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Abstract 

Future radiation oncology encompasses a broad spectrum of topics ranging from modern clinical trial design to 
treatment and imaging technology and biology. In more detail, the application of hybrid MRI devices in modern 
image‑guided radiotherapy; the emerging field of radiomics; the role of molecular imaging using positron emission 
tomography and its integration into clinical routine; radiation biology with its future perspectives, the role of molecu‑
lar signatures in prognostic modelling; as well as special treatment modalities such as brachytherapy or proton beam 
therapy are areas of rapid development. More clinically, radiation oncology will certainly find an important role in the 
management of oligometastasis. The treatment spectrum will also be widened by the rational integration of modern 
systemic targeted or immune therapies into multimodal treatment strategies. All these developments will require a 
concise rethinking of clinical trial design. This article reviews the current status and the potential developments in the 
field of radiation oncology as discussed by a panel of European and international experts sharing their vision during 
the “X‑Change” symposium, held in July 2019 in Munich (Germany).
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Introduction
The symposium “XChange: Status and future of mod-
ern radiation oncology—from technology to biology” 
organized by the Department of Radiation Oncology, 
LMU Munich was held on July 26–27, 2019 in Munich, 
Germany. More than 150 radiation oncologists, medi-
cal physicists and RTTs attended this meeting. This 
review aims to summarize the important highlights of 
the meeting and to share the vision of the future of the 
field of radiation oncology. The manuscript contains the 
summaries of the individual contributions given by top 
scientists in the field of radiotherapy who report their 
personal views. Parts of the symposium were designed as 

competitive debate, where one panelist was assigned to a 
topic that was opposed by another panelist.

Vision 2030
#Radiotherapy saves lives—Maximilian Niyazi
ESTRO has made a great job in drafting their new ESTRO 
vision 2030: “Radiation Oncology. Optimal Health for 
All, Together.” [1]. This is not just an arbitrary slogan—
a very detailed description is attached, which defines the 
role of ESTRO in research, disseminating research, pro-
moting the development of guidelines, advancing educa-
tion, leading the international recognition of radiation 
oncology and much more. With this vision in mind, one 
could foresee a bright future—however, it makes sense to 
look back and define the true value of radiation oncology. 
What is the evidence that gives us certainty about the 
present and future role of radiation oncology? One such 
paper was published by Hanna et  al. [2]—it reports on 

Open Access

*Correspondence:  stefanie.corradini@med.uni‑muenchen.de
1 Department of Radiation Oncology, University Hospital, LMU Munich, 
Marchioninistr. 15, 81377 Munich, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8709-7252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-021-01758-w&domain=pdf


Page 2 of 17Corradini et al. Radiat Oncol           (2021) 16:27 

the population benefit of evidence-based radiotherapy, 
measuring 5-year local control (LC) and overall survival 
(OS) rates. From a methodological point of view, radio-
therapy alone was compared to either no treatment or 
surgery alone; the added benefit of chemotherapy was 
assessed, as well as the comparison of chemoradiother-
apy (CRT) over radiotherapy alone—all these analyses as 
meta-analytical approach with accompanying sensitivity 
analysis from a large country database. The results were 
overwhelmingly positive: 48% of all cancer patients have 
RT indications (34% curative), and 5y-LC benefit was 
10.4% for all patients, while OS benefit was 2.4%. Overall, 
CRT adds 0.6% for LC and 0.3% for OS; the highest ben-
efit was seen in head & neck cancer (H&N) with 32% LC 
and 16% OS benefit; and cervical cancer with 33% LC and 
18% OS improvement [2].

However, what global impact will radiotherapy have 
in oncology? Lievens and colleagues published that one 
million lives could be saved by 2035. As cancer is com-
posed by about 200 different cancer entities and 9 million 
cancer deaths have been observed in 2016, the projected 
number would be 14.5 million cancer deaths in 2025. 
Prevention could reduce this number by 40–50%, but 
much remains to be done in low-to-intermediate income 
countries [3]. However, saving these 1 million lives would 
require a global investment of 184 billion USD [3]. To 
confirm these epidemiological statistics: There are fan-
tastic achievements of radiation oncology; curative and 
highly precise treatments of H&N, excessive improve-
ments in stage III lung cancer (in combination with 
immunotherapy), SBRT as a new paradigm in oligometa-
static disease—and these are just few examples, there is 
much more to come. Therefore, radiotherapy does save 
lives—but efforts must be made to provide a service to 
all who need it. Specifically, the access to radiotherapy is 
a mandatory precondition to save lives, and yet, for many 
cancer patients this is frequently a limiting factor in 
many low-to-intermediate income countries; therefore, 
political decision-making has to focus on technology and 
knowledge transfer.

Present and future of MR linac—Debate
Critical appraisal “In 2030 MR linac will be limited to highly 
specialized centers”—Dirk Verellen
It is dangerous to make predictions about the future, 
and many great minds have fallen in that trap (google 
“predictions that were wrong” or look at https ://list2 
5.com/25-famou s-predi ction s-that-were-prove n-to-be-
horri bly-wrong /). The claim that MR-linacs will be lim-
ited to highly specialized centers could also be one of 
these mistakes. However, there are some valid arguments 
to at least claim that MR-linacs will not be the answer for 
mainstream radiation therapy practice. When reviewing 

the literature in the field of radiotherapy, one can observe 
a constant evolution of improvements in treatment deliv-
ery, with waves and hypes that come and go, some of 
which stay and become mainstream approaches. Some, 
even promising developments, unfortunately fade out 
to oblivion (remember the MM50 racetrack microtron 
[4] and recently the VERO-system for real-time tumor 
tracking and dynamic wave arc treatment [5]). Without 
being exclusive, one can observe a continuous improve-
ment from kV-radiation, to 60Co-beams, MV-linacs, the 
introduction of CT and 3D dose calculation, improved 
dose calculation algorithms, conformal RT, MLC, IMRT, 
VMAT, IGRT, SBRT, etc., MR-linacs and proton therapy 
being the new kids on the block. As mentioned in the 
previous chapter, radiation therapy is a major and invalu-
able discipline in the fight against cancer, and improve-
ments can only be encouraged. However, in face of 
today’s economic health care challenges and budget cuts, 
priorities have to be made and one has to ask the ques-
tion: Will we invest in expensive tools for a small sub-
group of patients or invest in tools that are mainstream 
accessible and improve RT quality for the majority of 
our patients? This and the next paragraph are the result 
of a point-counterpoint debate on the implementation 
of MR-linac in routine clinically practice, which is a nice 
example of the previous considerations.

Two main advantages of MR-linacs are often used to 
support its investment: the superior image quality com-
pared to conventional kV-CBCT linacs and the poten-
tial for real-time adapted radiotherapy. Both arguments 
can be challenged. The combination of surface scan-
ning (already a mainstream application in many centers 
[6–9]), daily CBCT and daily (accumulated) transmission 
dosimetry [10, 11] already allows for a truly adapted radi-
otherapy approach today. Surface scanning and gated/
tracking techniques open the door to motion manage-
ment for those limited cases that might benefit from 
these approaches (eg prostate SBRT, NSCLC and oligo-
metastatic disease). New developments in machine and 
deep learning (ML/DL) [12] will soon enable markerless 
tracking and make complicated hybrid developments 
unnecessary. The argument on superior image quality is 
subject of an entirely different debate. Should we invest 
in integrating all the required imaging modalities into 
the treatment delivery machine, or is it more appropri-
ate to apply state-of-the-art medical imaging using high-
end imaging devices, and to merge this information at 
the treatment level of radiotherapy? In this way, a perfect 
synergy is created for individualized treatment, combin-
ing state-of-the-art images (both functional and ana-
tomical) with robust tools for treatment monitoring (i.e. 
kV-CBCT and surface scanning). Again, current develop-
ments in ML and DL open the door to real-time image 
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registration, automated segmentation and treatment 
planning, and biological conformal radiation therapy 
without the need to generate this information at the time 
of treatment. Low dose kV-CBCT with the aid of ML/DL 
provide an image quality that might even challenge MR-
imaging for most IGRT-purposes [13]. MR-linacs can 
only provide limited information compared to the high-
end medical imaging devices that are already in place 
in most oncology centers. Moreover, the technological 
challenges of combining MR- and linac-technology com-
promises the versatility of the treatment (e.g. large fields, 
non-coplanar treatment delivery and real-time surface 
scanning).

Finally, let us return to the argument of the cost to 
society and departments. The true cost of something is 
measured by what one has to give up to acquire it. Can 
we still offer individualized and truly adaptive radio-
therapy in an environment where cuts in healthcare and 
an increased need for patient safety push towards more 
efficiency through standardization and automation? In 
other words, do we need state-of-the-art mainstream 
equipment for many patients or dedicated equipment for 
a few? Do we need standardized treatment or individu-
alized treatment tailored to the patient? These questions 
are not the same and certainly not contradictory. It can 
be argued that standardization and automation of care 
pathways is the optimal way to achieve safety and qual-
ity within the complex workflow of radiotherapy, whilst 
at the same time offering a platform that allows person-
alized radiation therapy (including high precision and 
adaptive radiotherapy). For a patient the most impor-
tant thing is not the availability of some high technol-
ogy device, rather it is the ability of a team of physicians, 
physicists, dosimetrists and therapists to use the available 
technology with skill. It‘s the team, not the beam that 
makes a difference [14].

“In 2030 MR‑Linac will replace CBCT”—Vincenzo Valentini
MR-Linac will certainly replace CBCT! But I have to dis-
close my bias: I love innovation, challenges and sustain-
ability… and I have been using an MR-Linac since 2017.

The main advantages of MR-Linac are based on the 
way it solves image-guided radiotherapy (IGRT) and the 
possibilities that this technology opens up for radiation 
oncology practice [15–18]. There are three main evident 
advantages of on board MR-Linac compared to cone 
beam computed tomography (CBCT) IGRT: better imag-
ing for (1) daily positioning of the patient; (2) monitor-
ing during treatment delivery; and (3) online adapting 
the treatment plan to the daily anatomy. Regarding point 
1, MRI has better soft tissue contrast and no additional 
radiation exposure compared to CBCT, which allows a 
direct visualization of the target. An example is given in 

Fig. 1. With respect to the second aspect, depending on 
clinical needs, it is possible to monitor the moving target 
volume directly or indirectly [19], or the organs at risk 
online and in real time—throughout the entire treatment 
fraction [20]. In order to be able to deal with all move-
ments in daily treatment, an analysis to identify move-
ment variations such as baseline drifts and shifts has 
identified a threshold for significant geometrical uncer-
tainties that allows MRI-based real-time monitoring or 
an active gating approach for all lesions affected by res-
piratory movements above this threshold [21].

As far as online plan adaptation by MR-Linac is con-
cerned, this approach is currently superior to a standard 
IGRT approach based on many advantages: imaging prior 
to the start of treatment and on-table re-contouring and 
re-planning allows for a correction of interfraction day-
to-day variations by high resolution images (e.g. prostate, 
pancreatic cancer). These advantages close the gap of the 
many uncertainties of offline adaptation [22].

Moreover, MR-Linac supports further advantages of 
online imaging: outcome prediction by radiomics, tox-
icity monitoring by soft tissues imaging and dose paint-
ing by diffusion-weighted image sequences [23, 24]. 
With regard to the sustainability of this technology, as 
observed in previous implementations of new technolo-
gies in medicine, the cost of MR-Linac will decrease over 
time and the ability to identify suitable patients will sup-
port and accelerate its implementation.

Thanks to the described technological advances, MR-
Linac will play an innovative role in the always more con-
temporary frame of a fully personalized care, adapting 
radiotherapy treatments to the single patient needs and 
successfully moving from standard irradiation techniques 
to a tailored treatment approach.

Rather than scattering patients towards standard 
high volume, lower cost but poorly personalized IGRT 
approaches, MR-Linac will pave the way to the introduc-
tion of a new concept of treatment personalization and 
comprehensive oncological care aiming to summarize 
high quality radiotherapy delivery, advanced imaging 
information (multimodal, functional imaging and radi-
omics) and effective motion management.

So,will MR-Linac replace CBCT? For sure, it will. But 
not for all tumours, not for all patients, and not for all 
treatments.

You can only treat what you see
Buzzword radiomics: the bridge between medical imaging 
and personalized medicine—Seán Walsh
Radiomics is defined as high-throughput machine 
learned quantitative image features from standard-
of-care medical imaging that enables actionable insight 
to be extracted and applied within clinical-decision 
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support systems to improve diagnostic, prognostic, and 
predictive accuracy. In oncology, this refers to the com-
prehensive quantification of tumor phenotypes and is a 
promising field of scientific investigation with a large 
amount of activity in recent times [25].

Radiomics can offer a potential partial solution to 
the grand challenges of oncology [26, 27], as one of the 
pain points is the difficulty in proving the effectiveness 
of treatments. Currently, classical clinical endpoints are 
not sensitive enough, which results in many compounds 
ultimately failing in phase III studies, because they have a 
weak correlation to phase III endpoints [28]; in addition, 
they provide only a crude measurement of the target, 
and require large patient populations, and long follow-
up times. In this context, radiomics has the capability to 
become a next generation clinical endpoint, as it is a non-
invasive way of having an instantaneously 3D (or 4D) 
local and global quantification of the tumor response.

Imaging is ubiquitous in medicine [29] as it offers non-
invasive, 3D and easy to repeat measurements of the 

patient and disease. This is vital in the context of oncol-
ogy, as most cancers are spatially and temporally het-
erogeneous [30]. The three primary options in imaging 
to tackle these issues are (1) new hardware: expensive, 
needs staff training, and maintenance, (2) new tracer: 
expensive, challenging to logistics, and single use, (3) new 
software: affordable, automated, and with multiple uses. 
These properties are driving the economic dynamics and 
reality of imaging development [31].

Therefore, the central hypothesis is that radiomics 
will disrupt current interpretative-subjective imaging 
description by providing definitive-objective imaging 
characterization [32]. This is inevitable when machines 
are compared to humans [33–36] for specific tasks. The 
workflow [37] begins with the acquisition of images/data 
(including QA and curation if necessary), the identifica-
tion of regions of interest (automatically or manually), 
the pre-processing, extraction of features (handcrafted 
or deep), and post-processing of features, and machine 
learning (training of application) is then performed, 

Fig. 1 Exemplar MR‑Linac based and Cone Beam CT based imaging of prostate cancer
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culminating in a link to clinically actionable insight (diag-
nosis [38], prognosis [39], theragnosis [40], or follow-up 
[41]).

A major criticism of AI in general is the lack of (per-
ceived) transparency, typically referred to as a ‘black box’ 
objection [42–45]. One aspect of this is purely AI math-
ematics [46], the other aspect is linking this elucidation 
to our current understanding in terms of clinical cancer 
biology [47]. This is now a rich field of research [48] and 
is beginning to produce tangible and significant results 
(genomics [49], histology [50], molecular biology [51], 
etc.). This research will help to define the biological basis 
of AI/radiomics [52] and facilitate successful crossing of 
the translational gaps [53] towards investigational and 
ultimately routine clinical practice.

Currently, no study has demonstrated clinical level 
1evidence (i.e. prospective study [54]) for any radiomics 
signature. Until this hurdle is crossed, the implication for 
the field is that it is still in the experimental retrospec-
tive research stage of development. However, there are 
important methodological approaches (e.g., the TRIPOD 
statement [55] and the Radiomics Quality Score [25]), 
which are assisting in the selection of candidate radiom-
ics signatures for prospective validation.

Taken together, radiomics is an emerging field that 
translates medical images into quantitative data to pro-
vide biological information and enables clinically action-
able insights (diagnosis, prognosis, theragnosis, or 
follow-up).

Quo vadis PET‑guided radiotherapy?—Anca‑Ligia Grosu
The first rationale for using positron emission tomog-
raphy (PET) for radiation treatment planning is its high 
sensitivity and specificity for tumor tissue [56–63]. This 
was observed in histological studies of many malignant 
diseases comparing PET to traditional radiological exam-
inations such as CT and MRI. Considering that target 
volume delineation is a `condition sine qua non´ for high-
precision radiotherapy, the introduction of FDG-PET in 
lung cancer [64], amino acids –PET in brain tumors [65, 
66] or PSMA-PET/CT in prostate cancer [67, 68] signifi-
cantly improved the accuracy of treatment delivery and 
consequently the clinical outcome [64, 65, 68, 69].

The second rationale for the integration of PET into 
radiotherapy planning is its ability to visualize molecular-
biological pathways, which can subsequently be targeted 
by irradiation [70]. The imaging of tumor hypoxia, pro-
liferation, angiogenesis, apoptosis etc. enables to recog-
nize the enormous heterogenesis of malignant tissue, 
and accordingly to define subvolumes in the tumor, the 
so-called biological target volume, which needs to be tar-
geted using different irradiation doses or fractionations. 
This approach, which is closely related to the technique of 

intensity modulated radiotherapy (IMRT) and IGRT gave 
rise to the concept of dose painting [70, 71]. For example, 
visualization of hypoxic subvolumes [72] and quantifica-
tion of tumor hypoxia under chemoradiotherapy [73–77] 
lead to the concept of individual hypoxia-PET-based dose 
escalation in patients with advanced H&N cancer treated 
with primary definitive chemoradiotherapy. Moreover, 
the visualization of tumor receptors (for example stem 
cells receptors in malignant gliomas, [78]), gene expres-
sion, proteins, immunological response [79] etc., will 
allow a personalized irradiation treatment based of the 
molecular characteristics of tumor and normal tissue.

Artificial intelligence (AI) will significantly improve 
the understanding and use of imaging for planning and 
monitoring radiation treatment. AI will help to correlate 
the physical properties of the images with the biological 
features of the tissue and the clinical outcome: Imag-
ing are not only pictures, they are data [32]. Radiomics 
features, extracted from the PSMA-PET data, for exam-
ple, allow the detection of the Gleason score in prostate 
cancer in  vivo [80]. New radiation treatment planning 
algorithms will take into account the biological prop-
erties of tumors and healthy tissue, as registered in the 
imaging. The probability of tumor control (TCP) can be 
balanced with the probability of side effects (normal tis-
sue complication probability, NTCP) to find the optimal, 
personalized dose and fractionation. New devices such 
as PET/MRI, MR/LINAC, PET/LINAC will show the 
morphology and function of the tissue during the treat-
ment and will allow to adjust the dose and fractionation 
on the fly. In summary, PET will play a significant role in 
radiation oncology in the future to achieve the essential 
goals of modern oncology: precision, personalization and 
individualization.

Radiation biology on the move
Advances in radiation biology—Claus Belka
Besides the pronounced technological advance in the 
area, future radiation-based treatment strategies will be 
strongly influenced by biological research. Several areas 
of progress can be delineated: Molecular genetics of can-
cer pathogenesis, cell death mechanisms, DNA damage 
detection and repair, immune biology, rationally designed 
biologically combined modalities, marker-based strati-
fication, radiation biology of altered fractionation i.e. 
FLASH and targeted interference with signaling path-
ways associated with side effects.

During the X-Change meeting 2019 Kirsten Lauber 
(Munich), Roland Rad (Munich), Amato Giaccia (Oxford) 
introduced and discussed recent developments in the 
aforementioned fields.

Understanding the basic mechanisms of specific cell 
death and the subsequent steps of immune presentation 
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will allow for a specific interference with immune sign-
aling and will ultimately boost the efficiency of radiation 
treatments. Multiple lines of evidence prove that radia-
tion exerts a complex pattern of cell death events each 
being associated with multiple and diverging immune 
reactions [81, 82]. For example, after irradiation of breast 
cancer cells a different pattern of cell death and immune 
cell recognition is evident depending on the underlying 
genetic pattern of breast cancer [83]. Astonishingly, the 
specific immune response may also be subject to second-
ary interferences. In this regard it could be shown that 
HSP90 inhibitors strongly increase immune priming of 
tumor cells after irradiation [84].

Currently, a multitude of different approaches of com-
bining “immune therapy” with irradiation is in preclini-
cal testing, in early clinical testing or has already entered 
early clinical routine. The most prominent approach is 
the targeted interference with negative immune regu-
lation by either CTLA-4 or—even more—PD1/PD-L1 
system.

In case of lung cancer adjuvant application of dur-
valumab shortly after radio-chemotherapy for locally 
advanced non-small cell cancer has been shown to 
increase survival [85, 86]—although the parallel applica-
tion of checkpoint inhibitors with concomitant radio-
chemotherapy is feasible the clinical value is not yet fully 
defined [87].

Closely interwoven with the immune system several 
other target structures may be approached in order to 
specifically increase radiation or drug mediated killing of 
tumor cells. Hypoxia and associated metabolic pathways 
[88–90] may be also of value as well as highly defined 
signaling cascades like the GAS6/AXL pathway [91]. 
Thus, searches for specific survival-signaling pathways 
and also cell death pathways may open new horizons for 
synthetic lethality approaches in combination with ioniz-
ing radiation.

In close proximity to biological approaches dealing 
with tumor hypoxia, a new more physics related technol-
ogy may help to overcome the adverse effects of hypoxia. 
FLASH-irradiation has been shown to more effectively 
target tumor cell when compared to non-malignant 
counterparts [92–94]. The underlying background is cur-
rently poorly understood—in case of lung irradiation the 
upregulation of fibrosis related genes and senescence 
induction is reduced. The effect of FLASH-irradiation 
seems to be critically related to the oxygen level being 
present [95]. In this regard a pure physical phenomenon 
directly translates into biological effects.

Finally, deciphering the molecular pathways leading to 
radiation induced toxicity will ultimately open new doors 
for molecular approaches heading for an increased thera-
peutic gain [96].

The need for better predictors and prognosticators is 
evident—even in 2020, most treatment concept lack a 
rational for adequate individualization of the underlying 
indication to treat, the respective combination partner 
and the radiation dose needed. Several—mostly omics-
based approaches are available for glioblastoma [97], 
head and neck cancer [98–100] prostate cancer [101] and 
even for the prediction of lymph-node metastasis in cer-
vical cancer [102]. Nevertheless, none of these have been 
validated for clinical decision making with the underlying 
problems nicely described in a recent commentary [103].

Finally, all approaches heading for a fundamental 
understanding of the genetic basis of tumor development 
are crucial for any of the aforementioned tasks [104]. 
Using pancreatic cancer as example, it has become clear 
that drivers like Ras in relation to gene dosage and evolu-
tionary pattern determine the ultimate phenotype of the 
malignancy [105]. Without these fundamental studies, 
any approaches specifically targeting a given disturbance 
would not have been possible [106, 107].

Prognostic modelling in radiation oncology—Kristian Unger
The selection of therapeutic treatments in oncology is 
based on diagnostic decisions that mostly rely on the 
pathology of the tumors, molecular markers and clinical 
performance scores. However, for many cancer entities, 
such as glioblastoma (GBM) or locally advanced head 
and neck squamous cell carcinoma (HNSCC) the result-
ing therapeutic strata still are heterogeneous with regard 
to clinical outcome in terms of survival and recurrence. 
For this reason, the search for molecular signatures that 
enable the definition of prognostic substrata and an indi-
vidual assignment to these is a substantial part of compu-
tational personalized medicine approaches. Personalized 
medicine aims to offer cancer patients the most individu-
alized diagnosis and treatment possible. Molecular pre-
diction rules are the prerequisite for this.

Computational prediction modelling uses two elements 
for the generation of prognostic signatures: omics data and 
clinical outcome data (see Fig.  2). The clinical outcome, 
which is technically time-to-event data, is mathematically 
described using the Cox proportional-hazard (Cox-PH) 
model. To create a molecular prognostic signature, omics 
features such as genes, miRNAs, proteins or metabolites 
are added to the basic Cox model as covariates to achieve 
a superior fitting of the data. The process of feature selec-
tion is carried out using machine learning, which is part of 
artificial intelligence and is used to find the best selection 
i.e. the signature of molecular features to be added to the 
cox model as covariates for a significantly improved model 
fit while being of low-complexity. The latter increases the 
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chance that the signature is transferable to other data sets 
and data from individual patients.

A large number of molecular prognostic signatures have 
been published in recent years, however, only a few made 
it into clinical practice, such as Oncotype DX or Mam-
maprint in breast cancer. Possible reasons for the low 
success rate here are small, non-representative discovery 
cohorts, flawed study designs and inappropriate choices of 
bioinformatics approaches. An important decision point is 
the selection of discovery and external validation cohorts, 
while there is a discussion ongoing whether multicentric or 
monocentric cohorts should be used and which combina-
tion increases the chance of finding generalizable molecu-
lar signatures. Another challenge with molecular signatures 
is the lack of suggestions on how new prognostic factors 
can be integrated into the framework of existing robust 
clinical markers or other existing molecular signatures 
from other molecular levels. For this reason, an important 
research topic in this field is the conception of multilevel 
prediction approaches that allow the simultaneous genera-
tion of signatures at several molecular levels, clinical mark-
ers and existing molecular signatures.

The bigger the better?—Debate
Brachytherapy and proton beam therapy, hand‑in‑hand 
for optimal care.—Bradley R. Pieters
Proton therapy (PT) was introduced as an alternative 
technique to conventional photon therapy (PhT) [108]. 

Both irradiation techniques are in fact external beam 
radiation techniques. The main advantage of PT is that 
due to beam characteristics, PT is better able to deposit 
the ionizing energy within the target volume and avoid 
healthy organs and normal structures nearby. The 
focused deposition of energy with PT is caused by the 
phenomenon that protons release their energy at the 
end of their travel track through tissue (Bragg-peak). 
Due to the limited facilities in PT centers and the high 
treatment costs, PT is still offered mainly for indica-
tions where it is expected to be beneficial compared to 
PhT. Such standard indications are, for example, skull 
base tumors or pediatric tumors [109]. For several of 
late indications, predictions effects can be used by 
comparing PhT plans to PT plans in the absence of ran-
domized studies to decide on the preferred treatment, 
the so-called model-based approach [110, 111].

The introduction of PT has not only an impact on the 
use of conventional PhT, but also on other radiation 
treatments such as brachytherapy (BT). With BT, radio-
active sources are placed in or near the target volume to 
deliver radioactive energy directly to the target volume 
without the need to pass through the body. Obvious 
similarities between PT and BT are the steep dose gra-
dient of dose distribution, which makes both modalities 
suitable for conformal radiation treatments and allows 
reducing low dose exposure.
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However, there are more differences between the two 
modalities than similarities (see Table  1). The major 
disadvantage of PT compared to BT is the existing 
uncertainty in dose distribution caused by patient posi-
tioning and variation in density of the planning CT [112]. 
Another disadvantage for PT is the costs involved in the 
treatment [113]. On the other hand, a main disadvantage 
of BT is that not all tumor localizations are accessible for 
implantation of the sources, either directly or via guiding 
applicators. BT is an invasive procedure in most cases, 
therefore, the traumatic injury caused by the implanta-
tion must also be taken into account. Target volume size 
is another aspect to consider in the comparison between 
PT and BT. A very large target volume, usually an elec-
tive area, cannot be treated by brachytherapy, while size 
is usually not a problem for PT. For example, it is impos-
sible to treat an entire pelvic area with brachytherapy, 
while this is not a problem for any kind of external beam 
therapy, including PT.

In-silico planning comparisons can provide some 
insight in differences between PT and BT. Georg et  al. 
compared BT plans to intensity modulated PT plans for 
cervix cancer treatment [114]. In this plan comparison it 
was found that it is possible to achieve comparable dose 
to the high-risk planning target volume (HR-PTV) with 
PT as with BT, although the dose to the gross tumor vol-
ume (GTV) was lower with PT. Another difference found 
in this comparison was the mean 60 Gy volume. This vol-
ume, which is related to the probability of late toxicity, 
was 1.5 times larger with PT compared to BT. A similar 
study from the same group was done for prostate cancer 
treatment [115]. Very limited data are available on the 
clinical comparison between BT and PT. Some compara-
tive clinical studies on uveal melanoma are published 
with a disparity in result [116–118].

Despite the lack of comparative studies between BT 
and PT, it is clear that for certain indications such as cer-
vical and prostate cancer, the addition of BT is expected 
to improve tumor control [119–125]. Although these 
studies were comparisons between PhT and BT, it is not 
expected that PT will result in better tumor control than 
PhT. The improved tumor control can only be explained 
by the characteristics of BT, which delivers very high 

doses within the implant [126]. The advantage of PT over 
PhT is in the reduction of toxicity, although also with PT 
toxicity is reported [127]. When addressing the benefits 
of BT and PT, it is merely a matter of exploring the added 
value of one treatment over the other. In certain indica-
tions where brachytherapy is not possible, PT may be 
useful because of the possibly lower likelihood of toxicity. 
On the other hand, if a dose-escalation is desired, BT is 
the most designated technique to achieve this.

Radiation Oncology and multimodal treatments
Oligometastasis and local ablation in the era of systemic, 
targeted and immunotherapies.—Matthias Guckenberger
After the first description of oligometastatic disease 
(OMD) as a distinct cancer stage between locally con-
fined and systemically metastasized disease by Hellman 
and Weichselbaum in 1995 [128], this concept is today 
supported by a growing number of high-quality trials. 
Three randomized trials reported an improvement in pro-
gression-free survival (PFS) [129] or overall survival (OS) 
[130, 131] by the addition of local metastases-directed 
therapy to standard-of-care systemic therapy. Palma 
et al. described an OS benefit of metastases-directed ste-
reotactic body radiotherapy (SBRT) in a tumor-agnostic 
trial [132]. Ost et al. compared metastasis-directed SBRT 
with surveillance in oligorecurrent prostate cancer and 
reported improved androgen deprivation therapy free 
survival [133]. In metastatic prostate cancer, local radio-
therapy of the prostate improved OS in the situation of 
low metastatic burden compared to androgen depriva-
tion therapy only [134]. Based on these positive studies, 
the concept of radical local treatment with curative intent 
in OMD has been rapidly implemented in the oncology 
community. Especially stereotactic radiotherapy is recog-
nized as favorable local treatment modality [135], which 
achieves high rates of local metastases control with usu-
ally low toxicity, is delivered in few treatment sessions, 
allows simultaneous treatment of several targets at dis-
tant sites, and can be well integrated into multimodality 
treatment concepts [136, 137].

Despite these advances, many challenges remain and 
require well-designed clinical trials and translational 
research activities:

Table 1 Differences between proton beam radiotherapy and brachytherapy

Proton beam therapy Brachytherapy

External beam radiotherapy Internal irradiation

Very small to large size PTVs Very small to intermediate size PTVs

Commonly homogeneous dose distribution Heterogeneous dose distribution

Almost all locations can be treated Limited in locations to treat

Beam specific margins to account for dose distribution uncertainties Limited or no PTV margins
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Limited progress has been made in understanding 
and defining OMD based on biology, i.e. in recognizing 
patients with truly limited metastatic capacity, based on 
OMD-specific biomarkers [138–142]: external or inde-
pendent validation has been either unsuccessful or is still 
lacking.

The current lack of biomarkers has made imaging the 
most relevant diagnostic modality for defining OMD 
[143]. However, limited numbers of metastases on imag-
ing may represent very different clinical scenarios, which 
are associated with different prognosis and may require 
different treatment strategies. This indicates the need for 
a comprehensive system for OMD characterization and 
classification [144].

After radical local treatment, the majority of the 
patients will ultimately develop distant disease progres-
sion [130, 134, 145, 146]. This indicates the need for more 
effective systemic therapies integrated into multimodality 
treatment concepts. Especially the combination of stere-
otactic radiotherapy with immune checkpoint inhibition 
appears promising due to the immune-enhancing effect 
of radiotherapy.

Timing and sequencing of staging, local and systemic 
treatment have become challenging in OMD due to the 
high variability in the clinical presentation of OMD. 
Additionally, the choices of local and systemic treat-
ment modalities are highly relevant due to their potential 
interactions.

It is obvious that different study designs are required 
to address all relevant questions described above: pro-
spective interventional trials with traditional and mod-
ern designs, such as basket or umbrella trials, to answer 
proof-of-principle questions, as well as registry trials to 
assess real-world data in a timely manner.

Local control versus distant control in lung cancer: adequate 
integration of radiotherapy—Suresh Senan
Major advances have been made in the systemic therapy 
of lung cancer, which in some cases, has led to a reassess-
ment of indications for radiotherapy, timing and also the 
preferred dose-fractionation schemes. These develop-
ments can be illustrated using the examples of the new 
paradigm in inoperable stage III NSCLC, and oligometa-
static lung cancer.

In patients with inoperable stage III NSCLC, the 
standard of care has now evolved to become concur-
rent chemoradiotherapy to a dose of 60  Gy, followed 
by administration of 12  months of immune checkpoint 
blockade using durvalumab, an anti PD-L1 antibody [85]. 
The PACIFIC trial reported a statistically significant and 
clinically meaningful improvement in both, overall sur-
vival and progression-free survivals versus placebo. In 
addition, improved intrathoracic disease control in the 

durvalumab arm provided evidence for the enhancement 
of radiation-induced local effects.

The clinical findings of PACIFIC were not entirely con-
sistent with findings from animal studies of optimal frac-
tionated radiotherapy with immune checkpoint blockade. 
Using 2 murine models and PD-1 blockade, which 
started 7 days after the end of radiotherapy administered 
with once-daily fractions of 2 Gy, it was shown that the 
delayed sequence of checkpoint inhibition was ineffec-
tive [147]. This animal model suggested that the exhaus-
tion and atrophy of tumor-reactive T-cell responses may 
occur rapidly after radiotherapy unless the PD-1/PD-L1 
axis is blocked. Ongoing studies in stage III NSCLC are 
exploring the efficacy of chemoradiotherapy concurrently 
with immune-checkpoint blockade, as well as sequencing 
multiple immune checkpoint blockade.

The progress made in metastatic NSCLC has been 
using both, systemic therapies and SABR. Two small 
trials in patients presenting with synchronous oligo-
metastatic NSCLC revealed survival improvements 
with the addition of locally ablative therapy [130, 145], 
and a larger trial is underway to validate these findings 
(NCT03137771). In patients with a controlled primary 
tumor, the SABR-COMET trial reported a statistically 
significant improvement in progression-free survivals 
with the addition of SABR to 5 or fewer metastases, ver-
sus only standard of care [132]. With an extended follow-
up to a median of 51  months, the impact of SABR on 
5-year overall survival OS was larger in magnitude (42.3% 
vs. 17.7%, P = 0.006) than in the initial analysis and 
durable over time [148]. The findings of this landmark 
study have stimulated further studies in oligometastatic 
disease, including the phase III trial SABR-COMET-3 
(NCT03862911) and SABR-COMET-10 (NCT03721341) 
trials.

Theoretical considerations on multimodal treatments 
in 2030—Wilfried Budach
Local treatments such as surgery and radiotherapy are 
the only treatment modalities that are able to cure can-
cers when the risk of cancers cells outside the treated 
tissue is low. A cure of cancer with systemic treatment 
alone is possible, if the respective drugs eliminate all 
tumor cells, which typically requires > 10 orders of mag-
nitude of tumor cell killing. For most solid cancers, both 
prerequisites are typically not met, suggesting that com-
bined modality treatments should lead to a better clinical 
outcome, as has been shown for several cancers, espe-
cially in locally advanced disease (see Fig. 3).

For metastatic disease of solid cancers, the benefits 
of local treatments are less obvious and still a matter of 
debate. A small number of randomized trials in the oli-
gometastatic (≤ 5 lesions) setting suggest that local 
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treatments improve PFS and overall survival [130–134, 
145, 149]. However, the optimal timing of these com-
bined treatments is not yet known.

Immune checkpoint inhibitors (ICPB) have already 
revolutionized the treatment of several cancers in met-
astatic disease and in locally advanced NSCLC. Experi-
mental data suggest that a tumor primarily resistant 
to ICPB can be reverted back into a sensitive tumor 
by adding concurrent radiotherapy [150, 151]. It is 
assumed that the immunogenic tumor cell death after 
radiotherapy is the mechanism behind these observa-
tions. The optimal radiation dose and fraction size to 

achieve this effect is still controversial in view of con-
flicting data. Many experts believe that fractions sizes 
of 4–8 Gy could be optimal. Recently, it has been shown 
that functionally intact regional lymph nodes are 
important to establish this radiation induced immune 
priming and that in takes approximately 7–14  days 
after radiotherapy until the maximal immune effect has 
been established [152–154]. Nevertheless, currently 
recruiting clinical trials on the combination of radio-
therapy and ICPB in locally advanced disease largely do 
not take these findings into consideration.

Combined local & systemic treatment
Sequential treatment: Reduction of newly established 

distant micro metastases: 50% at 1 year, 20% at 2 year FU Concurrent treatment: 50% at 1 year, 40% at 2 year FU

Systemic treatment alone
Reduction of newly established distant micro metastases: 20% at 1 year FU

Local treatment alone
Reduction of newly established distant micro metastases: 25% at 1 year FU

Progression
Tumor cell doubling time: logarithmic 

growth phase of 14 days
1 new microscopic metastatic lesion 
by 2x109 surviving tumor cells/year

1 out of 100 tumor cells = resistant to 
systemic treatment

4 microscopic lesions
10 / 1000 / 105 / 107 tumor cells (Gompertz like growth 

curve)
All have the same likelihood to develop resistence to 

systemic therapy

1 macroscopic lesion 
>109 tumor cells (Gompertz like growth curve) Local treatment will result in local tumor control

Fig. 3 In silico modelling of metastatic spread and the impact of local or systemic therapy. FU: follow‑up
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Based on the current knowledge, the experimental arm 
of a trial testing ICPB in combination with radiotherapy 
in locally advanced solid tumors could be designed as fol-
lows (see Fig. 4):

1. Limit inclusion to tumors that are unlikely to respond 
very well to ICBP alone (CPS < 20%-50%)

2. Start ICPB 1–3 days before radiotherapy
3. Irradiate all macroscopic tumor with little margin, 

with 4–5 × 4–6  Gy within 1  week. Try to minimize 
radiation to regional lymph nodes without tumor 
involvement.

4. Re-biopsy / restaging approximately one week after 
the last radiotherapy

5. Start subsequent definite local treatment (sur-
gery ± adjuvant radiotherapy ± chemotherapy or 
concurrent chemoradiation (no boost RT))

6. If the biopsy 1  week after initiation of RT + ICPB 
indicates an immune response, continue ICBP ther-
apy for 6–12 months.

7. Consider to make the choice of the definite local 
treatment depending on the immune response to 
induction ICPB + RT: Definite RT (no CHX) in case 
of good response, surgery + adjuvant RT or RT-CHX 
in case of no/minor response (concurrent RT-CHX, 
if surgery is not possible with reasonable toxicity)

Vision and reality
Considerations for clinical trial designs—Julia Mayerle
"If it were not for the great variability among individuals, 
medicine might as well be a science and not an art." -Sir 
William Osler (1892) [155]

Historically, clinical decision-making has been dic-
tated by the clinician’s experience, which has frequently 
been biased and constrained by limitations in available 

scientific knowledge. To overcome these limitations, 
clinical trials were introduced in the eighteenth cen-
tury. A well-known example of an early case–control 
study performed by James Lind, was the introduction of 
citrus fruits to prevent scurvy in the Royal Navy. How-
ever, it took another 200  years until the advent of ran-
domized controlled trials (RCT) in the 1940s to reduce 
bias through randomization and prospective data collec-
tion [156].

The focus of traditional clinical trials was identified 
in the 1979 Belmont Report [157]—the bible of clinical 
research ethics- which emphasized that clinical research 
is distinct from clinical practice. Similarly, the regulatory 
authorities are required to focus on safety and efficacy 
when evaluating medical products [158]. The standards 
for determining safety and efficacy are the same for all 
diseases and conditions, regardless of the disease preva-
lence. A fundamental principle in traditional trial design 
is to understand and control the false-positive rate. Com-
pliance with this principle requires large trials and very 
large sample sizes. Unfortunately, traditional RCTs do 
not take into account the many facets caused by biologi-
cal variations [159]. This is even more evident in complex 
diseases such as cancer or benign diseases, which are 
accompanied by many underlying genetic predisposi-
tions or environmental factors. It is more challenging to 
develop therapies in rare disorders, such as individual 
cancer subtypes or their subsets as they never fit well into 
the traditional ways of trial planning [160].

The "precision medicine trials" are particularly chal-
lenging. There is a growing interest in conducting mech-
anism-based trials where eligibility is based on molecular 
targets rather than traditional disease based definitions. 
One approach to conducting such trials would be to 
establish a master protocol combining umbrella trials (to 
investigate multiple targeted therapies in the context 
of a single disease), basket trials (to investigate a single 
targeted therapy in the context of multiple diseases or 
disease subtypes), and platform trials (to investigate mul-
tiple targeted therapies in the context of a single disease 
in a perpetual manner, with therapies allowed to enter or 
leave the platform based on a decision algorithm) [161]. 
All of them represent a collection of trials or substudies 
that have important design components and operational 
aspects in common. Such adaptive trial designs, follow-
ing a master protocol, offer a way forward for hetero-
geneous and low-incidence diseases with high medical 
needs, such as cancer. It should be noted that even a mas-
ter protocol and an adaptive trial design will require a 
valid endpoint; if no cure can be achieved but palliation, 
aspects other than progression free survival or overall 
survival might get into focus [162].

Fig. 4 Theoretical considerations on multimodal treatments in 2030
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