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A B S T R A C T

This study analyzed long-term observational data of particulate matter (PM2.5, PM10) variability, gaseous pollu-
tants (CO, NO2, NOX, SO2, and O3), and meteorological factors in 412 fixed monitoring stations from January
2008 to December 2018 in Germany. Based on Hurst index analysis, the trend of atmospheric pollutants in Ger-
many was stable during the research period. The relative correlations of gaseous pollutants and meteorological
factors on PM2.5 and PM10 concentrations were analyzed by Back Propagation Neural Network model, showing
that CO and temperature had the greater correlations with PM2.5 and PM10. Following that, PM2.5 and PM10
show a strong positive correlation (R2 = 0.96, p < 0.01), suggesting that the reduction of PM2.5 is essential for
reducing PM pollution and enhancing air quality in Germany. Based on typical PM10/CO ratios obtained under
ideal weather conditions, it is conducive to roughly estimate the contribution of natural sources. In winter, the
earth's crust contributed about 20.1% to PM10. Taken together, exploring the prediction methods and analyzing
the characteristic variation of pollutants will contribute an essential implication for air quality control in Ger-
many.

© 2021

1. Introduction

Air pollution has negative impacts on human health, ecological en-
vironment, climate, and socio-economic development. The current air
pollution situation and driving factors have drawn more attention in
recent years (Streets et al., 2007; He et al., 2001; Wang et al.,
2001; Gulliver and Briggs, 2004). Epidemiological and toxicologi-
cal studies showed that long-term exposure to outdoor air pollution in
large European cohorts was associated with natural mortality (Strak et
al., 2019), especially about fine particulate matter (Wilson and Suh,
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1997; Pope et al., 2002; Zanobetti and Schwartz, 2009; Perez et
al., 2009; Schwartz, 2000; Samet et al., 2000). At present, some
European countries have adopted a monitoring and measures series to
control the air pollution problem, which successfully achieved better
progress in the field (Waluś et al., 2018).

In the previous studies, researchers used external field detection,
laboratory analysis, numerical simulation calculations, and satellite re-
mote sensing to study various physical and chemical characteristics of
PM2.5 and their temporal and spatial evolution characteristics (Friberg
et al., 2018; Xue et al., 2017). Eldred et al. (1997) used obser-
vational data from the IMPROVE monitoring network, which revealed
the PM2.5 concentration was highest in summer, and sulfate performed
as main contributor to air pollution. Dawson et al. (2007) investi-
gated the effects of meteorological factors on PM concentration using
a three-dimensional chemical transport model. Querol et al. (2004)
studied the spatio-temporal distribution of PM in 7 European cities from
1998 to 2002. In those studies comparison, it was revealed that PM10
had the highest concentration in Spain and Germany, and the lowest in

https://doi.org/10.1016/j.envpol.2021.116732
0269-7491/© 2021.
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Sweden. The highest and lowest concentrations of PM2.5 occurred in
Austria and Sweden, respectively.

Throughout these studies, the spatio-temporal variation of PM2.5 and
PM10 concentrations in the atmosphere and its driving factors were pre-
viously performed by Song et al. (2017) and Chai et al. (2014).
The process affecting air pollution is very complex and not only affected
by the source of pollutants, but also meteorological conditions (He et
al., 2017) and various chemical reactions (Xie et al., 2015). There-
fore, it is essential to study PM combined with gaseous pollutants and
meteorological factors. However, there is a strong non-linear relation-
ship between PM concentration changes, meteorological conditions, and
gaseous pollutants (Munir, 2016). Moreover, traditional multiple lin-
ear regression models for predicting PM mass concentration have signifi-
cant limitations, such as, they are unable to capture PM mass concentra-
tion and parameters (Grivas and Chaloulakou, 2006; Chaloulakou
et al., 2003). Due to certain conditions, the duration of continuous ob-
servations was short, implicating the short-term air pollution concen-
tration change and chemical composition analysis (Kamińska, 2018).
Therefore, it is imperative to explore long-term air pollution study, spa-
tio-temporal variations, and their driving factors in Germany.

Based on the above reasons, the annual trend and characteristic vari-
ations in the pollutant concentration are necessary to further predict and
control air pollution. This study analyzes a dataset of gaseous pollutants
(carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen oxides (NOX
= NO + NO2), sulfur dioxide (SO2), ozone (O3)) and particulate mat-
ter (PM2.5 and PM10) recorded at 412 monitoring sites in Germany, for
11-years (January 2008 to December 2018). The aims are as follows: 1)
to detect the spatio-temporal characteristic variations of PM2.5 and PM10
in Germany. 2) to quantify the influence of gaseous pollutants and me-
teorological factors on PM2.5 and PM10 concentrations based on the ar-
tificial BP neural network. To the best of our knowledge, this is the first
time large dataset used to systematically probe the variations in char-
acteristics of the seven critical air pollutants and the associated health
effects in Germany.

2. Methods

2.1. Monitoring data

The 24-h averages data for PM2.5, PM10, CO, SO2, NO2, and NOX
and 8 h averages data for O3 were obtained from the Federal Environ-
ment Agency (https://www.umweltbundesamt.de/en/) and utilized to
calculate monthly and annual averages at each monitoring location. The
observations included daily PM2.5, PM10, CO, O3, SO2, NO2, and NOX
concentrations at 412 monitoring sites in Germany from 2008 to 2018,
characterizing the spatio-temporal variability of the pollution concentra-
tions. A detailed description of the stations for the different pollutants
was listed in Table S1.

2.2. Meteorological data

The routine meteorological data at 222 monitoring sites in Germany
from January 2008 to December 2018 were obtained by the German
Weather Service (Deutscher Wetterdienst) and used to analyze the re-
lation to air pollution. The observations include a form of precipitation
(only rain, only snow, rain and snow, FP), a daily precipitation height
(PH), a daily average wind speed (WS), a daily sunshine duration (SD),
a daily value snow depth (SnD), a daily average of coverage (C), a daily
average of vapor pressure (VP), a daily mean air pressure (AP), a daily
average relative humidity (RH), and a daily average temperature (T). To
ensure the accuracy of data analysis, the meteorological data were ob-
tained from the close location with fixed monitoring stations (pollutant
monitor) and further analyzed to observe the effect of meteorological
factors on particulate matter concentrations.

2.3. Time series method

In order to study the annual variation and variation characteristics of
atmospheric pollutant concentration time series intuitively and quickly,
this study uses rescaled range (R/S) analysis followed by fractal dimen-
sion (D) that can analyze the internal regularity of complex atmospheric
phenomena.

2.3.1. Rescaled range (R/S) analysis
The formula for R/S analysis (Hurst, 1965) is as follows:

(1)

(2)

(3)

(4)

where xi, x(i, j), R(j) and S(j) are the mean, cumulative dispersion, range
and standard deviation of the given time series. So the R/S analysis is
the ratio between range and standard deviation.

If xi is a random sequence that is independent of each other and has
a limited variance, ie Brownian motion, then

(5)

where H is the Hurst index of the time series. The magnitude of the H-in-
dex can reflect the future atmospheric pollutants of the time series.

(1) If H = 0.5, the time series of air pollution changes are random, and
the current air pollution information will not affect the future.

(2) If 0.5 < H < 1, it indicates that the time series has long-term per-
sistence, and the overall change in air pollution in the future will
continue the overall trend of the past. The larger H is, the stronger
the persistence; the closer H is to 1, the overall change in air pollu-
tion in the future continues the overall trend in air pollution in the
past.

(3) If 0 < H < 0.5, it indicates that the time series has long-term
anti-sustainability. The total change in air pollution in the future
will be contrary to the overall trend of the past. The closer H is to 0,
the stronger the anti-sustainability.

2.3.2. Fractal dimension (D)
The Hurst index (H) of the one-dimensional Brownian motion has the

following relationship to its fractal dimension D:
(6)

The Hurst index is closely related to the fractal dimension D of the
fractional Brownian motion, reflecting the persistence and anti-persis-
tence of the fractional Brownian motion (Baillie, 1996).

2.4. Statistical analysis

A coefficient of variation (CV) or a coefficient of divergence (CD) was
applied to the heterogeneous particle distributions to describe the rel-
ative intra-urban concentration heterogeneity (Zhaobin et al., 2013).
The CDjk method for identifying the differences in atmospheric pollutant
profiles, described in detail by (Pakbin et al., 2010), was defined as
follows:

https://www.umweltbundesamt.de/en/
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(7)

where the xij and xik represent the observation (concentration of atmos-
pheric pollutants in this case) for variable x in the ith of total p observa-
tions at the paired sampling sites j and k (Krudysz et al., 2009). If the
value of CDjk approaches zero, the atmospheric pollutant composition in
j and k are similar, and if it approaches one, they are significantly differ-
ent (Pakbin et al., 2010). Thus, the CDjk can provide a relative mea-
sure of homogeneity in the concentration fields (Pinto et al., 2004).

The coefficient of variation (CV, i.e., standard deviation (STD) di-
vided by the mean value (x)) was also used to describe the degree of the
spatial variation of air pollutant concentration regions, expressed by:

(8)

2.5. Back propagation (BP) neural network

Artificial neural networks (ANN) (Van Gerven and Bohte, 2017)
can be used to forecast short and middle long-term concentration lev-
els for some of the well-known pollutants (Viotti et al., 2002). In this
study, back propagation (BP) neural network was chosen, which is used
in artificial neural networks to calculate a gradient required for the cal-
culation of the weights to be used in the network (LeCun et al., 2015).

2.6. Natural source contribution to PM10

In a city, gaseous pollutants are mainly derived from urban anthro-
pogenic emissions during a certain period. For example, near-surface
gaseous pollutants are mainly derived from the combustion or conver-
sion of fossil fuels and other organic matter, and other sources con-
tribute to their insignificance (Pochanart et al., 2004). However, the
particulate matter differs from the gaseous pollutants, including the
combustion process (including the secondary conversion of gaseous pol-
lutants) and the natural source contribution of the crustal material (wind
and dust).

Depending on the difference between the two factors, it is possible
to select the monitoring data of pollutants under ideal meteorological
conditions (such as snowfall and low speed wind) whose natural sources
contribute a slight impact to the inhalable particulate matter (PM10). At
this time, it is challenging to resuspend the crustal material. In the at-
mosphere, atmospheric particulate matter and gaseous pollutants have
the same source of anthropogenic pollution, and there should be a sig-
nificant positive correlation. At a certain time, the percentage contribu-
tion (referred to anthropogenic source) is relatively stable due to a slight
change of fuel structure, hence, its ratio emission can be assumed to be
a constant. Following the ratio, the contribution rate of natural sources
to PM10 can be resolved according to the change of ratio.

Data analysis was performed using the SPSS 18.0 software. For
the statistical analysis, the one-way analysis of variance (ANOVA) and
the correlation analysis with Bivariate Correlations Analysis were com-
pleted. The spatial distributions of the average atmospheric pollutant
concentrations were simulated using the Kriging interpolation model by
Arcgis 10.3.

3. Results and discussion

3.1. Overview of air pollutants

This study analyzed the annual average mass concentrations of the
pollutants during the past four years (2015–2018) (Fig. 1) to make a

clear comparison. Significant spatial differences in air pollutants concen-
trations among Germany were observed, and the ranges of annual av-
erage values were shown in Table S2. Moreover, the cumulative pop-
ulation distribution of the annual values of PM2.5, PM10, PM2.5/PM10,
CO, O3, SO2, NO2, and NOX during the past four years (2015–2018)
was investigated to make a better understanding of the exposure Ger-
man population to air pollution. From 2015 to 2018, half of the German
population was exposed to annual average values higher than 12.6 μg/
m3 for PM2.5, 18.1 μg/m3 for PM10, 0.32 mg/m3 for CO, 48.3 μg/m3 for
O3, 2.03 μg/m3 for SO2, 21.9 μg/m3 for NO2, and 35.3 μg/m3 for NOX,
respectively, suggesting during that period only 7.79%, 67.4%, 85.6%,
100% of the population lived in areas that meet the annual standards
of the World Health Organization (WHO) air quality guidelines (AQG)
of 10, 20, 40, 100 μg/m3 for PM2.5, PM10, NO2, and O3, respectively. In
addition, when compared with the EU concentration standard for PM2.5
and PM10 (25 and 40 μg/m3), the entire German population has been
exposed below their standard concentration from 2008 to 2018 (Figure
S1).

3.2. Atmospheric pollutant characteristics

The fractal characteristics of the atmospheric pollutant monitoring
data were studied by using the time series domain rescaling analysis
method. Table S3 showed the Hurst-index (H) and fractal dimension
(D) of PM2.5 and PM10 in different multi-time scales and different areas.
Meanwhile, this study also analyzed the H and D of CO, O3, SO2, NO2,
and NOX (Table S4). The results showed that the H was larger than
0.5, indicating the time series of atmospheric pollutants as a trajectory
of the fractional Brownian motion shows persistence, that is, a trend of
increasing concentration of atmospheric pollution in the past means a
future growth trend, and a reduction trend in the past means a future
reduction trend, which can be maintained in some extents. It also im-
plied that the air pollutant statistics show a certain degree of non-Gauss-
ian (non-random) distribution. This phenomenon was further confirmed
by the long-term change trend of PM2.5 and PM10 (Figure S1 and S2),
showing the air pollutants stability during the study period. Fractal stud-
ies are disordered systems with specific characteristics. As fractal con-
straints change, the fractal dimension will change accordingly (Baillie,
1996). Due to the linear relationship between H and D, the change in
H reflects the change in D. Therefore, when the value of H changes
greatly, it is the variation of the factors that restrict the system, which
is called the variation point. To this end, the study divides the raw data
into two parts with the year-end date (December 31) as the demarcation
point?i.e, the starting point of the previous part and the starting point of
the latter part) and performs R/S analysis on the two parts, respectively.
The corresponding H index is recorded as Hi and Hi+1 and then the ab-
solute value ΔH = |Hi+1 -Hi| of the difference between Hi and Hi+1 is
obtained, and the ΔH is obtained accordingly. The point with the largest
value is regarded as the maximum point of variation, and the variations
year can be diagnosed accordingly. Because the maximum point of this
variation is compared with the other sample points analyzed, it is rela-
tive.

The results of the segmentation analysis are shown in Fig. 2. As
shown in Fig. 2, for PM10 and PM2.5, the largest of |Hi+1 -Hi | is
found in 2009. Following that, the most variable atmospheric pollu-
tant were found in the rural areas (ΔH = 0.52 for PM2.5; ΔH = 0.41
for PM10). The multiple factors may influence the air pollution changes,
such as building completed area, thermal power generation, gross in-
dustrial output value, and wind speed (Yao et al., 2020). In the pre-
vious study, the average urban traffic PM2.5 concentrations exceeded
the WHO standards in the vast majority of European member states in
2009 (Kiesewetter and Amann, 2014). Moreover, regarding to urban
PM2.5 levels under the EU Clean Air Policy Package (Kiesewetter and
Amann, 2014), the source contribution to ambient PM2.5 in Germany
is high, influencing the implementation of air pollution policy starting
from 2009. The main source contribution to rural PM2.5 comes from
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Fig. 1. Cumulative distribution of the annual average of air pollutants in Germany from 2015 to 2018.

sulfates, residential heating, nitrates, industry, re-suspended dust, and
sea salt and dust-long range transport (Pokorná et al., 2018). More-
over, the industrial emission (SO2 and NOX) and traffic emission (NOX)
mainly interacted with Ammonia, which only obtained from rural agri-
culture, following, the house heating in the rural area also contributed
to the PM2.5 concentration. Therefore, both factors may influence the

high contribution to PM2.5 concentration from rural area. Simultane-
ously, in our study, the variability of air pollution was also large in
2016 and 2017. It is worth noting that PM2.5 variation across many
years in the urban industrial, which is not observed in PM10, implied
that PM2.5 and PM10 might have different source contributions. These
results were consistent with the previous study that these differences
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Fig. 2. Segmental analysis of atmospheric pollutants in different functional areas from 2008 to 2018 in Germany (BG, background; TF, traffic; ID, industry).

were primarily related to different source profiles (Huang et al.,
2014).

3.3. Spatial variations

The spatial distribution of the annual average mass concentrations of
seven air pollutants (PM2.5, PM10, CO, O3, SO2, NO2, and NOX) at each
air quality monitoring station across Germany are shown in Figure S3.
In order to observe the spatial distribution in different types of areas,
the distribution of PM2.5 and PM10 was analyzed in rural, suburban, and
urban areas (Figure S4). In general, as the center of economic culture,
air pollution is commonly more severe in Berlin and Brandenburg, com-
parable with our previous study in terms of the spatial distribution of
PM10 (Liu et al., 2020).

In order to represent the overall spatial variations of air pollu-
tant concentrations in Germany, the daily average mass concentrations
of air pollutants at over 400 fixed monitoring stations over a period
of eleven years was performed, the result showed that SO2 has the
largest spatial variations (42.7%), followed by PM2.5 (CV = 12.1%),
PM10 (CV = 10.0%), CO (CV = 8.7%), NO2 (CV = 7.1%), NOX
(CV = 5.6%) and O3 (CV = 2%). The largest spatial variation was lo-
cated in Berlin for CO (CV = 20.1%), Niedersachsen for NO2
(CV = 13%), Mecklenburg-Vorpommern for NOX (CV = 24.3%), Bay-
ern for O3 (CV = 4.88%), Bremen for PM2.5 (CV = 19%) and Thürin-
gen for PM10 (CV = 16.5%). However, some areas in Germany cannot
be monitored by fixed stations, which may influence the spatial distri-
bution of air pollutant concentrations. Therefore, we selected the Krig-
ing interpolation model to provide the continuous spatial distribution
for each factor based on our daily metric data. The results are consistent
as described by the cumulative distribution of the annual average of air
pollutants in Fig. 1. More than that the spatial changes of pollutants and
hot spots in various German regions can be identified (Fig. 3).

3.4. Correlations between air pollutants

3.4.1. Correlations of gaseous pollutants on PM2.5 and PM10 concentrations
In this section, the BP neural network algorithm was used to select

the five common types of pollutants (CO, O3, SO2, NO2, and NOX) to

analyze and compare their correlations on PM2.5 and PM10. Fig. 4
showed that the gaseous pollutants with a greater correlation on PM2.5
and PM10 were CO and SO2. CO and SO2 are mainly derived from the
combustion of fuel, urban automobile exhaust and tail gas discharged
from industrial plants, comparable with the basic situation of many Ger-
man industrial and transportation vehicles. The second driving gaseous
pollutants factors were NOX and O3, respectively. Although the nitrogen
content is minimal in the car's fuel, the high-temperature environment
in which the automobile's internal combustion engine operates causes a
large production of nitrogen oxides (NOX) released into the air (Cyrys
et al., 2012; Mavroidis and Ilia, 2012). Ozone in the atmosphere
is mainly formed by the photochemical reaction of nitrogen oxides and
volatile organic compounds and is the main component of photochem-
ical smog (Pusede et al., 2015). The main sources of nitrogen oxides
are automotive exhaust and chemical production.

Then, we performed spearman analysis to further analyze the posi-
tive and negative relationship between PM2.5, PM10 and gaseous pollu-
tants (Table S5). The results showed that the PM2.5 and PM10 were pos-
itively correlated with gaseous pollutants, including CO, NO2, NOX, and
SO2, and negatively correlated with O3. The previous study showed the
inverse relation between O3 and PM based on seasonal time (Jia et al.,
2017). Briefly, the negative correlation was found in the winter, and
positive correlation was found in the summer. These phenomena may be
influenced by the different photochemical reactions in different seasons
(Khoder, 2009).

3.4.2. Effect of meteorological factors on PM2.5 and PM10 concentrations
Previous studies have shown a close relationship between meteo-

rological conditions and air pollution processes (Yoo et al., 2015).
However, the effects of meteorological factors on particulate pollution
were typically discussed in qualitative methods (Wang et al., 2010;
Chen et al., 2008). Therefore, the quantitative analysis of PM2.5 and
PM10 mass concentrations and meteorological parameters was discussed
in this section. The BP neural network was used to calculate the in-
fluence of various meteorological elements in Germany on PM2.5 and
PM10. The results showed that, the effects of meteorological elements on
PM2.5 and PM10 are similar except daily value snow depth (SnD) (Fig.
5). The temperature is the most important driving factor, that reached
21.1% and 35.6% (weight correlation) to PM2.5 and PM10, respec
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Fig. 3. Annual average mass concentrations of seven air pollutants (PM2.5, PM10, CO, SO2, O3, NOX, and NO2) maps obtained by Ordinary Kriging from 2008 to 2018.
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Fig. 4. The normalized coefficients of gaseous pollutants on PM2.5 and PM10.

Fig. 5. Impact of meteorological factors on PM2.5 and PM10 (FP, precipitation form (only rain, only snow, rain and snow); WS, a daily mean wind speed (m/s); PH, a daily precipitation
height (mm)?SD, a daily sunshine duration (h); SnD, a daily value snow depth (cm); C, a daily average of coverage (1/8); VP, a daily average of vapor pressure (hPa); AP, a daily mean air
pressure (hPa); RH, a daily average relative humidity (%); T, a daily average temperature (°C)).

tively. The second driving meteorological factors have slightly different
effects on PM2.5 and PM10. For PM2.5, the second driving factors are
snowfall thickness (20.7%) and wind speed (19.9%). For PM10, the sec-
ond driving factor is wind speed (17.4%).

Then, we performed spearman analysis to show the positive and
negative relationship between PM2.5, PM10 and meteorological factors
(Table S6). Generally, the PM2.5 were negatively correlated with mete-
orological factors, including FP, WS, PH, C, VP, and T. Following that,
the PM10 were also negatively correlated with meteorological factors,
including FP, WS, PH, C, VP, AP, and T. However, RH was positively
correlated both PM2.5 and PM10 but less impact. This result was sim-
ilar with previous study that RH has less impact to the PM concen-
tration, but its fluctuation will raise the concentration of PM (Zhang
et al., 2016). Moreover, it has already found that temperature (T)
and wind speed (WS) were essential meteorological predictors. For ex-
ample, low temperature could change the dynamics of air movement,
trap air pollutants, and create a build-up of pollution near the ground
(Zhang et al., 2018). Therefore, a change in temperature may effect
on the PM concentration. Accordingly, the higher the wind speed, the
cleaner air involved in pollutants per unit time. Moreover, under the
control of the strong wind generated by the cold air transit, the par-
ticles can hardly accumulate rapidly, so that the concentration of the

particulate matter can be maintained at a relatively low level for a long
time. The effect of snowfall (SnD) on PM2.5 is mainly the removal ef-
fect. During the process of snowfall, the aerosol particles can be cap-
tured by the Brownian diffusion or inertial wall-impacting processes,
thereby removing PM2.5 from the air. However, the effects of pressure
on PM2.5 and PM10 are relatively small, contradictory to the previous
study (Cheng et al., 2015). This phenomenon may be influenced by
the precipitation effect which played a major role in PM2.5 pollution re-
moval (Zalakeviciute et al., 2018). Meanwhile, to confirm that me-
teorological factors also affect particulate matter by affecting gaseous
pollutants. Therefore, we also analyzed the gaseous pollutants-meteoro-
logical factors correlation (Table S6). The results showed that gaseous
pollutants (CO, NO2, NOX, and SO2) have negative relations with wind
speed and temperature, and positively correlated with air pressure dur-
ing year-round, indicating the meteorological factors could affect the
variation of the gaseous pollutants as same as PM. In the previous study,
the similar trend was found in New York City (Ito et al., 2007). In
contrast, O3 has the opposite correlation with the above meteorologi-
cal factors compared to the other four gaseous pollutants. These trends
may be affected by different photochemical reaction in different season
(Khoder, 2009).
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3.4.3. Correlations between PM size fractions
The correlation between PM2.5 and PM10 showed a high positive cor-

relation, which consistent with several studies performed in California
(Motallebi et al., 2003), Netherland (Janssen et al., 2013), and
China (Zhou et al., 2016). These analyses may provide new knowl-
edge about source characterization of atmospheric particles, and help
to evaluate the situation of PM2.5 when the routine monitoring of PM10
is available (since the PM2.5 data is less or scarce in Germany). How-
ever, due to different sources, fine particles (PM2.5) and coarse particles
(PM10-2.5) should be considered as a separate class of pollutant (Payam,
2010). In our study, we found a high correlation between PM2.5 vs. PM10
(R = 0.96, p < 0.01) than PM10-2.5 vs. PM10 (R = 0.44, p < 0.01) (Fig.
6), indicating the PM2.5 concentrations are the major contributors to the
average PM10 concentrations at many sites in Germany. And the rela-
tion between PM2.5 vs. PM10-2.5 is weak but highly significant (R = 0.26,
p < 0.01), suggesting that PM2.5 and PM10-2.5 are generally influenced
by different sources. The similar report was found in the UK that the re-
lation between PM10-2.5 vs. PM2.5 is lower than PM10 vs. PM2.5 (Liu and
Harrison, 2011). Taken together, the PM2.5 and PM10-2.5 may have dis-
tinct different behaviour due to their various sources and properties con-
tribution, which further prove that coarse and fine particles have a dif-
ferent toxic effect in epidemiological studies (Wilson and Suh, 1997).

To further confirm the relation between PM2.5, PM10-2.5 and PM10,
the study has also analyzed the correlations in different types of ar-
eas (Figure S5), which showed the strong relations between PM2.5 and
PM10 in all the types of areas, especially in the urban area (R = 0.97,
p < 0.01). In addition, to further reflect this relation in the urban areas,
the study was continuously analyzed the relations in the different urban
functional areas (Figure S6). Industrial areas have the lowest correla-
tions for PM2.5 vs. PM10 and PM2.5 vs. PM10-2.5, comparing with others
three functional areas, and background area have the lowest correlations
for PM10-2.5 vs. PM10, comparing with other three functional areas, sug-
gesting that different source may be found in the different urban func-
tional areas.

Therefore, the source of PM can be analyzed through the ratio of
PM2.5 - PM10. It is well known that the fine particles primarily origi-
nate from combustion processes and gas-to-particle conversion processes
in the atmosphere. In terms of mass concentration, the higher the
PM2.5/PM10, the higher the contribution rate of the secondary particles;
the lower the ratio, the higher the contribution rate of the dust source.
By analyzing the ratio of PM2.5 - PM10 in different types of urban ar-
eas, it is found that urban background has the highest ratio (0.67), while
urban industrial area has the lowest ratio (0.55). The sparse vegetation
urban industrial areas may be one reason for the small ratio of PM2.5 to
PM10 (He et al., 2017).

3.4.4. Natural source contribution to PM10 in winter
Naturally, after snowing, the ground was covered by snow, which

made the particulate matter difficult to reach the atmosphere area,
hence, the contribution of air pollutant to atmospheric particulate mat-
ter based on natural source is limited (i.e., dust). Thus, in snowfall days,
atmospheric particulate matter mainly comes from fossil fuels and the
combustion of other organic matter (i.e., urban anthropogenic sources),
which has similar pollution source with gaseous pollutants. In this re-
gard, the natural source contribution of PM10 in winter can be inferred.

In order to estimate the natural source contribution of PM10 in the
winter, we selected the monitoring data of pollutants under ideal meteo-
rological conditions (i.e., snowfall days (daily value snow depth ≥ 5 cm)
and low speed wind). In that condition, it is difficult to obtain the crustal
elements and dust. The statistical monitoring data of pollutants after
snowing showed that the trend of particulate matter and gaseous pollu-
tants were completely similar, meaning that when PM10 concentration
was high, the similar trend was also found for CO (Fig. 7a). Considering
the relatively stable nature of CO in gaseous pollutants, the concentra-
tion of PM10 and CO was further analyzed by regression analysis (Fig.
7b), showing the strong relation between them (R = 0.86, p < 0.01).

The average ratio of PM10 to CO concentration is 5.3•10−2 in win-
ter snowfall days, which can be considered as the reference value P.
When the ratio of PM10 to the anthropogenic CO is greater than this
value, it can be assumed that PM10 also has other pollution sources,
mainly for surface contribution or external transportation, especially
if there are many surface sand sources or sand dust. Based on atmos-
pheric pollutant data collected from winter (Dec., Jan., and Feb.) during
2008–2018 in Germany, the ratios of PM10 to anthropogenic CO winter
are 6.0•10−2 (Dec.), 7.1•10−2 (Jan.), and 7.0•10−2 (Feb.) Based on the
value P (5.3•10−2), it can be estimated that the contribution of German
natural sources to atmospheric PM10 accounts for about 20.1% (5.58 μg/
m3) in winter, which is consistent with the previous study, that natural
sources contribute with 6 μg/m3 of mineral dust to the annual PM10 lev-
els in Eastern Spain (Rodrıguez et al., 2004).

4. Conclusions

This paper comprehensively used the particulate matter (PM2.5 and
PM10), gaseous pollutants (CO, NO2, NOX, SO2, and O3), and meteoro-
logical factors of the monitoring sites in Germany of the past 11 years
to analyze the pollution characteristics of particulate pollutants in Ger-
many. In this study, based on the Hurst index, the atmospheric pollu-
tants, specially PM2.5 and PM10, revealed a stable trend from 2008 to
2018 in Germany (H > 0.5). By analyzing the correlations of different
gaseous pollutants and meteorological conditions on the concentration
of PM2.5 and PM10 using Back Propagation Neural Network model, it

Fig. 6. The correlation between annual average concentrations of PM2.5 vs. PM10 (a), PM10-2.5 vs. PM10 (b), and PM2.5 vs. PM10-2.5 (c) base on 11 years of data collection all over Germany.
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Fig. 7. Daily variations of PM10 and CO in snowfall days (a) and the correlation between PM10 and CO (b) in winter.

was found that CO and temperature had greater correlations with PM2.5
and PM10 in Germany. Regarding on correlations between different PM
size fractions, a high correlation between PM2.5 vs. PM10 indicated that
the PM2.5 concentrations were the major contributors to the average
PM10 concentrations at many sites in Germany. And the weak correla-
tion between PM2.5 vs. PM10-2.5 suggested that PM2.5 and PM10-2.5 were
generally influenced by different sources. Based on typical PM10/CO ra-
tios obtained under ideal weather conditions (i.e., snowfall days (daily
value snow depth ≥ 5 cm) and low speed wind), it is conducive to
roughly estimate the contribution of natural sources. In winter, the
earth's crust contributed about 20.1% to PM10 (average 5.58 μg/m3).
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