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SUMMARY

Compounds that exhibit assay interference or undesirable mechanisms of bioactivity (‘‘nuisance com-
pounds’’) are routinely encountered in cellular assays, including phenotypic and high-content screening as-
says. Much is known regarding compound-dependent assay interferences in cell-free assays. However,
despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably
less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle
to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer
number of targets, but rather nuisance compounds, due to their ability to waste significant resources and
erode scientific trust. In this review, we summarize our collective academic, government, and industry expe-
riences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact
of nuisance compounds and suggest best practices to efficiently address these compounds in complex bio-
logical settings.

INTRODUCTIONQ2Q3

Bioactive but low-quality compounds that interfere with cell-
based readouts are an inevitable problem in high-throughput
screening (HTS) including phenotypic and high-content assays.
These are in contrast to high-quality chemical probes, which
are potent, selective, and act by a defined mode of action (Ar-
rowsmith et al., 2015). If not recognized early, low-quality com-
pounds are published as ‘‘real’’ actives in reputable scientific
outlets, included in literature reviews, and used by other re-
searchers to propagate low-quality studies (Dahlin et al.,
2015b, 2017). This consumes precious scientific resources
across academia, industry, and government. For example, the
prototypical nuisance compound curcumin has consumed
greater than US$150million of NIH funding, yet is still not recom-
mended as a probe or drug (Nelson et al., 2016).
Nuisance compounds are now a recognized problem among

the probe and drug-discovery communities, as well as scientific
publishers (Aldrich et al., 2017). Robust tools to identify nuisance

compounds in cell-free assays have been developed. However,
there is still a significant gap in how best to address nuisance
compounds in cellular assays, along with many misconceptions
(Figure 1). Fortunately, the reoccurring nature of nuisance com-
pound mechanisms of action (MOAs) can enable specific strate-
gies in assay design and triage.

NUISANCE NOMENCLATURE AND MECHANISMS

Just as there is controversy about what constitutes ideal molec-
ular structures (e.g., fraction of sp3 carbons [Fsp3], Lipinski’s
Rule of Five [Ro5], ligand efficiency, quantitative estimate of
drug-likeness), there is no universally agreed-upon definition of
what constitutes a ‘‘nuisance compound’’ (Bickerton et al.,
2012). We propose some standardized nomenclature (Figure 1).
A key distinction should be made between artifacts (i.e., com-
pounds that do not modulate bioactivity but interfere with the
assay readout; ‘‘technology-related interferences’’) and com-
pounds that genuinely modulate bioactivity but through
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undesirable MOAs (Figure 2). Therefore, a nuisance compound
can still be a true positive in a given assay if it gives rise to a
desired biological readout, albeit through an unsought MOA.

In cell-free assays, nonspecific electrophilicity, colloidal aggre-
gation, redox cycling, and chelation are well-known nuisance be-
haviors. Nonspecific reactivity, redox activity, and chelation lead
to biological targets (mainly proteins) being modulated by
covalent and ionic interactions. Conversely, aggregators and sur-
factants perturb proteins by reversible contacts via partial or full
secondary/tertiary structure denaturation (Coan et al., 2009).

Cellular assays tend to enrich for a variety of compounds that
cause, in a broad sense, cellular injury. Examples we routinely
encounter are genotoxins, lysosomotropic agents,membranedis-
ruptors, and tubulin poisons. Depending on the context and goals
of a particular screening effort, these mechanisms may be re-
garded as nuisance behaviors. Even high-quality chemical probes
and drugs can bebioactive by nuisanceMOAswhen tested at suf-
ficiently high concentrations. Cytotoxins are not necessarily pro-
hibitive, but aremoredesirablewhen theydisplay biological selec-
tivity or mechanism-based cytotoxicity. Recent work by the NIH/
EPA Tox21 program has illuminated the concept of ‘‘cytotoxicity
burst,’’ which occurs at relatively high compound concentrations
when cellular activities are thought to result from the activation of
multiple stress responses as opposed to originating from activa-
tion of a specific molecular target (Escher et al., 2020).

The finer details of nontechnology interferences are less well
understood in cellular assays. Here, nuisance compounds will
generally interfere by causing cellular injury. Due to their inherent

lack of specificity, many nuisance MOAs are consistent across
cell lines and assay types. Exceptions exist, such as metabolic
toxins across cells with different energetic states (e.g., glycolytic
versus oxidative phosphorylation). Colloidal aggregates do not
appear to penetrate mammalian plasma membranes, but they
can limit the activity of drugs in cell-based assays and perturb
membrane targets such as G-protein-coupled receptors
(GPCRs) (Owen et al., 2014; Sassano et al., 2013). Nonspecific
electrophiles can disrupt specific proteins and also initiate adap-
tive responses in cells (e.g., NRF2 pathway).
Compounds can also interfere with cellular assay technolo-

gies. This often occurs through light-based interferences such
as compound light absorption and autofluorescence. Even inmi-
croscopy assays, these compounds can produce diffuse and/or
localized patterns that can mimic bioactive morphologies (John-
ston et al., 2016). Compounds can also interfere with specific
technologies (e.g., luciferase inhibitors, AlphaScreen 1O2

quenchers, capture reagent disruptors) (Coussens et al., 2020).

BLACK BOXES: THE DIFFICULTY OF CELLULAR
NUISANCE BEHAVIORS

The allure and curse of cellular assays is that compounds can
usually elicit a particular response by known and novel MOAs.
However, even active readouts in target-based cellular assays
can occur by on- or off-target effects, and without detailed
follow-up experiments the machinations behind a given readout
are essentially a ‘‘black box’’ (Solinski et al., 2019). Compounds

Figure 1. Misconceptions and nomenclature regarding cellular nuisance compounds
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may also interfere with the function of extracellular protein stimuli
used in certain cellular assays (Blevitt et al., 2017). This lack of
clear-cut MOAs makes compound prioritization difficult, as it is
less obvious which factors should guide triage (Figure 3). A
cascade of follow-up assays is essential for hit triage, perhaps
even more so than traditional target-based approaches.
Care should be taken when correlating cell-free and cellular

readouts. A common trap occurs when performing a biochemical
validationassay, observing adesired response, and thenequating
theoriginal cellular readoutwith this specificactivity. Theconverse
situation is also common: low-quality compounds derived from
virtual or biochemical HTS can show apparent ‘‘confirmatory’’
cellular activitydrivenbya loss-of-signal or cytotoxiceffect (Dahlin
et al., 2017). Prototypical nuisance compounds can produce
‘‘positive’’ readouts inbiophysical assays (Bista et al., 2012;Cous-
sens et al., 2018). Biophysical assays will best support target-
associated cellular readouts when compound series show suffi-
cient combinations of potency (usually nanomolar or low micro-
molar), stoichiometry, and interpretable structure-activity relation-
ship (SAR) (Lessene et al., 2013; Markwalder et al., 2017).
The case of the smallmolecule remodelin illustratesmanyof the

above points (Figure 3). This hydrazone was identified by a
phenotypic screen for compound-dependent nuclear remodeling
in Lamin A/C-depleted cells. The remodelin-induced phenotype
was attributed to NAT10 inhibition based on micromolar
biochemical activity, pull-down of NAT10 (among >50 other pro-
teins), and other experiments (Larrieu et al., 2014). NAT10 was
specifically chosen for follow-up based on previous studies link-
ing the parent phenotypic lead compound CPTH2 to KAT inhibi-
tion (Chimenti et al., 2009). Hydrazones such as CPTH2 are
nonspecific electrophiles and promiscuous (Dahlin et al., 2017),
making such a link tenuous. Follow-up studies demonstrate that
remodelin does not actually modulate NAT10-dependent cytidine
acetylation activity in cells (Shrimp et al., 2020). Nonspecific com-
pounds such as remodelinmay ‘‘phenocopy’’ knockdown pheno-
types of crucial genes such as NAT10 purely by coincidence. This
is particularly dangerous if a phenotype is far removed from the

biochemical activity of the proposed target (e.g., nuclear circu-
larity and RNA acetylation). Reviewers of such papers must
assess the strength of evidence, and determine whether it consti-
tutes rigorous demonstration or is merely ‘‘consistent with’’ a pro-
posed mechanism and subject to confirmation bias.

POTENTIAL FOR NUISANCES IN DRUG REPURPOSING

The popularity of using phenotypic screening libraries of clinical
compounds with the hope of a simple repurposing path runs
counter to the significant hurdles seen when repurposing drugs
(Edwards, 2020). However, drug repurposing is not immune to
nuisance activities. Cationic amphiphilic drugs (CADs) frequently
appear as bioactive in repurposing screens, and exhibit an array
of nonspecific cellular perturbations such as lysosomal accumu-
lation and phospholipidosis (Gunesch et al., 2020; Salata et al.,
2017). Antimicrobial, anticancer, and other suspiciously broad
cell-based activities are commonly reported (Costa Silva et al.,
2017; Gunesch et al., 2020; Jang et al., 2019; Kaiser et al.,
2015; Lagadinou et al., 2020; Li et al., 2016; Salata et al., 2017;
Vazão et al., 2017; Weeks et al., 2018). In these offending cases,
activities can be weakly potent (micromolar).
Complex cellular behavior by CADs may confound their iden-

tification as nuisance compounds at screening concentrations. A
given CAD may influence cellular signaling without gross cyto-
toxicity, giving a superficial impression that the compound is se-
lective via a specific mechanism. For example, chlorpromazine
can increase membrane permeability through nonspecific inter-
action while amiodarone alters lipid dynamics by interacting with
the membrane bilayer hydrophobic core (Salata et al., 2017).
Some CADs may therefore give a readout while others will not,
imparting an impression of SAR. Important caveats must be
mentioned: a CAD may still be subject to successful target-
based optimization when undertaken rationally, and CADs de-
signed to specifically target physicochemical differences in
pathogen membranes may still represent fruitful avenues (Mor-
etti et al., 2019; Waldschmidt et al., 2017).

Figure 2. Cellular nuisance compound framework
Interferences can be broadly divided into technology-related (‘‘artifacts’’) and non-technology-related categories (undesirable, nonspecific activity), and can
overlap. Most non-technology-related interference mechanisms can lead to cytotoxicity. High-quality hits can still have interference such as autofluorescence or
selective cytotoxicity.
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NATURAL PRODUCTS

Natural products (NPs) represent a valuable source of chemical
diversity, but they can still be nuisance compounds interfering by
all the aforementioned MOAs including membrane perturbation
(Ingólfsson et al., 2014). NP samples present unique challenges;
extracts can have uncharacterized chemical contents, be en-
riched for endogenous substances (salts, fatty acids, lipids),
and can include tannins (nonspecific-binding polyphenols).
NPs themselves can contain notoriously problematic chemo-
types such as quinones (Appleton et al., 2007; Baell, 2016). Po-
tential solutions include testing NP samples at multiple concen-
trations and prefractionating NP extracts (Cheng et al., 2015;
Thornburg et al., 2018). Difficulties with the reproducibility and
scale-up of NP biosyntheses, chemical characterization, synthe-

sis, and retesting present additional challenges. Compound
extraction and chemical instability can introduce various chem-
ical artifacts and unnatural structural rearrangements, and incor-
rect chemical characterizations such as stereochemistry are not
uncommon (Capon, 2020; Maltese et al., 2009). The perspective
that NPs at screening concentrations may signal nonspecifically
in bioassays can be obscured by their association with drug dis-
covery as privileged structures (Baell, 2016).

NUISANCECOMPOUNDSANDEMERGINGTECHNIQUES

Newercell-based screening techniquesandnuisance compounds
will inevitably intersect. There is growing interest in applying frag-
ment-based and DNA-encoded library methods to cellular assays
(Cai et al., 2019; Parker et al., 2017; Wu et al., 2015). Given the

Figure 3. Common pitfalls of cellular nuisance compounds
(A) Pfizer model for conceptualizing cellular assay readouts (Vincent et al., 2015).
(B) KAT3 inhibitors A-485 and C646 both decrease cellular H3K27ac levels as expected, but through specific and nonspecific target engagement, respectively
(Dahlin et al., 2017; Lasko et al., 2017; Shrimp et al., 2015).
(C) Active cell-painting morphologies are enriched in compounds that decrease final cell number (Bray et al., 2017).
(D) Compounds can fluoresce and interfere with the interpretation of readouts in microscopy-based cellular assays. Scale bars, 50 mm.
(E) Nuisance compounds from phenotypic assays can appear ‘‘active’’ in subsequent target-based assays and are at risk for confirmation bias.
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emergence of covalent fragments (Keeley et al., 2020), one can
imagine this method being increasingly applied to cells (Backus
et al., 2016). The success ofmodern targeted covalentmodulators
(Singh et al., 2011) may also inspire more primary screening of
compounds with covalent warheads. These newer methods are
still expected to enrich for nuisance MOAs, given the high com-
poundconcentrations typically used in fragment-based screening.
In cases of covalent-binding hits (fragments or otherwise), a pre-
mium should be placed on cellular health assays and character-
izing proteome-wide selectivity (Lanning et al., 2014).

MITIGATION OF CELLULAR NUISANCE BEHAVIOR BY
ASSAY DESIGN

Maximizing knowledge of the cellular assay in response to
nuisance compounds prior to large-scale screening is highly ad-
vantageous. Choosing conditions to maximize robustness can
prevent follow-up on irreproducible hits, while other conditions
can render readouts less susceptible to nuisance MOAs
(Figure 4).

Assay technologies and readouts
Assay technology and reporter choices may enrich for specific
compound interferences. For example, PTC-124 was identified
and likely optimized in a cellular luciferase expression assay for
nonsense codon suppression (Welch et al., 2007). It stabilized
the translated FLuc reporter used for its discovery in a manner
that paralleled the desired read-through activity in the assay,
creating debate regarding its MOA (Auld et al., 2010; McElroy
et al., 2013). By understanding the fundamentals of luciferase
interference, one can exploit the different small-molecule inhibi-
tion profiles of luciferase constructs by counter-screens of coin-

cidence reporters to better select noninterfering and noncyto-
toxic compounds (Auld et al., 2018; Cheng and Inglese, 2012).
Reporters can have a significant bearing on the prevalence of
compound-dependent optical interferences, as reporters with
longer excitation/emission wavelengths (e.g., far-red versus
green fluorophores) and time-resolved fluorophores are less
prone to interferences (Imbert et al., 2007; Vedvik et al., 2004).
Gain-of-signal/gain-of-function (GOS/GOF) and rescue experi-

ments are generally more resistant to cytotoxic nuisance com-
pounds. Disrupting a cellular process is comparatively easier
than enhancing an already highly optimized process, such as can-
cer screening assays where hits usually lower assay outputs such
as cell proliferation and viability (Kaelin, 2017). In line with this
thinking, many cancer drugs are found to kill target cells by off-
target toxic activity (Lin et al., 2019). Assayswhere hit compounds
increase signal output or certain cellular functions can have fewer
false positives. For example, differential GOF cellular assays can
be constructed to rescue or inhibit basal cytotoxicity (Brito et al.,
2020). However, not all biological systems are amenable to GOS/
GOF design, and these technical manipulations may perturb the
relevant biology. Care should still be taken when interpreting
GOS readouts, as simple readouts such as increased cellular
GFP expression can select for green autofluorescent compounds
(Johnson et al., 2008). Higher-quality readoutsmight include func-
tional elements that are usually resistant to simple interferences.

Assay operations
The order, timing, and technical settings of each assay step can
have profound effects on nuisance activities. Autofluorescent
compounds constitute a small overall fraction of a screening li-
brary, though more frequently in the blue and green fluorescent
regions (Simeonov et al., 2008). These types of nuisance

Figure 4. Proactively addressing cellular nuisance compounds during assay development
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compounds are often diluted by repeated washing steps, or can
be rendered unimportant by assay design (Henrich et al., 2006;
Johnson et al., 2008). Washing is not a care-free step, as com-
pounds that disrupt cellular adhesion can lead to decreased
cell counts. Furthermore, washing may not effectively remove
intracellular nuisance compounds to prevent compound-depen-
dent interference, as shown in an assay for GFP reporter interfer-
ence that identified all of the primary active hits from a 315K
compound HTS as autofluorescent artifacts (Ibáñez et al.,
2017). Treatment times are also critical determinants of certain
nuisance MOAs. Many cellular nuisance compounds are
nonspecific and ultimately cytotoxic, and often these irreversible
actions will be time dependent (Hsieh et al., 2017). Grossly cyto-
toxic nuisance mechanisms usually require at least 6–24 h to
induce apoptosis or other cell-death pathways (Galluzzi et al.,
2018). Greater treatment times (48 h, 72 h) can also enrich for
compounds that cause cellular injury or reduce cell adhesion.

Choice of compounds and concentrations
Most interference mechanisms are concentration dependent,
and one can be falsely reassured by observing a concentra-
tion-dependent response in cellular assays. A compromise is
usually struck between testing ‘‘low-enough’’ compound con-
centrations to minimize interferences/off-target effects and
‘‘high-enough’’ concentrations to identify bioactive compounds.
A good strategy is to run a pilot screen at multiple compound
concentrations and include known nuisance compounds to
select an optimal screening concentration.

Both high-quality and nuisance compounds should be tested in
concentration-response curves (CRCs), either in the primary
screening (quantitative HTS [qHTS]) or the primary confirmation
stage (Chenget al., 2015). Thecomplexitiesof cellular assayscon-
founds CRC interpretation, although primary qHTS data can be
quite pharmacologically revealing (Kinder et al., 2020; Sotoca
et al., 2010). Membrane permeability, xenobiotic metabolism,
serum protein binding, and compound efflux are some confound-
ing factors. Certain curve features can be suggestive of interfer-
enceMOAs. For example, steepandbell-shapedCRCswith lower
asymptotes above 10 mM are consistent with but not definitive
proof of aggregation and/or poor solubility (Owen et al., 2014).

Precedent often shapes compound screening collections, but it
is worthwhile to curate collections for cell screening (Figure 4)
(Spear andBrown, 2017). Screening collections for cell-based as-
says should contain sufficient chemical and performance diver-
sity, ideally with built-in chemical and bioactivity redundancy to
help establish preliminary SAR and hypotheses (Dahlin and Wal-
ters, 2014; Wawer et al., 2014). Libraries can also be culled for
highly problematic chemotypes, with a caveat that many sub-
structure filters were derived from cell-free HTS data as well as
high concentrations less applicable to cell screening. For capacity
reasons, libraries can also be designed for physicochemical prop-
erties that favor cellular activity such as permeability. However, a
caveat is that impermeable compoundsmay give rise to extracel-
lularly-mediated effects by affecting transmembrane proteins
(e.g., GPCRs, ion channels, solute carriers). Prediction of passive
and active permeability is not straightforward, but it is possible to
remove known cell-impermeable compounds and those with a
high likelihood of impermeability based on their physicochemical
properties (e.g., polar surface area, ionization, Ro5).

Informer sets
Screening is an enrichment exercise. Purposefully testing
nuisance compounds during assay validation can inform
screeners about an assay’s sensitivity to unwanted MOAs and
the associated readouts. This information can help to design
moreeffectivecellularassaysandscreeningcascades forhit triage
(Figure 4). Screening focused collections of high-quality reference
compounds is a standard industry practice when piloting cellular
assays. Several industrial screening operations also takeanoppo-
site approach, employing informer sets composed of nuisance
chemical matter (Hansson et al., 2018). Challenging assays with
endogenousand exogenous interferants is routine in clinical assay
validation (Kroll and Elin, 1994). Some reference compounds will
show similar phenotypes in high-content assays across different
cell lines (Hughes et al., 2020; Warchal et al., 2019; Willis et al.,
2020). However, compound phenotypes may not transfer across
cell lines or altered experimental conditions, suggesting value in
routinelyusing informersets.Confidence innuisance-related read-
outs can be enhanced by including inactive analogs (e.g., weaker
leaving groupsorwarheads for electrophiles) (Dahlin et al., 2015b).

IDENTIFYING BADLY ACTING COMPOUNDS AFTER
SCREENING

Guided by the relevant disease biology and desired safety pro-
files, we recommend multiple experimental- and knowledge-
based approaches to investigate cell-active compounds for
nuisance behaviors (Figures 5 and 6).

Cell-free counter-screens
Fortunately, many nontechnology interferences (thiol reactivity,
aggregation) and technology interferences (luciferase inhibitors,
optical interference) already have robust biochemical counter-
screens developed. Since their readouts are more straightfor-
ward to interpret, we recommend testing cell-active compounds
for a comprehensive panel of compound interferences. Howev-
er, cell-free conditions may not model the behavior of com-
pounds in cells, and these assays are themselves susceptible
to compound interferences. Compounds may show ‘‘clean’’ be-
haviors in cell-free reactivity counter-screens but have ‘‘masked
electrophiles’’ or metabolites that are reactive in cells (Eaton
et al., 2019). A lack of cell-free selectivity versus a panel of
related and unrelated molecular targets (e.g., kinases, GPCRs)
can hint at nuisance MOAs in cells (Dahlin et al., 2017).

Secondary cellular assays
For cell-based hits, we recommend a combination of (1) technol-
ogy counter-screens to rule out artifacts, (2) counter-screens to
rule out undesirable MOAs, and (3) orthogonal cellular assays to
confirmdesired bioactivity. The timing and arrangement can vary
due to logistics, the number and nature of hit compounds, indi-
vidual preference, and pilot experiments with informer com-
pound collections (Dahlin and Walters, 2014).
Characterizing technology interferences by counter-screens

determines the level of confidence in a particular readout. A
straightforward counter-screen for compound autofluorescence
is parallel image acquisition of compound-treated cells with and
without reporters (Ibáñez et al., 2017) (Figure 5). A related
counter-screen for readout attenuation interference (e.g.,
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quenchers) is to spike compound into a constitutively expressed
or prestained control.
It is central dogma in screening to confirm bioactivity by

orthogonal methods. In cell-free assays, this is traditionally
done with independent assay technologies, while cellular
orthogonal assays may instead incorporate different cell lines,
pathway components, or readouts. Reliance on a single readout
or technology is unwise, as it can drive optimization toward an

artifactual bioactivity (Auld et al., 2009). The choice of primary
and secondary assay design, and what biological (and techno-
logical) spaces they cover, will determine the types of active
compounds (Vincent et al., 2020). For instance, follow-up assays
on a pathway process upstream of the primary assay may fail to
confirm compounds acting more downstream in the pathway of
interest. Similarly, orthogonal assays that are susceptible to the
same interferences as the primary assay may instill false

Figure 5. Approaches to identify cellular nuisance compounds
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confidence about a particular compound MOA. It is prudent to
choose distinct readout technologies to understand the com-
pound effect on a particular pathway/phenotypic signal output
(Figure 5). Cellular orthogonal approaches can also utilize
different readout classes such as biomarkers or cell function.
For instance, in the identification of SMN2 splicingmodifiers, pri-
mary luciferase gene reporter hits were confirmed with quantita-
tive PCR for the full-length SMN2mg and D7 transcripts (Narysh-
kin et al., 2014).

Leveraging knowledge of disease- or mechanism-related
biology and translational safety concerns can be advantageous,
including measuring proximal or distal biomarkers (Vincent et al.,
2015, 2020). For example, the discovery of the STING agonist
SR-717 by phenotypic screening benefited from pathway-based
counter-screens. The primary screen identified inducers of the
downstream STING pathway component IRF, followed by
counter-screens with STING and cGAS knockout cell lines
(Chin et al., 2020). In another example, three unrelated
transcripts (cyclic AMP response element, nuclear factor kB,
transforming growth factor b) were profiled in parallel to exclude
off-target activities and technology interference during a pheno-
typic screen for inhibitors of b-catenin-mediated transcription
(Huang et al., 2009).

Cell-line dependence can be leveraged for counter-screening
purposes. Similar activity in multiple related cell lines (or multiple
donors in primary cells) can enhance confidence (Johannessen
et al., 2017; Orellana et al., 2018). Cells without the relevant bio-
logical stimuli, or isogenic cells that lack the target of interest,
are useful for assessing specificity (Torrance et al., 2001). De-
pending on the biological context, control experiments could be
mutant or knockdown cell lines, nondiseased control tissues, or
unrelated tissue types (including other species). Examples include
comparing the cytotoxicity of NP extracts tomutant andwild-type
c-KIT cell lines, and using mutant and species-specific proteo-
somes to confirm the target of the broad-spectrum antiprotozoal
drug GNF6702 (Henrich et al., 2007; Khare et al., 2016). However,

apparent selectivity of compounds between cell lines does not
necessarily rule out nuisance MOAs, as other factors such as
cell-line proliferation rates, culture conditions, and constructs
may introduce bias (Bancos et al., 2013). Meaningful selectivity
depends on the biology and assay precision (minimum significant
ratio), but tenfold or greater differences are considered to bemore
believable (Eastwood et al., 2006).

Cellular health
Cellular health assays are high-yielding experiments for assess-
ing cellular nuisance compounds, and should be run in parallel or
immediately after the primary assay (Kinder et al., 2020). This is
especially true in assays where grossly toxic compounds can
reduce the reporter signal by killing cells. A distinction should
be made between compound-dependent cellular injury at the
screening and later preclinical stages (‘‘toxicity’’). A nonsurgical
use of cytotoxicity criteria for triage can occasionally backfire.
Concerns should especially be raised when the desired com-
pound-dependent biology should not involve cytotoxicity (e.g.,
based on genetic perturbations or chemical inhibition of relevant
pathways). The discovery of compounds that reduce viable cell
counts may be desirable, for example in anti-neoplastic screens.
Whenever possible, a surrogate or direct cytotoxicity readout

should be incorporated into a primary cellular screen, such as
nuclear counts or confluence in high-content assays. If
technically difficult, facile cellular viability assays such as Cell-
Titer-Glo are useful options. We recommend image-based
confirmation of cell counts, as cytotoxic compounds can
interfere with metabolism-based assays (Chan et al., 2013).
Follow-up cellular health assays should examine for evidence
of cytotoxicity (loss of membrane integrity, intracellular dye
reduction) and induction of apoptosis (caspase-3/7 activation,
extracellular annexin V). More specialized assays should be per-
formed as needed.
Cellular health assays should span a potency range to define

themaximal noncytotoxic compoundconcentrations, and include

Figure 6. Decision aid for nuisance compound triage
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time-course measurements that extend past primary time points
for nonacutely toxic compounds. This information can be effi-
ciently determined by live-cell imaging, multiplexed reagents,
and/or aforementioned high-content-based strategies (Didiot
et al., 2011). In our experience, nuisance compounds induce the
active cellular readout within a few-fold concentrations of cyto-
toxicity, and in such cases should be cautiously pursued. Com-
pounds can also be profiled for differential cytotoxicity across
multiple cancer cell lines, such as the NCI60 or PRISM panels,
to provide clues about MOA (Figure 5) (Shoemaker, 2006; Yu
et al., 2016). Profiling hundreds of cancer cell lines helped to iden-
tify GPX-4 and ferroptosis as the primary molecular target and
biological pathway of the electrophiles ML-162 and ML-210 (Vis-
wanathan et al., 2017). Metrics such as GR50 may better account
for inter-cell-line variations in division rate (Hafner et al., 2017).

False positives and compound integrity
Most nuisance compounds are actually highly reproducible.
However, retested compounds that fail to reproduce with
independent samples are often due to compound instability or
contaminants from preparation procedures. Mechanisms of
degradation include nonenzymatic oxidation, hydrolysis, thermal
and photocatalyzed decomposition, and retro reactions (Baell
et al., 2013; Olson et al., 2015; Stefaniak et al., 2018). Bioactive
impurities can be synthetic contaminants such as metals (Zn,
Hg), catalysts (Pd), and reaction side-products (Hermann et al.,
2013; Morreale et al., 2017; Tarzia et al., 2007). The presence
of trifluoroacetic acid and other agents can contribute to appar-
ently selective and ‘‘noisy’’ activities, with some collections
showing noisy activity in up to 80% of the set (Chakravorty
et al., 2018; Stewart et al., 2014). High-priority compounds are
best tested with freshly solubilized samples from solid stock, re-
purified samples, and even resynthesized samples (ideally by
orthogonal synthetic routes) (Dahlin and Walters, 2014).
Compound stability is heterogeneous and multifactorial. How-

ever, initial purity is the main determinant of compound stability
(Popa-Burke et al., 2014). Studies vary, but estimates ranging
from 15% to 40% or more of screening compounds will show
measurable degradation (Blaxill et al., 2009; Bowes et al.,
2006; Shou et al., 2020). Ideally, all prioritized hits are assessed
for purity using liquid chromatography-mass spectrometry ap-
proaches as a first indication whether a screening data point
can be trusted. The increased availability of integrated higher-
throughput compound characterization and reporting methods
early in the hit evaluation cascade can increase the efficiency
of this process (Shou et al., 2020).

Chemoinformatics and structural analyses
Certain discovery programs are rethinking structure-based
triage in phenotypic screening (Vincent et al., 2020). Well-
reasoned arguments include the potential for overzealous and
subjective triage, and the inherent lack of knowledge regarding
compound MOA to guide triage. As bioactivity is fundamentally
determined by chemical structure, and because libraries may
still be composed of highly dubious chemotypes, we still recom-
mend analyzing cell-active chemical structures. If resources
allow, we recommend secondary testing of all primary hits to
allow for data-driven prioritization. Outright triage of cell-active
NPs and atypical compounds may not be warranted, given the

known progression of less-drug-like entities in the clinic (DeGoey
et al., 2018). However, a hidden danger to retesting compounds
with structural liabilities is that they can produce tantalizing
bioactivity that needlessly prolongs their retainment.
Chemical structure and physicochemical property filters (e.g.,

PAINS, REOS, APT) are an efficient approach to rapidly flag cell-
active compounds for problematic chemotypes and properties
(Figure 5) (Baell and Holloway, 2010; Cox et al., 2012; Walters
and Namchuk, 2003). While these filters have limitations such
as technology and historical biases, they are still helpful tools
when used alongside the other components of a comprehensive
screening cascade. In many of our practices, cell-active hits
flagged by these filters are scrutinized and usually deprioritized
unless additional experiments can be performed to verify opti-
mizable bioactivity.
Since nuisance compounds often act by nonspecific MOAs,

they are usually enriched in bioactivity across a variety of targets,
cell types, and assay technologies. Mining historical screening
data works best when the screening data are well curated,
with a caveat being the potential for historical or institutional
biases (e.g., repeated testing with similar targets, assay technol-
ogies). Bioassay promiscuity can be quantified by a variety of
‘‘frequent-hitting’’ indices such as pBSF or percent enrichment
(Baell and Holloway, 2010; Chakravorty et al., 2018; Nissink
and Blackburn, 2014). Large, high-quality annotated chemical
activity databases allow for more quantitative approaches to
grading repeatedly assayed compounds, such as a ‘‘Tool Score’’
algorithm that uses heterogeneous historical screening data to
classify compounds as ‘‘tool-like’’ or ‘‘non-tool-like’’ (Wang
et al., 2016). Adaptation and validation of such quantitative met-
rics should reduce subjective judgments and enhance objective
compound classifications. While less quantitative and more
laborious, it is also worthwhile to investigate the published scien-
tific and patent literature related to cell-active compounds (Dah-
lin andWalters, 2015). Repeatedly published compounds across
seemingly unrelated biological systems should raise caution.

Structure-activity relationships
SAR is one of themost important yet least appreciated arbiters of
nuisance activity. This usually requires assembly of a focused
SAR set using commercially available analogs and in-house
chemistry (Yi et al., 2020). Assuming a cellular readout is gov-
erned by a dominant and specific target engagement, rational
SAR with cellular and cell-free potencies spanning multiple
logs of concentration should be forthcoming (Lee et al., 2012).
Nuisance compounds will characteristically fail this test, often
furnishing large tracts of flat SAR, indicating the compound se-
ries is not amenable to medicinal chemistry optimization (Baell,
2010, 2015). To add more complexity, nuisance compounds
can also appear to display SAR when the compound set is insuf-
ficiently large. Different permeability and media-binding proper-
ties can add layers of variables to cellular SAR interpretation. A
compound series can also show apparent SAR that can be
completely explained by interferences (‘‘structure-interference
relationships,’’ Figure 5) (Auld et al., 2009; Dahlin et al., 2015b).

Focused statistical analyses
Artifacts can be identified by straightforward Z-score calcula-
tions for significant deviations in key parameters relevant to
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particular interference MOAs (Figure 5). In microscopy assays,
strongly autofluorescent and quenching compounds can char-
acteristically exhibit high and low object-intensity Z scores in
various imaging channels, respectively.

Artificial intelligence/machine learning
Advances in artificial intelligence/machine learning (AI/ML) have
the potential to address cellular nuisance compounds. This could
take two main approaches: model training based on chemical
structures linked to undesirable nuisance behaviors, or model
training on cellular assay readouts caused by prototypical
nuisance compounds (Figure 5). The former case would benefit
from library-wide profiling specifically for assay interferences
including cytotoxicity (Lee et al., 2020; Schorpp et al., 2014; Si-
meonov et al., 2008). Already, this approach has been applied to
aggregators and luciferase inhibitors (Alves et al., 2020; Ghosh
et al., 2018). Advances in computation and profiling may also
enable cell-level analyses of nuisance activities for cases where
population (‘‘well’’)-level readoutsmask nuisanceMOAs in cellular
subpopulations (Gough et al., 2014). One foreseeable danger of
AI/ML is models based on uncharacterized nuisance activities
whereby users unknowingly optimize toward interferences.

ROLES OF ADVANCED EXPERIMENTS

The most egregious nuisance compound behaviors can be as-
signed using the aforementioned approaches. While seldom per-
formed, suspected nuisance compounds can occasionally
benefit from more complex experimental approaches to assess
their compound-target engagement, selectivity, and overall
MOA in accordance with high-quality probe criteria. Chemopro-
teomic probes labeled with capture or detection reagents by
‘‘click chemistry’’ can provide evidence of proteome-wide pro-
miscuity, as in the cases of the reportedly selective KAT3 and
MDMX inhibitors C646 and SJ-172550, respectively (Shrimp
et al., 2015; Stefaniak et al., 2018). Target engagement assays
such as CETSA, DART, and SPROX show potential utility for as-
sessing specific compound-target interactions (Jafari et al.,
2014; Lomenick et al., 2009; West et al., 2008). Continued ad-
vances in proteomics such as activity-based protein profiling
can now quantify compound-protein binding across the prote-
ome (Backus et al., 2016; Jessani and Cravatt, 2004). While these
high-powered technologies hold considerable utility, in practice
they are not yet routinely used for interrogating early leads,
perhaps due to the resources and expertise required as well as
the need for sufficient compound-target binding (often lacking
early on in discovery campaigns) and chemistry support for probe
design and synthesis. Higher throughputs and reducedcostsmay
address these barriers. Similar arguments should apply to newer
genetic-based target deconvolution strategies such as arrayed
CRISPR libraries and pooled optical screening (Feldman et al.,
2019; Jost and Weissman, 2018; Metzakopian et al., 2017).

Molecular phenotyping is another approach with the potential
to evaluate for nuisance activity in cellular assays (Drawnel
et al., 2017). Here, compound-treated cells are annotated bymul-
tiple parameters such as morphology, transcriptomics, prote-
omics, ormetabolomics to create phenotypic ‘‘signatures.’’ Com-
pounds with readouts similar to nuisance compounds are ‘‘guilty
by association.’’ Hence, testing a collection of nuisance informer

compounds can be highly valuable from the onset. Several clas-
ses of frequent-hitting cell-active compounds such as tubulin
modulators and mitochondrial poisons can also be readily identi-
fied through commercial profiling services such as BioMAP (Berg
et al., 2006). Compounds that cluster near or correlatewith known
nuisance compounds can then be more thoroughly examined for
potential nuisance behaviors (Figure 5). However, most profiling
studies understandably avoid testing nuisance compounds, so
the potential for such advanced approaches would benefit from
the purposeful inclusion of nuisance compounds.
For morphological assays, orthogonal profiling could include

higher-throughput gene expression methods such L1000 and
DRUG-seq (Subramanian et al., 2018; Ye et al., 2018).
Compared with morphology, gene expression profiling is more
amenable to shorter compound treatment times, and changes
in gene expression can more directly lead to mechanistic hy-
potheses due to specific knowledge of transcript function.
Cellular morphology and transcriptomic profiles can be nonre-
dundant, and, notably, promiscuous and cytotoxic compounds
have some of the most robust signatures in both techniques
(Wawer et al., 2014). The role of molecular phenotyping in ad-
dressing nuisance compounds will likely benefit by the growth
of open-source, reference perturbation datasets such as the
Broad Connectivity Map (CMap), the Image Dataset Resource,
and others (Tsherniak et al., 2017; Williams et al., 2017).

CONCLUSIONS

Nuisance compounds still represent a major yet surmountable
burden in cell-based assays. Much work remains to fulfill the sci-
entific promises of chemical biology, as illustrated by ambitious
goals such as Target 2035 (Carter et al., 2019). In our view, major
obstacles to realizing the full potential of chemical biology are not
just difficult-to-drug targets or the sheer number of targets, but
also nuisance compounds. This is due to the ability of nuisance
compounds to waste significant resources and erode scientific
trust. Successfully addressing cellular nuisance compounds in-
volves understanding nuisance compound MOAs and exploiting
relevant biology to design robust disease-relevant screening
cascades.We propose a series of criteria to aid in nuisance com-
pound triage (Figure 6).

Everyone loses when nuisance activities are overlooked
Compound prioritization is both an art and a science (Dahlin and
Walters, 2014). While egregious bad actors can be swiftly triaged,
the most frustrating cellular nuisance compounds usually exhibit
the followingbehaviors:weak-to-moderateactivities, partial selec-
tivity, imperfect SAR, and equivocal counter-screens. These com-
pounds with ‘‘just enough’’ activity present a dilemma for project
teams when there is a dearth of promising compounds to pursue.
In academia, the need for publications and a cut-throat funding
environment can incentivize the pursuit of lower-quality chemical
matter in comparison with amore ‘‘industry-like’’ mentality that re-
wards efficient ‘‘go/no-go’’ decisions (Dahlin et al., 2015a).
Amajor limitation is the lackofqualitydatasetsexplicitlyaddress-

ing cellular nuisance compounds. Decisions in screening centers
are derived not only from the data at hand but also experience,
expert opinion, and subjective biases. Fortunately, the widespread
appreciation for compound interferences in cell-free assays has

ll

10 Cell Chemical Biology 28, March 18, 2021

Review

CCBIO 3589

Please cite this article in press as: Dahlin et al., Nuisance compounds in cellular assays, Cell Chemical Biology (2021), https://doi.org/10.1016/
j.chembiol.2021.01.021



enabled the creation of datasets and best practices that provide a
roadmap for systematically tackling cellular nuisance compounds.
Amajor barrier will be a lack of funding; while nuisance compounds
arewidely lamented,most public and private funding is directed for
specific targets and diseases rather than general tools.
Other concerns are the behavior of nuisance compounds in

in vivo assays (e.g., fungi, Danio rerio), three-dimensional tumor
models, and tissue organoids. The effects of nuisance com-
pounds in these highly complex systems are not well character-
ized, probably because of ethical considerations and resource
limitations. However, nuisance compounds can indeed be iden-
tified by whole-organism screens (Hao et al., 2013; Larrieu et al.,
2014), perhaps due to nonspecific xenobiotic stresses at sub-
acute toxic concentrations.

Toward high-quality, open-source tools for tackling
nuisance compounds
The drug- and probe-discovery communities would benefit from
an open-source, evidence-based nuisance compound informer
set. Toward this goal, we and interested collaborators are devel-
oping such a collection containing nuisance compounds nomi-
nated from academic, industry, and government screening ex-

perts. This set will be subject to prospective validation and
published characterization experiments, and is expected to
contain a diverse and comprehensive collection of non-technol-
ogy-related and technology interference compounds, cyto-
toxins, inactive controls, and analogs (Figure 7 and Data S1).

SIGNIFICANCE

A major obstacle to realizing the full potential of chemical
biology will be nuisance compounds, due to their ability to
waste significant resources and erode scientific trust.
Nuisance compounds are less characterized in cellular as-
says compared with cell-free assays. Cellular nuisance
compounds are uniquely challenging because desirable
and undesirable compound mechanisms of action (MOAs)
can produce readouts that cannot be reliably predicted a pri-
ori. Confidently ascribing cellular activity to a nuisance MOA
is challenging because of the vast number of molecular tar-
gets in cells. Cellular nuisance compounds include technol-
ogy-related artifacts that mimic real bioactivity (e.g., auto-
fluorescent compounds) and bioactive compounds that
either perturb specific yet undesirable molecular targets/

Figure 7. Framework for proposed nuisance compound informer set
See also Data S1.
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pathways (e.g., microtubule poisons) or nonspecifically per-
turb molecular targets (e.g., nonspecific electrophiles).
Nuisance compounds are best addressed by assay design
principles and comprehensive post-screening cascades
that leverage knowledge of both nuisance MOAs and the
relevant disease biology. High-yield strategies include the
use of nuisance control compounds to characterize
nuisance readouts, orthogonal assays to confirm activity,
counter-screens to triage undesirable MOA and interfer-
ences, and cellular health assays.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
chembiol.2021.01.021.
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Ibáñez, G., Calder, P.A., Radu, C., Bhinder, B., Shum, D., Antczak, C., and Dja-
ballah, H. (2017). Evaluation of compound optical interference in high-content
screening. SLAS Discov. 23, 321–329.

Imbert, P., Unterreiner, V., Siebert, D., Gubler, H., Parker, C., and Gabriel, D.
(2007). Recommendations for the reduction of compound artifacts in time-
resolved fluorescence resonance energy transfer assays. Assay Drug Dev.
Technol. 5, 363–372.

Ingólfsson, H.I., Thakur, P., Herold, K.F., Hobart, E.A., Ramsey, N.B., Periole,
X., de Jong, D.H., Zwama,M., Yilmaz, D., Hall, K., et al. (2014). Phytochemicals
perturb membranes and promiscuously alter protein function. ACS Chem.
Biol. 9, 1788–1798.

ll

Cell Chemical Biology 28, March 18, 2021 13

Review

CCBIO 3589

Please cite this article in press as: Dahlin et al., Nuisance compounds in cellular assays, Cell Chemical Biology (2021), https://doi.org/10.1016/
j.chembiol.2021.01.021



Jafari, R., Almqvist, H., Axelsson, H., Ignatushchenko, M., Lundb€ack, T., Nor-
dlund, P., and Molina, D.M. (2014). The cellular thermal shift assay for evalu-
ating drug target interactions in cells. Nat. Protoc. 9, 2100–2122.

Jang, W.J., Jung, S.K., Vo, T.T.L., and Jeong, C.H. (2019). Anticancer activity
of paroxetine in human colon cancer cells: involvement of MET and ERBB3.
J. Cell. Mol. Med. 23, 1106–1115.

Jessani, N., and Cravatt, B.F. (2004). The development and application of
methods for activity-based protein profiling. Curr. Opin. Chem. Biol. 8, 54–59.

Johannessen, L., Sundberg, T.B., O’Connell, D.J., Kolde, R., Berstler, J., Bill-
ings, K.J., Khor, B., Seashore-Ludlow, B., Fassl, A., Russell, C.N., et al. (2017).
Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells.
Nat. Chem. Biol. 13, 1102–1108.

Johnson, R.L., Huang, W., Jadhav, A., Austin, C.P., Inglese, J., and Martinez,
E.D. (2008). A quantitative high-throughput screen identifies potential epige-
netic modulators of gene expression. Anal. Biochem. 375, 237–248.

Johnston, P.A., Nguyen,M.M., Dar, J.A., Ai, J., Wang, Y., Masoodi, K.Z., Shun,
T., Shinde, S., Camarco, D.P., Hua, Y., et al. (2016). Development and imple-
mentation of a high-throughput high-content screening assay to identify inhib-
itors of androgen receptor nuclear localization in castration-resistant prostate
cancer Cells. Assay Drug Dev. Technol. 14, 226–239.

Jost, M., and Weissman, J.S. (2018). CRISPR approaches to small molecule
target identification. ACS Chem. Biol. 13, 366–375.

Kaelin,W.J. (2017). Common pitfalls in preclinical cancer target validation. Nat.
Rev. Cancer 17, 425–440.

Kaiser, M., M€aser, P., Tadoori, L.P., Ioset, J.R., and Brun, R. (2015). Antiproto-
zoal activity profiling of approved drugs: a starting point toward drug reposi-
tioning. PLoS One 10, e0135556.
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