (<18.5, 18.5–24.9, 25–29.9, and >30 kg/m2), and employment status (employed/ 446 

self-employed vs. unemployed/ homemaker/ housewife/ retired); Model 3 further adjusted 447 

for neighborhood-level mean income in 2001. We considered model 3 as the main model.  448 

In addition, two-pollutant models were conducted with our main model adjusting each 449 

component for PM2.5 mass and NO2 separately. We adjusted for PM2.5 mass to investigate 450 

whether the association with individual components reflecting specific sources remained 451 

after adjustment for generic PM2.5 mass for which we have strong evidence of associations 452 

(Beelen et al., 2014). We adjusted for NO2 to disentangle the individual component effect 453 

from traffic exhaust emission for which NO2 is used as a marker. Adjustment for NO2 is 454 

especially important when assessing associations with the traffic non-exhaust components 455 

Cu, Fe and Zn. However, two-pollutant models can be difficult to interpret when the two 456 

pollutants reflect the same source or are strongly correlated. We did not model all possible 457 

combinations of pollutants in two-pollutant models because the correlations between some 458 

components were high and we preferred to limit the complexity of analyses. The PM2.5 mass 459 

and NO2 estimates used in the two-pollutant models were developed with the SLR algorithm 460 

(De Hoogh et al., 2018). We previously documented that, for PM2.5 mass and NO2 separately, 461 

SLR and RF models had similar performance, and that SLR- and RF-modeled exposure at 462 

external validation sites were highly correlated (PM2.5 mass: Pearson r = 0.89; NO2: r = 0.93) 463 

(Chen et al., 2019). Consequently, only the SLR-modeled PM2.5 and NO2 exposures were linked 464 

to the individual cohorts.  465 

All analyses were performed in R version 3.4.0 using packages: survival, coxme, Matrix, 466 

foreach, glmnet, multcomp, survey, splines, Hmisc, mfp, VIM, ggplot2, frailtySurv, survsim, 467 

eha, stamod. Statistical significance was based on a p-value < 0.05.468 
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3. Results 469 

3.1 Characteristics of the study population 470 

The total study population in the main model 3 (the most adjusted model) consisted of 471 

323,782 subjects, contributing 6,317,235 person-years at risk. Fifteen percent of the total 472 

population was excluded from all analyses due to missing exposure (0.5%), individual-level 473 

covariates (12.7%) or neighborhood-level mean income (1.8%). A relatively large number of 474 

missing values occurred in E3N (missing smoking data) and KORA (missing neighborhood-level 475 

income).  Table 1 shows baseline characteristics of participants in individual sub-cohorts. Sub-476 

cohorts differed in the number of participants, the average years of follow-up, the mean 477 

baseline age, the percentage of female participants, the life-style factors and the 478 

neighborhood-level income, supporting the analysis accounting for difference in baseline 479 

hazards between sub-cohorts. During the follow-up, we observed 46,640 (14.4%) deaths from 480 

natural causes, 15,492 (4.8%) deaths from cardiovascular diseases, 2,846 (0.9%) deaths from 481 

non-malignant respiratory diseases and 3,776 (1.2%) deaths from lung cancer. 482 

 483 

3.2 Exposure distribution and correlations 484 

For Cu, Fe, K, S and Zn, concentrations were lower in the North European cohorts than in 485 

the other cohorts (Figure 1). The within-cohort contrast was substantial for Cu, Fe, Si and 486 

limited for K, Ni, S, V and Zn. Exposure distributions for the pooled cohort were similar for 487 

SLR- and RF-modeled estimates, though for most components the variability was smaller for 488 

RF. For individual cohorts, large differences between the two algorithms were found, e.g. S 489 

in HNR. 490 

Correlations between exposure estimates derived from SLR and RF models were high for Cu 491 

and Fe (average within-cohort Spearman r = 0.81 for Cu, r = 0.84 for Fe) (Table 2). Correlations 492 

between SLR- and RF-modeled exposure were moderate for S, Si, Zn and low for K, Ni, V, with 493 

large variation between cohorts. We focus on within-cohort correlations as the 494 

epidemiological analysis exploits mostly within-cohort exposure contrast.  495 

Correlations of composition with PM2.5 mass were mostly low to moderate (average of 496 

cohort-specific Spearman r ranging from 0.13 to 0.49) (Table S2). Correlations with NO2 were 497 

mostly high for Cu and Fe (average of cohort-specific Spearman r above 0.7) (Table S3). 498 

Correlations with PM2.5 mass and/or NO2 differed substantially in magnitude between cohorts, 499 

reflecting differences in study area size and presence of major sources. Average of cohort-500 

specific correlations between Cu and Fe were high, while both Cu and Fe were moderately 501 

correlated with Zn (Figure S2). Correlation between Ni and V modeled with the same 502 

algorithm was moderate, while the correlation was low when Ni and V were modeled with 503 

different algorithms.  504 

 505 

3.3 Associations of PM2.5 composition with mortality 506 
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Natural mortality 507 

Table 3 shows associations of PM2.5 composition with natural mortality. In single pollutant 508 

models, all components were significantly associated with natural mortality except for RF-509 

modeled Ni and Si. For Cu, Fe, K, S, V and Zn, the HR point estimates were similar for SLR- and 510 

RF-modeled exposures with generally wider confidence intervals (CIs) for RF. For Ni and Si, 511 

HRs were much higher for SLR-modeled than for RF-modeled exposures.  512 

In two-pollutant models, HRs strongly attenuated for most components, while HRs remained 513 

stable for PM2.5 mass and NO2 (Table 3 and Table S4). For Cu and Fe, HR point estimates were 514 

similar for SLR- and RF-modeled exposures after adjustment for PM2.5 mass, with wider CIs 515 

observed for RF. HRs decreased substantially and became non-significant after adjustment 516 

for NO2 with HRs being above unity for SLR and below unity for RF. HRs for K remained positive 517 

and similar for SLR and RF after adjustment for NO2, whereas after adjustment for PM2.5 mass, 518 

the HRs reduced to unity for SLR but remained positive for RF. For Ni, S, Si and Zn, HRs 519 

remained positive and (borderline) significant for SLR in two-pollutant models, whereas HRs 520 

reduced to essentially unity for RF. The HRs for V were reduced but remained positive and 521 

(borderline) significant in two-pollutant models, with similar estimates observed for SLR and 522 

RF. 523 

We observed the strongest associations of natural mortality with all PM2.5 components in the 524 

minimally adjusted models (Model 1) (Figure S3). HRs attenuated substantially after adjusting 525 

for individual level covariates (Model 2), except for K which remained stable. HRs increased 526 

slightly or remained stable after further adjustment for area-level covariates (Model 3). This 527 

pattern was observed both for SLR- and RF-modeled exposures. For Cu, Fe, K, S, V and Zn, the 528 

HR point estimates were similar between SLR- and RF-modeled exposures for all three models, 529 

with generally wider CIs for RF. For Ni and Si, the effect estimates were larger for SLR- than 530 

for RF-modeled exposure in all models. 531 

Cause-specific mortality 532 

For cardiovascular mortality, we observed significantly positive HRs with all components in 533 

single pollutant models except for RF-modeled Ni and Si. In two-pollutant models, HRs for 534 

most components attenuated substantially while HRs for PM2.5 and NO2 remained stable and 535 

tended to be higher in models with RF-modeled component exposure (Table S5). With 536 

adjustment for NO2, HRs for Cu and Fe remained elevated for SLR but became null or negative 537 

for RF. HR point estimates for SLR-modeled Ni, S, Si and Zn were positive in two-pollutant 538 

models adjusting for PM2.5 mass or NO2, while HRs were null or negative for RF. The HRs for 539 

V remained positive though non-significant after adjustment for PM2.5 mass or NO2, with 540 

similar estimates for SLR and RF. 541 

For respiratory mortality, positive HRs of a similar magnitude were observed for SLR- and RF-542 

modeled Cu, Fe and V in single pollutant models (Table S6). For S, Si and Zn, HRs were 543 

(borderline) significantly positive for SLR-modeled and close to unity for RF-modeled 544 

exposures. In two-pollutant models, HRs remained stable after adjustment for PM2.5 mass. 545 
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HRs were negative after adjustment for NO2 for components modeled with both algorithms 546 

except for Ni and V. HRs for NO2 were stable in all models except for increased HRs adjusting 547 

for Cu. 548 

For lung cancer mortality, positive HRs were observed for all components in single pollutant 549 

models, though HRs for RF-modeled exposures were non-significant except for K, S and V 550 

(Table S7). In two-pollutant models with adjustment for PM2.5 mass or NO2, HRs stayed stable 551 

for SLR-modeled S, whereas HRs reduced substantially though remained elevated for RF-552 

modeled S. HRs for most other components reduced and became non-significant in two-553 

pollutant models. HRs for PM2.5 mass and NO2 remained stable in all models except for 554 

reduced HRs for SLR-modeled S.  555 
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4. Discussion 556 

We observed an elevated risk of mortality associated with long-term exposure to most PM2.5 557 

elemental components in single pollutant models. In two-pollutant models with adjustment 558 

for PM2.5 mass or NO2, effect estimates were attenuated for almost all component-outcome 559 

pairs. Effect estimates for SLR- and RF-modeled exposures agreed well in single pollutant 560 

models, except for Ni and Si, whereas effect estimates for RF were generally lower than for 561 

SLR in two-pollutant models. 562 

Comparison with previous studies  563 

Only a limited number of epidemiological studies have assessed associations between 564 

mortality and long-term exposure to PM2.5 elemental components. Among the components 565 

studied, sulfate has received most attention. Sulfate is a secondary pollutant produced by 566 

atmospheric reactions of sulfur oxides (SO2) emitted by combustion of sulfur-containing liquid 567 

and solid fuels. Because sulfate is primarily in the fine particle fraction, sulfate may travel for 568 

large distances, resulting in a relatively small within study area viability. Another important 569 

source is sea salt sulphate which is predominately in the coarse fraction but has a tail also in 570 

PM2.5 that is long-range transported (Belis et al., 2013). The California Teachers Study (Ostro 571 

et al., 2011) reported an increased hazard ratio (HR) of 1.06 (95% CI: 0.97, 1.16) for natural 572 

cause mortality in association with a 2.2 μg/m3 increase in PM2.5 sulfate concentration, 573 

translating into a HR of 1.02 per 200 ng/m3, assuming all S is present as sulfate (sulfate to S 574 

ratio of 3). Analyses of the American Cancer Society Cancer Prevention Study-II (ACS CPS-II) 575 

suggested that long-term PM2.5 S exposure was associated with all-cause mortality (HR ranged 576 

from 1.01 to 1.03 per 528.8 ng/m3 depending on the models) (Thurston et al., 2013). In 577 

ESCAPE, robust associations of PM2.5 S exposure with natural mortality were found (Beelen et 578 

al., 2015). The effect estimate observed in ESCAPE was similar to the estimate in the current 579 

study (HR 1.14, 95% CI: 1.06, 1.23 per 200 ng/m3 in ESCAPE; HR 1.14, 95% CI: 1.11, 1.17 and 580 

HR 1.13, 95% CI: 1.08, 1.18  per 200 ng/m3 for SLR- and RF-modeled exposures, respectively, 581 

in ELAPSE). In the current study we obtained a much narrower confidence interval, probably 582 

due to the longer follow-up and the pooling of cohort data. The effect estimate of S in our 583 

study was much larger than the estimates from the U.S. cohorts. One major difference is that 584 

the U.S. cohorts investigated between-area contrasts only while both ELAPSE and ESCAPE 585 

focus on within-area contrasts. Because the transported sulfate has relatively uniform spatial 586 

variation at the city scale, the exposure contrast was much smaller in our study than in the 587 

U.S. studies, thus a small effect in our study could be inflated when adopting it to the same 588 

increment of exposure as in the U.S. studies. Another explanation might be that we measured 589 

elemental composition between 2008 and 2011, when emission of SO2 has decreased 590 

compared to the baseline of all cohorts (EEA, 2015). Health effects in our study populations 591 

may be partly related to exposure levels and contrasts 20 years ago (most cohorts have 592 

baselines in the 1990s). Therefore our sulfur-related magnitude of health effect estimates 593 

may be overestimated. 594 
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In the current study, we also found robust associations between S and lung cancer mortality, 595 

which is observed in ACS CPS-II as well (Thurston et al., 2013). In ESCAPE, robust associations 596 

were observed for S and lung cancer incidence (Raaschou-Nielsen et al., 2016). We observed 597 

elevated associations of S with cardiovascular mortality, which is consistent with previous 598 

findings in ESCAPE (Wang et al., 2014; Wolf et al., 2015) and in one of the ELAPSE sub-cohorts 599 

(i.e. the DCH cohort). The latter study reported an elevated risk of cardiovascular mortality 600 

associated with long-term exposure to secondary inorganic aerosols (Hvidtfeldt et al., 2019). 601 

The Women’s Health Initiative-Observational Study (WHI-OS) found no association of sulfur 602 

with cardiovascular deaths (HR 1.01, 95% CI: 0.92, 1.12 per 0.25 µg/m3), but a statistically 603 

significant association with cardiovascular events (HR 1.09, 95% CI: 1.05, 1.14 per 0.25 µg/m3) 604 

(Vedal et al., 2013). In the California Teachers Study, IHD mortality was associated with long-605 

term exposure to sulfate (Ostro et al., 2011) and high-sulfur content fuel combustion (Ostro 606 

et al., 2015).  607 

Both Ni and V are suggested to be tracers of mixed industrial/ fuel-oil combustion and derived 608 

mainly from shipping emissions in Europe (Viana et al., 2008). Our study found positive 609 

associations of natural mortality with long-term exposure to Ni (HR 1.08, 95% CI 1.06, 1.11 610 

and HR 1.01, 95% CI 0.97, 1.05 per 1 ng/m3 for SLR- and RF-modeled exposures respectively) 611 

and V (HR 1.06, 95% CI 1.04, 1.08 and HR 1.09, 95% CI 1.05, 1.14 per 2 ng/m3 for SLR- and RF-612 

modeled exposures respectively). The effect estimates are similar to the estimates in ESCAPE 613 

for natural mortality (HR for Ni 1.05, 95% CI 0.97, 1.13 per 1 ng/m3; HR for V 1.07, 95% CI 0.93, 614 

1.23 per 2 ng/m3) (Beelen et al., 2015), with much narrower CIs in ELAPSE. In ESCAPE, accuracy 615 

of exposure estimates for Ni and V was limited because of the absence of specific sources of 616 

Ni and V in several study areas combined with limited measurement precision especially in 617 

areas with low pollution levels (de Hoogh et al., 2013). The Europe-wide models made use of 618 

both within and between area measurement contrasts and resulted in models with good 619 

performance for Ni and V (Chen et al., in revision). Compared to ESCAPE, the ELAPSE models 620 

further added industrial source data as potential predictors which improved the model 621 

performance. The improved exposure assessment may have allowed us to better detect the 622 

potential component-mortality associations. Only a few studies have reported associations of 623 

mortality or morbidity with long-term exposure to Ni and V. In ESCAPE, association was found 624 

between PM10 Ni exposure and lung cancer incidence (Raaschou-Nielsen et al., 2016). In the 625 

Medicare population, stronger associations between long-term PM2.5 exposure and mortality  626 

were found for PM2.5 with higher V content (Wang et al., 2017). In the ACS CPS-II, associations 627 

between IHD mortality and Ni were reported (Thurston et al., 2013). The observed adverse 628 

effects of Ni and V on health could be due to the components per se or other components in 629 

emissions from oil combustion.  630 

In the current study, the effect estimates for the traffic-related components Cu and Fe 631 

remained after adjustment for PM2.5 mass but were reduced substantially after adjustment 632 

for NO2. The modestly wider confidence intervals for models with PM2.5 mass compared to 633 

the single pollutant models suggest these models provide interpretable results. Confidence 634 
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intervals in two-pollutant models with NO2 widened somewhat more, due to the high 635 

correlations of Cu and Fe with NO2 in our study. Therefore, the substantial attenuation in 636 

effect estimates for Cu and Fe should be interpreted with caution, because effects of NO2 637 

versus those from Cu or Fe cannot be separated well. The high correlations of Cu and Fe with 638 

NO2 in our study are consistent with correlations observed in the measurements (Tsai et al., 639 

2015), suggesting the high correlations were not artificially introduced by the modeling 640 

methodology. Previous studies found mixed results regarding associations of mortality with 641 

Cu and Fe. Using LUR models developed in ESCAPE, the Rome longitudinal study found 642 

associations of mortality with Cu and Fe in PM2.5 as well as tracers of tailpipe (i.e., PM2.5 643 

absorbance) (Badaloni et al., 2017), but in the Badaloni study no adjustment for NO2 was 644 

made. Positive associations were observed in the California Teachers Study between Fe and 645 

IHD mortality, but not with natural-cause, cardiopulmonary or pulmonary mortality (Ostro et 646 

al., 2011). Although the Ostro study did not adjust for NO2 or PM2.5 mass, adjustment for 647 

organic carbon did substantially reduced HRs. Analyses of ACS CPS-II showed that traffic-648 

related exposure was less strongly associated with excess mortality compared to coal 649 

combustion-related exposure (Thurston et al., 2013). However the ACS CPS-II study might 650 

have underestimated the effects of traffic-related air pollution because it investigated 651 

between-city variation, which represents only a small part of the expected overall variation 652 

in traffic-related air pollution. 653 

Although Zn was a priori selected in ESCAPE to represent non-tailpipe traffic emissions, our 654 

Europe-wide models showed that a large fraction of the variation in the Zn measurements 655 

was explained by predictors representing industrial Zn emission (Chen et al., in revision), 656 

consistent with Zn being also a tracer for particles from industrial sources. This is consistent 657 

with source apportionment analyses in ACS CPS-II, where Zn was considered as a source 658 

identifier for metals industry (Thurston et al., 2016). The moderate correlations between Zn 659 

and NO2, and the less substantial attenuation of effect estimates for Zn and natural mortality 660 

after adjustment for NO2 compared to Cu and Fe, also suggest that Zn was not only related to 661 

traffic emission. The Rome longitudinal study found positive associations between PM2.5 Zn 662 

and mortality from natural causes, cardiovascular diseases and IHD, using LUR models 663 

developed in ESCAPE (Badaloni et al., 2017). The ACS CPS-II also found some evidence of 664 

positive associations between Zn and mortality (Thurston et al., 2013). In the California 665 

Teachers Study, positive associations between Zn and IHD mortality were reported, but not 666 

with natural-cause, cardiopulmonary or pulmonary mortality (Ostro et al., 2011).  667 

K was selected to represent biomass burning emission in ESCAPE (Tsai et al., 2015). While our 668 

new model included a plausible background predictor for biomass combustion (satellite-669 

model organic matter), the model may have limited ability to capture within-area variability 670 

of biomass combustion emission because of the lack of reliable fine-scale predictor variables 671 

(Chen et al., in revision). Our study found elevated HRs for K exposure associated with 672 

mortality from natural-cause, cardiovascular diseases and lung cancer. HRs decreased to close 673 

to unity after adjustment for PM2.5 mass. K was reported to be associated with coronary 674 
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events in ESCAPE (Wolf et al., 2015). K in ESCAPE was rather related to traffic (for example 675 

from resuspension of road dust) than to biomass burning. The California Teachers Study found 676 

positive associations between IHD mortality and K (Ostro et al., 2011), whereas ACS CPS-II 677 

consistently observed null association between K and mortality (Thurston et al., 2013). 678 

Si was selected to represent crustal material, which is abundant in coarse particles. There was 679 

little evidence for an association between long-term coarse PM exposure and mortality (Adar 680 

et al., 2014; Hoek et al., 2013). The 2019 Integrated Science Assessment (ISA) rated the 681 

association between PMcoarse exposure and natural-cause mortality as “suggestive” (EPA, 682 

2019). Our study did not find consistent results for PM2.5 Si. The ACS CPS-II found that Si was 683 

consistently not associated with mortality across all models (Thurston et al., 2013). A negative 684 

and marginal association was observed for CVD events with Si in WHI-OS (Vedal et al., 2013). 685 

In contrast, analyses in the California Teachers Study showed positive associations of IHD 686 

mortality with Si (Ostro et al., 2011).  687 

Effect estimates using SLR- and RF-modeled exposures 688 

For most components, we observed generally consistent elevated mortality risks for SLR- and 689 

RF-modeled exposures in single pollutant models. However, less consistent associations for 690 

exposures by RF than SLR were found in two-pollutant models especially after adjusting for 691 

NO2. We do not have a clear explanation for these differences. There is no clear pattern of 692 

differences related to the spatial distribution of the components. We found differences both 693 

for components with a strong local contribution such as Cu and components with a 694 

predominantly large-scale variation such as S. The less consistent association for RF-modeled 695 

exposure in two-pollutant models is not due to different correlation of components with 696 

PM2.5 mass or NO2, which were similar for RF- and SLR-modeled exposures. The two sets of 697 

models had similar performance in explaining within-area variability in internal cross-698 

validations (Chen et al., in revision), which is the exposure contrast primarily exploited in the 699 

current analysis. The comparison of performance of the two algorithms is limited as we do 700 

not have external validation measurements. We therefore had no prior to which models had 701 

lower biases. We observed that the predicted variability of exposure was less for RF, 702 

explaining the wider confidence intervals in the epidemiological analyses using RF-modeled 703 

exposures. It is possible that the power to detect weak associations in two-pollutant models 704 

was less for RF models. We note that RF models are more difficult to interpret in terms of 705 

how predictor variables act in the models, so a full analysis of the difference of specific 706 

predictors in the two algorithms is not possible. 707 

Strengths and limitations 708 

One important strength is the highly standardized dataset used in this study, which was 709 

pooled from eight European cohorts with detailed individual and area-level covariate 710 

information, including smoking and BMI, which involved harmonizing variables between 711 

cohorts. The pooling of data allowed for more statistical power in our current analyses 712 

compared to the previous ESCAPE analyses. Another strength is the improvement in exposure 713 
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assessment compared to ESCAPE. Analyses in ESCAPE may have had limited ability to detect 714 

component-specific mortality associations for Ni and V because of the lack of specific 715 

predictors in the exposure models for these components (de Hoogh et al., 2013). The Europe-716 

wide PM2.5 composition models were able to make use of specific predictors representing 717 

pollution sources such as industrial sources, which explained a large proportion of the 718 

variation in measurements of specific components such as Zn (Chen et al., in revision). The 719 

Europe-wide models were developed based on a large number of measurement sites 720 

combined from individual ESCAPE study areas. A previous study has suggested that 721 

underestimation of the effect estimates was less serious when a large number of 722 

measurement sites was used for LUR modeling (Basagana et al., 2013). 723 

One main limitation of our study is that the exposure models were developed based on 724 

measurements in 2008–2011 while most included cohorts started in the mid-1990s. In the 725 

current study, we were not able to apply back-extrapolated exposure for PM2.5 components 726 

because we had insufficient information on concentration of PM2.5 components in Europe 727 

over time. Several studies in Europe have reported that the spatial contrast of NO2 remained 728 

stable for periods up to 10 years (Cesaroni et al., 2012; Eeftens et al., 2011; Gulliver et al., 729 

2013), suggesting that spatial contrast for traffic-related components such as Cu and Fe may 730 

be stable over time. For Cu and Fe contrasts may actually be more stable, as non-tailpipe 731 

emissions have not been regulated, as opposed to tail-pipe emissions. We cannot rule out the 732 

possibility that spatial contrast for components from other sources may have been less stable. 733 

For example the magnitude of our sulfur-related health estimates might be overestimated 734 

because of decreased SO2 emission over the years, which possibly resulted in a smaller 735 

contrast in sulfate exposure. The spatial pattern of major sources has likely not changed in a 736 

major way. Another limitation is that we did not consider residential mobility during follow-737 

up in the current study. This may have resulted in measurement error, likely resulting in bias 738 

towards the null. Lastly, the exposure maps for RF-modeled K, Ni and V showed strong 739 

boundary effects which might affect the exposure estimates for some participants in the E3N 740 

cohort (Chen et al., in revision). However, we expected limited impact on the health effect 741 

estimation as only few people live at the borders and the correlations between SLR- and RF-742 

modeled estimates did not stand out for these three elements, nor the E3N cohort. 743 

 744 

5. Conclusions 745 

Long-term exposures to especially vanadium in PM2.5 was associated with increased mortality 746 

risk, with associations observed for both RF- and SLR-modeled exposures. For the other 747 

components, associations were generally weaker when exposure was assessed with RF 748 

compared to SLR in two-pollutant models.749 
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Table 1. Population characteristics in the most adjusted model (model 3) 

Sub-cohort 
Population 

size1 

N persons in 
main model 3 

(%) 

Average 
years of 
follow-

up 

Age at 
baseline 
(Mean ± 

SD) 

Percen
t 

female 

Percent 
current 
smokers 

Years of 
smoking2 
(Mean ± 

SD) 

No. of 
cigarettes/day2 

(Mean ± SD) 

Percent 
overweight 

or obese 
(BMI≥25 
kg/m2) 

Percent 
married 
or living 

with 
partner 

Percent 
employe

d 

Neighborhoo
d income, 

*1000 euro 
(Mean ± SD) 

Pooled cohort 381,036 323,782 (85.0) 19.5 48.7 ± 13.4 66 24 25.4 ± 13.1 15.2 ± 8.9 43 72 70 20.1 ± 5.8 

CEANS-SDPP 7,835 7,716 (98.5) 15.9 47.1 ± 4.9 61 26 27.9 ± 8.6 13.5 ± 7.4 52 84 91 24.3 ± 4.2 

CEANS-SIXTY 4,180 3,965 (94.9) 15.5 60.0 ± 0.0 52 21 36.3 ± 9.9 13.4 ± 7.6 64 74 68 24.7 ± 6.9 

CEANS-SALT 6,724 6,174 (91.8) 10.4 57.8 ± 10.6 55 21 37.9 ± 9.3 12.7 ± 8.0 40 68 64 25.3 ± 6.6 

CEANS-SNACK 3,248 2,830 (87.1) 7.4 72.9 ± 10.4 62 14 43.3 ± 13.6 11.7 ± 8.2 53 46 23 28.7 ± 2.2 

DCH 56,308 52,779 (93.7) 18.2 56.7 ± 4.4 53 36 36.3 ± 7.7 16.5 ± 9.0 56 71 78 20.1 ± 3.4 

DNC-1993 19,664 17,017 (86.5) 18.7 56.2 ± 8.4 100 37 31.6 ± 9.9 13.9 ± 8.2 28 68 70 19.2 ± 2.6 

DNC-1999 8,769 8,117 (92.6) 14.4 47.9 ± 4.2 100 29 27.1 ± 7.1 13.3 ± 7.3 30 76 95 19.0 ± 2.4 

EPIC-NL Morgen 20,711 18,292 (88.3) 16.8 42.9 ± 11.3 55 35 24.8 ± 10.6 15.7 ± 8.6 49 65 69 12.2 ± 1.6 

EPIC-NL Prospect 16,194 14,570 (90.0) 16.4 57.7 ± 6.1 100 23 36.8 ± 7.6 13.7 ± 8.7 55 77 51 13.1 ± 1.4 

HNR 4,809 4,733 (98.4) 12.0 59.7 ± 7.8 50 24 34.5 ± 9.4 18.6 ± 12.0 74 75 40 25.2 ± 8.2 

E3N 53,521 38,537 (72.0) 16.8 53.0 ± 6.8 100 13 28.6 ± 7.6 11.3 ± 9.2 21 83 68 11.2 ± 3.0 

KORA-S3 4,566 2,572 (56.3) 15.6 49.4 ± 13.9 51 20 25.2 ± 12.1 16.5 ± 9.5 67 80 55 36.7 ± 4.4 

KORA-S4 4,257 2,281 (53.6) 12.9 49.3 ± 13.8 51 23 24.3 ± 11.6 15.7 ± 9.5 69 79 59 38.0 ± 7.3 

VHM&PP 170,250 144,199 (84.7) 23.1 42.1 ± 15.0 56 20 13.4 ± 8.3 15.6 ± 8.9 42 69 70 22.9 ± 1.7 
1 Population size is the number of subjects for which information was transferred to Utrecht University for construction of the pooled cohort 
2 For current smokers 
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Table 2. Spearman correlation coefficients between component exposure at participant 
addresses estimated from Supervised Linear Regression and Random Forest models 
(N=323,782) 

Sub-cohort PM2.5 Cu PM2.5 Fe PM2.5 K PM2.5 Ni PM2.5 S PM2.5 Si PM2.5 V PM2.5 Zn 

Average1 0.81 0.84 0.22 0.33 0.59 0.56 0.27 0.60 

CEANS-SDPP 0.27 0.72 0.16 0.24 0.48 -0.01 0.16 0.27 

CEANS-SIXTY 0.86 0.89 -0.09 0.44 0.39 0.76 -0.07 0.45 

CEANS-SALT 0.88 0.91 -0.09 0.47 0.38 0.81 -0.11 0.44 

CEANS-SNACK 0.86 0.90 0.49 0.47 0.79 0.70 0.39 0.53 

DCH 0.94 0.89 -0.37 0.69 0.78 0.53 0.58 0.61 

DNC-1993 0.80 0.79 0.31 0.45 0.72 0.43 0.35 0.63 

DNC-1999 0.77 0.78 0.35 0.43 0.70 0.41 0.34 0.63 

EPIC-NL-Morgen 0.92 0.93 0.82 0.89 0.20 0.59 0.7 0.52 

EPIC-NL-Prospect 0.94 0.94 0.11 0.09 0.58 0.82 -0.22 0.71 

HNR 0.81 0.70 -0.33 0.53 0.56 0.72 0.53 0.79 

E3N 0.90 0.89 0.62 0.51 0.67 0.55 0.72 0.83 

KORA-S3 0.71 0.84 0.23 -0.17 0.62 0.79 -0.03 0.55 

KORA-S4 0.77 0.85 -0.03 0.10 0.59 0.85 0.22 0.67 

VHM&PP 0.88 0.74 0.89 -0.51 0.79 -0.16 0.22 0.74 

Pooled cohort 0.91 0.81 0.79 0.73 0.91 0.34 0.78 0.59 
1Average of cohort-specific correlation coefficients. Cohort-specific correlations are shown because 
the analyses mostly exploit within-cohort exposure contrasts (i.e. stratified by sub-cohort id).
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Table 3. Associations of PM2.5 components with natural mortality in single pollutant and two-pollutant models 

Exposure Exposure model Single pollutant HR Two-pollutant model adjusting for PM2.5 Two-pollutant model adjusting for NO2 

PM2.5 Cu 
SLR 1.120 (1.094, 1.147) 1.043 (1.011, 1.076) 1.023 (0.983, 1.065) 

RF 1.154 (1.111, 1.198) 1.035 (0.989, 1.083) 0.943 (0.887, 1.002) 

PM2.5 Fe 
SLR 1.139 (1.110, 1.169) 1.065 (1.031, 1.100) 1.024 (0.974, 1.076) 

RF 1.132 (1.090, 1.176) 1.055 (1.013, 1.099) 0.921 (0.869, 0.976) 

PM2.5 K 
SLR 1.049 (1.035, 1.064) 0.998 (0.981, 1.015) 1.027 (1.012, 1.041) 

RF 1.056 (1.042, 1.070) 1.021 (1.006, 1.037) 1.031 (1.017, 1.046) 

PM2.5 Ni 
SLR 1.084 (1.063, 1.106) 1.043 (1.020, 1.066) 1.030 (1.006, 1.055) 

RF 1.011 (0.971, 1.053) 0.993 (0.953, 1.034) 0.949 (0.909, 0.990) 

PM2.5 S 
SLR 1.142 (1.113, 1.173) 1.049 (1.009, 1.090) 1.074 (1.039, 1.109) 

RF 1.127 (1.079, 1.177) 0.999 (0.951, 1.051) 1.013 (0.964, 1.064) 

PM2.5 Si 
SLR 1.268 (1.205, 1.336) 1.151 (1.087, 1.217) 1.071 (0.995, 1.152) 

RF 0.967 (0.921, 1.014) 0.969 (0.924, 1.017) 0.906 (0.863, 0.952) 

PM2.5 V 
SLR 1.061 (1.044, 1.079) 1.033 (1.015, 1.052) 1.026 (1.007, 1.045) 

RF 1.092 (1.050, 1.135) 1.056 (1.015, 1.099) 1.026 (0.985, 1.069) 

PM2.5 Zn 
SLR 1.051 (1.039, 1.064) 1.015 (0.999, 1.031) 1.021 (1.006, 1.036) 

RF 1.062 (1.036, 1.089) 0.992 (0.964, 1.021) 1.002 (0.974, 1.030) 

N=323,782; HR (95% confidence interval) presented for the following increments: PM2.5 Cu – 5 ng/m3, PM2.5 Fe – 100 ng/m3, PM2.5 K – 50 ng/m3, PM2.5 Ni – 1 ng/m3, PM2.5 S 
– 200 ng/m3, PM2.5 Si – 100 ng/m3, PM2.5 V – 2 ng/m3, PM2.5 Zn – 10 ng/m3; main model adjusted for sub-cohort id, age, sex, year of enrollment, smoking (status, duration, 
intensity, intensity2), BMI categories, marital status, employment status and 2001 neighborhood-level mean income 
HR = Hazard Ratio, SLR = Supervised Linear Regression model, RF = Random Forest model  
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Figure 1. Distribution of component exposure at participant addresses estimated from Supervised 
Linear Regression and Random Forest models 
The boundary of the box closest to zero indicates P25; furthest from zero – P75; bold vertical line 
inside the box – P50; whiskers indicate P5 and P95.  
Sub-cohorts are shown from north to south 
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