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Mitochondrial disorders are monogenic disorders characterized by a defect in

oxidative phosphorylation and caused by pathogenic variants in one of over

340 different genes. The implementation of whole-exome sequencing has led

to a revolution in their diagnosis, duplicated the number of associated disease

genes, and significantly increased the diagnosed fraction. However, the

genetic etiology of a substantial fraction of patients exhibiting mitochondrial

disorders remains unknown, highlighting limitations in variant detection and

interpretation, which calls for improved computational and DNA sequencing

methods, as well as the addition of OMICS tools. More intriguingly, this also

suggests that some pathogenic variants lie outside of the protein-coding genes

and that the mechanisms beyond the Mendelian inheritance and the mtDNA

are of relevance. This review covers the current status of the genetic basis of

mitochondrial diseases, discusses current challenges and perspectives, and

explores the contribution of factors beyond the protein-coding regions and

monogenic inheritance in the expansion of the genetic spectrum of disease.

Keywords: genetics; diagnostics; mitochondrial disease; variants;

multiomics; noncoding; oxidative phosphorylation; metabolic disorders

Mitochondrial diseases are characterized by dysfunc-

tional mitochondria, caused primarily by defects in

oxidative phosphorylation (OXPHOS) or other essen-

tial mitochondrial functions [1,2]. However, it is note-

worthy that there is still no common ground

concerning the biochemical criteria employed to define

such diseases. The prevalence of mitochondrial disease

is estimated at 5–20 in 100 000 [1], but these values

are based on clinical diagnosis and can be biased

toward patients with clear symptoms, thus overlooking

patients with atypical or unspecific phenotype. A life-

time risk for a nuclear-encoded recessive mitochondrial

disease has been calculated at almost 1 in 2000 [2].

This makes it one of the most common and diverse

groups of metabolic disorders. In line with the lack of

a clear definition, mitochondrial diseases show extreme

heterogeneity in both clinical presentation and molecu-

lar cause and can arise with ‘any symptom, in any

organ or tissue, at any age, with any mode of inheri-

tance’ [3]. Such heterogeneity hampers both their diag-

nosis and management, and many patients remain in a

diagnostic odyssey, visiting different clinicians, repeat-

ing sometimes invasive tests, and even receiving a false

or conflicting diagnosis. Besides cofactor deficiencies

[4], there are still no curative treatments for mitochon-

drial disorders, and the treatment strategies are usually
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based on easing the clinical symptoms, and reducing

morbidity and mortality [5]. In recent years, we have

witnessed advent of personalized medicine and tar-

geted therapies, which go hand-in-hand with molecular

diagnostics. Thus, knowing the genetic cause of the

disease is becoming not only a matter of diagnostic

but also therapeutical relevance. The classic diagnos-

tics approaches in mitochondrial disorders are based

on an extensive characterization of clinical presenta-

tions, as well as the biochemical and histochemical

evaluation of the OXPHOS enzymes, followed by the

sequencing of candidate genes. However, slowly but

surely, such approaches are becoming replaced with

more systematic, ‘genetics-first’ ones [6]. Indeed, in the

last two decades, we have witnessed considerable

improvements in understanding of the molecular basis

of mitochondrial disorders. The biggest contribution

to these advances belongs to the next-generation

sequencing technologies (NGS), the application of

which in clinical genetics increased the diagnostic yield

and accelerated discoveries of novel disease genes.

Despite such improvements, a large fraction of pedi-

atric patients with a suspected mitochondrial disease

remains undiagnosed after DNA sequencing [7]. This

diagnostic gap calls for not only further improvements

in sequencing methods and analysis, but also a shift in

focus outside the protein-coding genes and monogenic

inheritance.

Here, we cover the genetic status of mitochondrial

disorders, from the history to the current standards in

diagnostics. We then discuss the limitations and chal-

lenges in the field and explore current methodological

and computational efforts that are being developed to

address them. Next, we move away from the conven-

tional protein-centric approach and delve into the non-

coding DNA regions and hidden micropeptides.

Finally, we touch on factors beyond the monogenic

inheritance that could have significant effects on the

phenotypic presentation. Considering all these factors

and the application of novel methodologies will create

a more complete genetic architecture of mitochondrial

disorders, and pave the way towards the improved

diagnostics and the development of targeted therapies.

Diagnostics of mitochondrial
disorders: current status

Suspecting a mitochondrial disease: a

multidisciplinary challenge

Traditional diagnosis of a mitochondrial disorder is

based on extensive characterization of clinical presen-

tations and laboratory evaluations in which the

biochemical and histochemical examinations of mito-

chondrial function often play a central role [8]. These

findings are then followed by a genetic testing [6].

Concerning the clinical diagnosis, some patients may

present with unique combinations of features that can

be grouped into a discrete clinical syndrome [1], in

turn guiding the genetic analysis (Fig. 1 left). As this

applies only for a minority of disorders, it has been

suggested to clinically suspect a mitochondrial disorder

when seemingly unrelated organs are simultaneously

affected [9]. For further elucidation of the disease, the

biochemical and histochemical evaluations of tissue

biopsies have conventionally been the first steps in the

diagnostic algorithm [6,8]. These include measurements

of OXPHOS enzyme activities and immunohistochemi-

cal and histoenzymatic assays following muscle biopsy,

as well as measurement of lactate, pyruvate, amino

acids, and organic acids levels in blood, urine, and

spinal fluid [6]. However, these measurements often

show low specificity and sensitivity, and are without

standardized guidelines [8]. Thus, although they can

indicate a mitochondrial disease, they cannot rule it

Fig. 1. Diagnostic approaches for mitochondrial disorders.

Schematic showing two approaches to the molecular diagnostics

of mitochondrial disorders (‘the phenotype first’ on the left and ‘the

genetics first’ on the right) with the suggested follow-up steps

upon the negative or inconclusive genetic finding.
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out, especially in the bodily tissues that are not investi-

gated. Finally, observed defects can be due to sec-

ondary involvement of mitochondria in other diseases

[10]. For the purpose of facilitating diagnosis, mito-

chondrial disease criteria have been developed [11,12].

These clinical scoring systems indicate the probability

of mitochondrial disease but cannot differentiate

between primary and secondary OXPHOS impairment

or pinpoint any precise genetic causes [12,13]. Alto-

gether, it is clear that this approach, although thor-

ough, is costly, time-consuming, and sadly often not

reliable and conclusive. For these reasons, the ‘genet-

ics-first’ approach, coupled with both clinical and bio-

chemical investigations, is becoming more widely

adopted (Fig. 1 right): This approach not only helps

diagnosing mitochondrial disorders that may have

been overlooked clinically and/or biochemically, but

also enables the identification of mitochondrial disease

phenocopies, other genetic disease, and multiple

genetic disorders in a given patient [14].

Mitochondrial disease genes

In the emerging era of precision medicine, definite

genetic diagnosis is becoming a cornerstone of safe

medical practice [15]. For mitochondrial diseases,

molecular diagnosis is challenging due to the hetero-

geneity of disease on both clinical and genetic levels.

To start with, the phenotype–genotype association is

often not straightforward. Variants in different genes

can cause the same phenotype. A striking example is

Leigh syndrome, with which variants in more than 75

genes are associated and this number is still in expan-

sion [16]. Vice versa, variants in the same gene, even

the same variant, can cause different clinical symp-

toms. This is most pronounced not only in pathogenic

mtDNA point mutations [17], but also in nuclear

genes encoding for proteins involved in the mtDNA

synthesis and maintenance [18]. For example, numer-

ous mutations in POLG can result in a spectrum of

clinical manifestations, recessive or dominant mode of

inheritance, and age of onset from the neonatal period

to late adulthood [19].

As outlined in Schlieben and Prokisch [20], the num-

ber of genes associated with mitochondrial disease is

dynamic and varies dependent on the criteria applied,

which encompass clinical, genetic, biochemical, func-

tional, and protein localization. The numbers vary

between 270 disease genes, which fulfill all those crite-

ria, and more than 400 fulfilling some of the criteria.

Within the GENOMIT project (http://genomit.eu/), we

compiled a list currently encompassing 343 genes, for

which pathogenic variants have been associated with a

defective OXPHOS, involved in a variety of mitochon-

drial functions (Fig. 2) [20]. For a better understand-

ing of disease genetics, several distinct properties

should be considered. First, due to the dual genetic

origin of the mitochondrial proteome, pathogenic vari-

ants can reside in both nuclear DNA and mitochon-

drial DNA. Indeed, out of ~ 1200 mitochondrial

proteins, only 13 are encoded by the mtDNA, the rest

is encoded by the nuclear genome and imported

[21,22]. Pathogenic variants in the mtDNA are respon-

sible for � 80% of adult-onset cases of mitochondrial

disease, and � 20% of pediatric ones [1]. Second,

mitochondrial diseases exhibit any mode of inheri-

tance: maternal, X-linked, autosomal recessive (AR),

autosomal dominant (AD), and de novo. As the vast

majority (89%) of associated disease genes are nuclear,

most of them are inherited in an AR fashion, but

interestingly, for variants in 23 genes, diseases are

inherited as both dominant and recessive, arguing for

distinct molecular pathomechanisms [18] (Fig. 2). For

example, dominant and often de novo missense vari-

ants in SSBP1, encoding for a mitochondrial single-

strand binding protein that binds and stabilizes the

mtDNA during replication, lead to severe early-onset

optic atrophy, whereas a homozygous variant extended

the phenotype with cardiomyopathy, nephropathy,

ataxia, and growth retardation with recessive inheri-

tance [23]. Although evaluating the recessive type of

variants is straightforward, distinguishing between

benign and dominant pathogenic variants is much

more challenging. Finally, the assessment of the

mtDNA variants is complicated due to characteristics

of the mitochondrial genome such as variable copy

number in cell and high mutation rate [24], and

because a variant can be present in all (homoplasmy)

or a proportion of mtDNA molecules (heteroplasmy).

For the biochemical defect to occur, a certain percent-

age of pathogenic mtDNA molecules needs to be

exceeded in a cell. This threshold is often tissue- and

variant-specific but generally considered to be above

60% [25]. Moreover, heteroplasmy levels vary across

cells and tissues, and change over time, making the

phenotype–genotype association more challenging [26].

To date, hundreds of mtDNA variants have been

reported to be associated with a disease, but only 95

have a confirmed pathogenic status, defined by strong

evidence of the pathogenicity coming from several lab-

oratories [27] (Table 1). This reflects the difficulties in

interpretation of mtDNA variants (reviewed in Ref.

[28]). Nevertheless, pathogenic mtDNA variants can

be classified as point mutations and single large-scale

rearrangements (deletions and insertions) [29,30]. It is

noteworthy that multiple mtDNA deletions and
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depletions usually occur secondary, due to a primary

defect in nuclear genes, typically with a role in the

mtDNA replication and synthesis [31].

Discovery of pathogenic variants

In the last two decades, we have witnessed rapid devel-

opments of technologies for assessing genetic variation

and gene regulation, even on a cellular level. The util-

ity of these technologies was very quickly tested in

clinical practice [32], including also diagnostics of

mitochondrial disorders. To further support applica-

tion of these technologies in clinical and basic

research, publically available databases have been cre-

ated, providing catalogs of functional annotation of

the genome and genetic variation across populations,

as well as clinical associations of genes and variants,

and even patient records. These milestones are shown

in Fig. 3.

Since the first discovery of mitochondrial disease-

causing variant in the mtDNA in 1988 [61], technolo-

gies for genetic testing have evolved from the targeted

mtDNA and candidate gene Sanger sequencing, to the

more unbiased and systematic technologies based on

the NGS [62] (summarized in Fig. 4). Although candi-

date gene and mtDNA sequencing remain fast and

cost-effective methods for genetically and phenotypi-

cally well-defined syndromes, such as the Leber’s

hereditary optic neuropathy (LHON)* [62] (Box 1),

the genetic heterogeneity of mitochondrial disorders,

together with often unspecific biochemical and meta-

bolic findings, makes the choice of feasible number of

Fig. 2. Mitochondrial disease genes classified by their function. The 343 disease genes compiled in the GENOMIT consortium (http://ge

nomit.eu/) are divided into six categories based on the functional roles of their encoding proteins. Genes that belong in more categories are

indicated by an asterisk (*). Colors of letters indicate the mode of inheritance the genes were described with: AR in black (n = 266),

maternal in orange (n = 36), AD in blue (n = 8), X-linked dominant in purple (n = 6), X-linked recessive in pink (n = 4), and a combination of

AR and AD inheritance in green (n = 23).
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Table 1. Pathogenic mtDNA variants with a confirmed status (as

of January 2021). Table created in accordance with Ref. [27].

Index Gene Position and variant

1 MT-ATP6 m.8851T>C

2 MT-ATP6 m.8969G>A

3 MT-ATP6 m.8993T>C

4 MT-ATP6 m.8993T>G

5 MT-ATP6 m.9035T>C

6 MT-ATP6 m.9155A>G

7 MT-ATP6 m.9176T>C

8 MT-ATP6 m.9176T>G

9 MT-ATP6 m.9185T>C

10 MT-ATP6 m.9205_9206delTA

11 MT-ATP8/6 m.8528T>C

12 MT-CO1 m.7445A>G

13 MT-CYB m.14849T>C

14 MT-CYB m.15579A>G

15 MT-ND1 m.3376G>A

16 MT-ND1 m.3460G>A

17 MT-ND1 m.3635G>A

18 MT-ND1 m.3697G>A

19 MT-ND1 m.3700G>A

20 MT-ND1 m.3733G>A

21 MT-ND1 m.3890G>A

22 MT-ND1 m.3902_3908ACCTTGCinv

23 MT-ND1 m.4171C>A

24 MT-ND3 m.10158T>C

25 MT-ND3 m.10191T>C

26 MT-ND3 m.10197G>A

27 MT-ND4L m.10663T>C

28 MT-ND4 m.11777C>A

29 MT-ND4 m.11778G>A

30 MT-ND5 m.12706T>C

31 MT-ND5 m.13042G>A

32 MT-ND5 m.13051G>A

33 MT-ND5 m.13094T>C

34 MT-ND5 m.13379A>C

35 MT-ND5 m.13513G>A

36 MT-ND5 m.13514A>G

37 MT-ND6 m.14459G>A

38 MT-ND6 m.14482C>A

39 MT-ND6 m.14482C>G

Table 1. (Continued).

Index Gene Position and variant

40 MT-ND6 m.14484T>C

41 MT-ND6 m.14487T>C

42 MT-ND6 m.14495A>G

43 MT-ND6 m.14568C>T

44 MT-RNR1 m.1494C>T

45 MT-RNR1 m.1555A>G

46 MT-TA m.5650G>A

47 MT-TE m.14674T>C

48 MT-TE m.14709T>C

49 MT-TE m.14710G>A

50 MT-TF m.583G>A

51 MT-TF m.616T>C

52 MT-TG m.10010T>C

53 MT-TH m.12147G>A

54 MT-TH m.12201T>C

55 MT-TI m.4298G>A

56 MT-TI m.4300A>G

57 MT-TI m.4308G>A

58 MT-TK m.8306T>C

59 MT-TK m.8313G>A

60 MT-TK m.8340G>A

61 MT-TK m.8344A>G

62 MT-TK m.8356T>C

63 MT-TK m.8363G>A

64 MT-TL1 m.3243A>G

65 MT-TL1 m.3243A>T

66 MT-TL1 m.3256C>T

67 MT-TL1 m.3258T>C

68 MT-TL1 m.3260A>G

69 MT-TL1 m.3271delT

70 MT-TL1 m.3271T>C

71 MT-TL1 m.3280A>G

72 MT-TL1 m.3291T>C

73 MT-TL1 m.3302A>G

74 MT-TL1 m.3303C>T

75 MT-TL2 m.12276G>A

76 MT-TL2 m.12294G>A

77 MT-TL2 m.12315G>A

78 MT-TL2 m.12316G>A

79 MT-TM m.4450G>A

80 MT-TN m.5690A>G

81 MT-TN m.5703G>A

82 MT-TN m.5728T>C

83 MT-TP m.15990C>T

84 MT-TQ m.4332G>A

85 MT-TS1 precursor m.7445A>G

86 MT-TS1 m.7471_7472insC

87 MT-TS1 m.7497G>A

88 MT-TS1 m.7510T>C

89 MT-TS1 m.7511T>C

90 MT-TS2 m.12258C>A

91 MT-TV m.1606G>A

92 MT-TV m.1630A>G

93 MT-TV m.1644G>A

94 MT-TW m.5521G>A

95 MT-TW m.5537_5538insT

BOX 1. LHON

LHON is a mitochondrial disorder characterized by

degeneration of retinal ganglion cells (RGCs) and

their axons that usually begins in adolescence or

young adulthood, and ultimately leads to an acute or

subacute loss of central vision. In more than 95% of

nonsporadic cases, it is caused by three distinct point

mtDNA variants at positions m. 11778, 3460, or

14484 [62].
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candidate genes difficult. Indeed, screening of 64 can-

didate genes established a diagnosis in just 11% of

cases [63]. On the other hand, the NGS era, beginning

with ACAD9 in 2010 [57], caused a revolution in

genetics of mitochondrial disease. Apart from

increasing diagnostic rates and expanding the geno-

type–phenotype association, it accelerated discovery of

novel disease genes, which is over 20 per year since

2012 [64]. Not to be overlooked, such impact comes

also thanks to developments of bioinformatics tools

Fig. 3. Milestones in genetics and genetic diagnosis of mitochondrial disorders. Timeline of major computational, data, technological, and

diagnostic milestones, as well as their application to the diagnostics of mitochondrial disorders.

Fig. 4. Present and future OMICS approach for discovery of pathogenic variants. Based on the central dogma of molecular biology, the

figure depicts the flow of genetic information and the OMICS technologies together with the observations that can be provided by each.
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for sequence alignment, annotation, variant calling,

and prioritization [65], as well as shared databases for

variant curation and variant frequencies in population

[38,43].

Starting with the more targeted approaches, applica-

tion of NGS to sequence mtDNA is a routine first step

in many diagnostic centers, especially for the cases with

the adult onset and where phenotype is highly evocative

of an mtDNA etiology. Apart from providing variant

discovery, it also allows exact measurement of hetero-

plasmy levels [66]. Analysis is usually performed in

blood and urine in pediatric-onset cases [67], but more

commonly in muscle in adult-onset ones, as the affected

tissue is most informative and causative variants may be

undetected in blood due to tissue-specific heteroplasmy.

This especially refers to progressive external ophthalmo-

plegia (PEO) and Kearns–Sayre syndrome, in which

causative single large-scale mtDNA deletions are mostly

affecting the postmitotic skeletal muscle [68]. Neverthe-

less, one must be cautious in interpreting negative

results, as many pathogenic mtDNA variants are

restricted to the affected tissues.

Expanding the diagnostic focus to the nuclear genes,

NGS gene panels provide a targeted, deep sequencing of

the predefined sets of mitochondrial disease genes, as well

as candidate genes encoding for the proteins involved in

essential mitochondrial function, whose disruption is thus

likely to cause a disease. Available panels range from 100

genes associated with complex I efficiency to the ‘MitoEx-

ome’, targeting the predicted mitochondrial proteome

[69]. The success rate of panels varies from 7% to 31%

[69–74]. Although panels do offer advantages in the

higher coverage of targeted regions, as well as easier data

interpretation, the constant updates of reported disease

genes, often low phenotype–genotype correlation, the

inability to surly define a mitochondrial disease by clinical

symptoms, and lower diagnostic yield compared to the

whole exome sequencing (WES) have made the latter the

more preferable choice.

In modern diagnostics, WES has become a desired

first-tier tool of investigation, especially in the cases of

early-onset mitochondrial disease, where the cause of

disease likely lies in the nuclear DNA [6] and because

it also allows the analysis of mtDNA in the given tis-

sue [75]. Although WES captures only 2% of the gen-

ome that encodes proteins, this region includes up to

99% of reported pathogenic variants [38]. By revealing

almost 9000 protein-affecting variants per individual

[44], WES enables not only discovery of pathogenic

variants, but also novel disease genes, making it an

effective sequencing tool in diagnostics [6,76]. Within

rare disease-diagnostic cohorts, mitochondrial diseases

sit at the upper end of the WES diagnostic rate [11],

ranging from 35% to 70% across nine published

cohorts [6,58,73,77–82].
Finally, limitations of WES regarding the genome

coverage can be overcome with whole genome

sequencing (WGS). It enables the identification of

structural variants (SVs), deep intronic variants, and

some coding regions in which WES shows a sequenc-

ing bias [83,84], revealing in summary 4–5 million vari-

ants per individual [85]. Based on PCR-free protocols

and requiring less starting material, WGS has been

proven effective in neonatal and pediatric intensive

care units, where a rapid diagnosis can significantly

influence the outcome [86]. So far, WGS was imple-

mented in a single mitochondrial disease cohort, reach-

ing diagnosis in 55% of 40 patients [60]. In singleton

approaches, it led to the discovery of pathogenic vari-

ants elusive to WES in three novel disease genes

[55,87,88].

Genotype–phenotype correlations: (inter)national

resources/approaches

Research and clinical trials on rare disease are hampered

by the small sample size. For this reason, patient registries

and collaborative networks present key tools to gather

data and promote collaborations between clinicians and

researchers, altogether providing better natural disease

history data, and facilitating genetic diagnosis and clinical

trials. Mitochondrial disease research has benefited from

GENOMIT, a global network of eight mitochondrial dis-

orders research centers (http://genomit.eu/), and a num-

ber of national networks for mitochondrial disorders:

Mitocon (Italy, https://www.mitocon.it/), Mitochondrial

Patient Cohort (UK, https://www.newcastle-mitochond

ria.com/clinical-professional-home-page/mitochondria

l-cohort/), mitoNET (Germany, http://mitonet.org/),

NAMDC (USA, https://www.rarediseasesnetwork.

org/cms/namdc), and Mito Foundation (Australia,

https://www.mito.org.au/), and J-MO-Bank (Japan,

http://mo-bank.com/).

Addressing the diagnostic gap: new
tools in diagnostics

Limitations of current genetic analysis

The rise and implementation of the sequencing tech-

nologies in human genetics have improved our diag-

nostic capabilities dramatically, and these advances are

predicted to continue. NGS offers us a high-through-

put, genome-wide, automatic approaches with simpli-

fied protocols and statistical analysis that apply to all

genetic disorders. As outlined above, WES has become
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a widely accepted tool for the molecular diagnosis of

genetic diseases and novel disease gene discoveries and

tremendously improved our understanding of Men-

delian disorders [89]. Yet, the present diagnostic gap

also calls for assessing the bottlenecks: the issue of

data sharing concerning the genetic privacy, the need

for better bioinformatics tools for variant calling and

interpretation, and overall computational infrastruc-

ture. Indeed, a significant fraction of the mitochondrial

disease patients remains undiagnosed, about half in

WES studies [59]. Several reasons could lie behind the

negative results. Inconclusive WES can be attributed

to its limitation in variant detection, but a similar

diagnostic yield after WGS [60] suggests that the rea-

sons behind it rather lie in variant prioritization and

interpretation. Although bioinformatics tools for the

sequence alignment, variant calling, functional annota-

tion, and in silico prediction are constantly being

improved [90], there are still no recommended tools

for clinical assessments of noncoding, splicing, synony-

mous, and UTR variants [91,92]. Additional challenges

arise in the mtDNA, where NGS raised the issues of

interpretation of very low mtDNA mutational loads

and the coexistence of mtDNA variant [28]. Indeed, it

has been reported that even low-level heteroplasmy

mtDNA variants can cause a disease [93,94]. Without

functional validation, these variants remain variants of

uncertain significance (VUS) (Fig. 1). As VUS com-

pose 47% of all reported variants [38], it is clear that

additional functional evidence apart from sequence

information predicted consequence on a transcript/

protein level, and frequency is needed to annotate

variant´s pathogenicity. Trio sequencing, where the

index and parents are sequenced simultaneously, has

been shown to be more effective than singleton one

despite higher costs and longer data analysis [95], and

is thus increasingly applied in diagnostics [86,95–97].
Such analysis presents a powerful tool not only for

the interpretation of heterozygous variants in domi-

nant disease genes but also for the detection of

de novo variants and variant phasing. De novo

variants can be more harmful than inherited ones and

are recognized as a major cause of severe early-onset

genetic disorders [98]. Interestingly, an increasing

number of studies in recent years have reported

de novo pathogenic variants across mitochondrial dis-

ease genes in cases with a suspected recessive etiology

[99–104]. Moreover, in case of SLC25A4, the pheno-

type associated with de novo variant did not resemble

previously reported dominant or recessive ones [99].

Having this in mind, we recommend the sequencing

of entire family whenever possible. Next,

complementary tools to the DNA analysis could pro-

vide an additional level of functional evidence and

thus a better understanding of variant pathogenicity

[105] (Fig. 1). Finally, shortcomings of short-read

sequencings concerning the variant detection, as well

as sequencing of bulk population, can be overcome

by long-read and single-cell sequencing technologies

(Box 2). A summary of the currently implemented

and developed tools is provided in Fig. 4.

BOX 2. Long-read sequencing technologies

Commercially available LRS methods include Pacific

Biosciences’ (PacBio) single-molecule real-time

(SMRT) and Oxford Nanopore Technologies’ (ONT)

nanopore sequencing [151]. SMRT [152] sequencing is

currently more developed and therefore diagnostically

applicable. The main reason is that its errors are rela-

tively randomly distributed [152] and can be overcome

with increased read depths [153]. Library preparation

requires larger amounts of DNA (at least 5 mg) and

includes the generation of circularized target DNA

molecules by the hairpin sequencing adaptors (the

SMRTbell) [154]. The method is based on special flow

cells with wells, termed zero-mode waveguides, whose

bottom has a fixed single polymerase. Polymerases

bind single DNA molecules and incorporate labeled

bases, upon which the fluorescent signal is detected in

real time by a camera. On the other side, nanopore

sequencing is based on a membrane that contains a

nanopore linked to a polymerase or helicase [46]. As

the single DNA molecule passes through the nano-

pore, the ionic current fluctuations that occur across

the membrane get detected and amplified [46,155]. As

opposed to SMRT, its errors are more systematic and

related to the features of the DNA fragments, and

thus more difficult to overcome [156].

Single-cell sequencing refers to next-generation

sequencing of the genome or transcriptome of individ-

ual cells, providing a high-resolution overview of sin-

gle-cell heterogeneity on a global scale. Single-cell

genome sequencing workflow is based on single-cell

isolation, DNA extraction, amplification of DNA

[178,179], and subsequent library preparation and

sequencing using the standard NGS protocols [180].

In addition, currently the most employed single-cell

technology is the single-cell RNA-seq, first described

in 2009 [47,181]. It is based on sequencing of cDNA

of a previously isolated viable cell that was exponen-

tially amplified by PCR or in vitro transcription

[47,182].
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Complementary tools to DNA analysis

Transcriptomics

Following the central dogma of molecular biology,

RNA analysis, revealing the effect of the variant on a

transcript, can facilitate variant interpretation and (re)

prioritization, especially for the noncoding variants

[106]. Although the diagnostic focus lies in the protein

as a product of gene expression, up to 30% of patho-

genic variants impact RNA and fall within the non-

coding regions [107,108], and up to 10% of pathogenic

exonic variants affect splicing [109], suggesting that

transcript disruption is a more occurring pathomecha-

nism than often considered. Although RT-PCR is fre-

quently used to assess the effect of splice variants,

RNA-sequencing (RNA-seq) offers the systematic

analysis of the cellular transcriptome in the form of

both sequence and transcript levels [106]. It is becom-

ing a companion to DNA sequencing in diagnostics.

To date, six studies reported its diagnostic utility in

monogenic diseases, reaching a diagnostic yield of

between 8% and 36% over DNA sequencing alone in

cohorts of 63–115 patients [54,55,110–113]. With

RNA-seq detecting up to 15 000 expressed genes, these

studies implemented different computational tools to

systematically detect three aberrant transcript events

that can be disease causative: aberrant expression level,

aberrant splicing, and monoallelic expression [114]

(Fig. 4). In addition, calling variants on RNA-seq can

provide information about variants in regions not well

covered by WES, such as the UTRs and introns,

exemplified by detection of a pathogenic heterozygous

50 UTR variant in GMPPB [111]. The published

RNA-seq studies based their analysis on in-house

databases, where patients serve as controls to each

other [55], as well as publically available ones, such as

GTEx [110]. Both approaches proved as successful.

Diagnostic utility of RNA-seq has been shown on

mitochondrial diseases, where a study on skin-derived

fibroblasts led to a diagnosis in 10% of previously

WES-undiagnosed cases [55]. There, a manageable

number of aberrant transcript events were detected: a

median one aberrantly expressed gene, five aberrant

splicing events, and six monoallelically expressed rare

variants. Such approach also enabled discovery of

novel disease gene, TIMMDC1, encoding a complex I

assembly factor. Here, RNA-seq captured aberrant

expression and splicing in the transcript in two unre-

lated individuals, caused by a deep intronic variant

that was not detected by WES [55]. Despite encourag-

ing results regarding the reported diagnostic yield,

important considerations for the application of RNA-

seq in diagnostics should be taken. As tissues are

characterized by unique gene expression patterns,

ideally the RNA source material should provide an

adequate proxy of gene expression and splicing in the

disease-relevant tissue. In a diagnostic setting, this tis-

sue specificity could potentially hamper gene detection

as clinicians´ choice is usually restricted to easily acces-

sible blood and skin biopsies [115]. More invasive

skeletal muscle biopsies are also sometimes available

from patients with mitochondrial and muscular disor-

ders [6,54,55,111]. Alternative approaches could be to

reprogram the available cells into induced pluripotent

stem cells [116] or transdifferentiate them into ones

representing the disease-relevant tissues [111,116], but

such approaches are more laborious, time-consuming,

and therefore only applicable to research. For mito-

chondrial disease investigation, we are in a more privi-

leged position due to the ubiquitous role of

mitochondria throughout the organism. Indeed, over

80% of mitochondrial disease genes are detected

across a range of tissues [18]. A study of Kremer et al.

[55] was performed on skin-derived fibroblasts, which

are, apart from being easily obtainable, also an estab-

lished biological model for the functional validation of

potential pathogenic variants in mitochondrial disor-

ders [117]. Although not representing the affected tis-

sue, their usage may enable easier distinguishing

between causal gene and its downstream effects, as the

consequence of the causal gene defect on the other

genes is less prevalent [118]. Regarding RNA-seq data

analysis, it has been simplified by the recent develop-

ments of specialized methods that detect aberrant tran-

script defects: OUTRIDER [119] for aberrant

expression, LeafCutterMD [120], SPOT [121], and

FRASER [122] for splicing outliers, and a method

based on a negative binominal test [55] and ANEVA-

DOT [123] for monoallelic expression. The computa-

tional pipeline DROP offers an all-in-one solution,

integrating preprocessing steps, quality control, and

outlier detection [124]. As after the pioneer studies in

2017 more studies emerge every year, it is expected

that RNA-seq will become a routine part of genetic

diagnostics in foreseeable future.

Proteomics

Transcriptome analyses remain inconclusive for mis-

sense variants and underestimate the effects of post-

transcriptional and post-translational regulation. The

effect of the variant may not be detected by RNA-seq

but may change the protein levels. Thus, determining

protein levels, as well as the protein/RNA ratios, is

important for the understanding human physiology

and disease, as well as gene regulation [125,126]. For
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the systematic analysis of the cellular proteome, pro-

teomics can be implemented. This mass spectrometry

analysis of protein lysates provides information on

protein abundance. Systematic proteomics promises

detection of aberrantly expressed proteins [55], as well

as quantification of protein complexes [127] (Fig. 4).

In doing so, it can replace the laborious and targeted

western blot analyses. This could be of considerable

benefit in mitochondrial diseases that are characterized

by OXPHOS defect and where missense variants pre-

sent the most common type of pathogenic variants

[59]. To date, proteomics has been reported once as a

diagnostic tool [128], where analysis of 150 fibroblasts

cell lines from undiagnosed patients with suspected

mitochondrial disorders enabled validation of 44%

missense VUS, and novel diagnosis in 12% of cases.

Previously, singleton proteomics provided functional

validation of a VUS in three cases, as well as assessed

their effect on complex I and mitoribosome, respec-

tively [55,129,130]. For example, it showed lack of

detectable TIMMDC1 and decreased levels of complex

I subunits, confirming the loss-of-function effect in

TIMMDC1 detected by RNA-seq, and going in line

with the role of this protein in complex I assembly

[55]. It also provided functional validation for the bial-

lelic variants in MRPS34 in a patient with Leigh syn-

drome and combined OXPHOS defects, showing that

they lead to not only depletion of MRPS34, but also

reduction in all other small mitoribosome protein sub-

units, as well as complex I and IV protein subunits

[129]. Despite such encouraging results, wider applica-

tion of proteomics is limited by the still incomplete

coverage of cellular proteins and tissue specificity. For

example, it detects ~ 8000 proteins in fibroblast cell

lines [128]. In addition, it detects the effect of variants

on the protein stability and abundance of protein com-

plexes [128] but does not provide information on pro-

tein activity and only limited information on physical

interactions, which was reported as the main effect of

genetic variant [131,132].

Metabolomics

Another layer of information on the top of the DNA

sequence may be provided by metabolomics. Based on

mass spectrometry of small molecules, this OMICS

technology enables the detection and quantification of

thousands of small molecule metabolites in a single

assay [133]. Although in a clinical setting, metabolo-

mics has been applied for biomarker discovery [134],

developments in its analytics and methods for data

analysis expanded its application to the studies of dis-

turbed metabolic pathways [135], as well as the variant

interpretation [136] (Fig. 4). For mitochondrial disor-

ders, metabolomics has been rarely used as a study

tool, probably due to the small number of well-charac-

terized disease samples (< 100) and large disease

heterogeneity. Metabolic investigation of very few

metabolites (lactate, pyruvate, alanine, TCA cycle

intermediates, ethylmalonic acid, 3-methylglutaconic

acid, dicarbonic acids, and acylcarnitines) belongs to

the routine diagnostic [18]. These metabolites may be

employed as biomarkers, but still have low sensitivity

and specificity [137]. Fibroblast growth factor 21

(FGF21) and growth/differentiation factor 15

(GDF15) have been introduced as valuable serum

biomarkers in patients with mitochondrial diseases,

showing high sensitivity and specificity [138,139]. As

their value is yet to be shown in larger cohorts, current

studies rather argue for the usage of a combination of

biomarkers (‘metabolic biosignatures’) as a screening

method [140–142]. For diagnostic purposes, metabolo-

mics was used to confirm defects in proline metabolism

due to ALDH18A1 variants [55], as well as metabolic

interpretation of OPA1 variants [143]. However, a

large-scale study with more than 100 samples and mea-

sured metabolites has not been published yet for mito-

chondrial disorders, although it proved of great value

for the diagnostics of inborn errors of metabolism,

where it showed potential to provide key diagnostic

metabolites [144]. Like all technologies, metabolomics

has limitations. Measured metabolite levels are results

of not only the primary genetic defect, but also the

impact of genetic background and environmental

exposures [145]. In addition, differences in metabolite

properties influence their detection, and our knowledge

of metabolic pathways is still far from complete [133].

This altogether makes the metabolomics data more

difficult to interpret.

New sequencing technologies

Despite the Human Genome Project being completed

in 2003, the complexity and repetitiveness of the

human genome still present a major in the analysis of

the human genome. Both WES and WGS belong to

the second-generation DNA, massively parallel, short-

read sequencing methods. These methods generate

short reads (� 150–300 bp) and require template

amplification, resulting in copying errors, amplification

biases, and loss of base modification information,

which ultimately brings certain limitations to the anal-

yses. Even with the constant improvements of tech-

nologies and bioinformatics algorithms, these methods

are not able to accurately map, or even assemble, all

reads originating from regions harboring structural
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variation [146], pseudogenes, or homologous regions,

highly polymorphic regions, and repetitive sequences.

As a consequence, some genetic variants are not accu-

rately called [147]. In addition, short-read sequencing

provides limited variant phasing information, which is

crucial for the demonstration of compound heterozy-

gosity in cases of the AR disease, especially if parental

samples are not available for the segregation analysis.

The development of third-generation DNA sequencing

methods or long-read sequencing (LRS)* promises to

overcome these limitations. Based on PCR-free, real-

time, single-molecule sequencing, these technologies

generate fast (within 2–10 h) reads > 10 kb in average

[148], lack amplification biases and can detect base

modifications, such as methylation patterns [149,150]

(Box 2). These features promise high-resolution

de novo genome assembly [157], mapping, identifica-

tion of transcript isoforms [158], and detection of epi-

genetic variation and complex regions of the genome

[159] (Fig. 4). Although LRS comes with higher error

rates, the base calling accuracy has improved in recent

years, with current error rates reported to be below

1% for SMRT [160] and < 5% for nanopore sequen-

cers [46]. LRS is still not a part of routine diagnostics;

however, recent studies highlighted its role in resolving

clinically relevant genomic regions that were previously

problematic to sequence [161]. Indeed, in several stud-

ies it led to the identification of disease-causing locus

[56] and SVs [53], enabled sequencing of pathogenic

repeat expansions [162] and mapping of highly poly-

morphic regions [163], resolved variant phasing to

determine the parental origin of variants or study

mosaicism [164,165], and helped discriminate genes of

interest from its homolog pseudogenes [166]. For

genetic diagnosis of mitochondrial disease, LRS could

prove useful for assessing the ATAD3 gene cluster,

composed of three highly homologous genes formed

via tandem segmental duplication: ATAD3C,

ATAD3B, and ATAD3A. Due to the high sequence

homology among the genes, the ATAD3 region exhi-

bits structural instability and is prone to nonallelic

homologous recombination (NAHR), which can result

in copy number variations (CNVs) [167]. Indeed, a

variety of pathogenic variants has been reported in this

locus, including the (de novo) dominant and recessive

SNVs and CNVs [100,168–171]. LRS was recently

employed to validate the presence of chimeric

ATAD3A/ATAD3C gene in one patient with a de novo

ATAD3 duplication [172]. As emerging studies argue

the higher incidence of ATAD3 as a cause of pediatric-

onset disease, LRS may help overcome the challenges

in assessing its sequence. In addition, LRS could

replace PCR and Southern blotting in testing for

mtDNA deletions. Single study on mitochondrial dis-

ease cohort reports that LRS is able to detect mtDNA

deletions, but has issues with determination of break-

points and false-positive rates [173]. Thus, further

improvements in the method and bioinformatic tools

are needed to confidently detect pathogenic mtDNA

SVs. Overall, the higher costs, more demanding library

preparation, and still immature tools for data analysis

are standing in the way of more routine clinical imple-

mentation [174,175], and LRS has been mainly used in

combination with short-read sequencing or as a fol-

low-up tool for the undiagnosed cases. Yet, constant

improvements in all aspects suggest that LRS will

move forward from the current targeted approaches in

foreseeable future.

Present diagnostic studies focus on germline vari-

ants, frequently overlooking cell-to-cell variability.

However, with the rise of single-cell sequencing* in the

last decade, we have a possibility of a comprehensive

analysis of individual cells [176] on both genome and

transcriptome levels [47,177] (Box 2, Fig. 4). This

helps resolving heterogeneous cell populations and dis-

covering rare cell subpopulations [183,184]. Single-cell

genomic sequencing enables the detection of cell-speci-

fic somatic DNA mutations. Studies employing the

method revealed surprisingly large genomic diversity

and de novo mutations arising from germ cells

[185,186], as well as the presence of private and clonal

somatic CNVs in neurons [187]. Recently, Ludwig

et al. reported single-cell mtDNA sequencing [188] to

detect mtDNA mutations and heteroplasmy on the

level of an individual cell, and use them as genetic bar-

codes for clonal and lineage tracing. Such methods will

improve recording of heteroplasmy and its impact on

mitochondrial disorders caused by the mtDNA vari-

ants. On the other hand, the single-cell RNA-seq

(scRNA-seq) enables investigations of cellular hetero-

geneity and transcriptomic changes in individual cells

and has been successfully employed in several medical

fields. In basic research, it enabled the identification of

specific immune cell subtypes [189] and insights into

neural development [190,191]. In clinical research,

scRNA-seq helped pinpoint disease-related cell popula-

tions or track the course of a disease [192–196]. Com-

pared with the standard bulk sequencing, application

of single-cell sequencing is more complicated due to

higher costs, more demanding sample preparation, and

challenging variant calling [197,198], although a recent

method promises accurate identification of mutations

[36]. An important limitation is also the sequencing

depth and detecting power, well below the standard

bulk transcriptome [199]. Yet, considering previous

encouraging results [200], for mitochondrial disease
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these methods could be an option to improve the

understanding of phenotypic variability and tissue-

specific expression of defects.

Broadening the diagnostic focus:
beyond the protein-coding genes

Noncoding regions

In the search for missing heritability, it is also impor-

tant to note that the primary focus in diagnostics of

Mendelian disorders remains on genetic variants in

protein-coding genes that ultimately affect the protein

product. Although easier to interpret and functionally

validate, such focus is limited to a small portion of the

genome. Still poorly understood, the noncoding region

is gaining more attention, and accumulated evidence

argues for its role in disease causality. First, the devel-

opment of high-throughput OMICS technologies has

accelerated the identification of gene regulatory ele-

ments on a genomic scale. Large-scale projects such as

ENCODE [37], FANTOM [41], and GTEx [39] are

enabling a better understanding of the complexity

behind gene regulation, as well as improving func-

tional annotation of the genome. Indeed, ENCODE

project reported functionality of 80% of the human

genome, defined by a gene product (protein or

ncRNA), protein and RNA binding, and specific chro-

matin structure [37]. Second, more than 90% of dis-

ease-associated SNPs identified by genome-wide

association studies (GWAS) fall within the noncoding

region [201,202]. Finally, the disease risk and variable

clinical presentation can be attributed to common cod-

ing and regulatory variants influencing the gene

expression [203,204]. One could hypothesize that at

least a fraction of undiagnosed cases could be due to

the disruption of the functional elements in the non-

coding regions: regulatory regions, such as promoters,

enhancers, structural elements on the one side, and

ncRNAs, as well as micropeptides hidden within

ncRNAs, on the other (Fig. 5).

Functional interpretation of variants in regulatory

regions is challenging, as they may be located far from

the gene they control. Slowly but surely, annotation of

such variants is improving from correlation with a dis-

ease to a disease causality [205]. Pathogenic regulatory

SNPs, as well as SVs, have been described in a rela-

tively small number of Mendelian disorders [206,207].

They can act via loss of function, resulting in downreg-

ulation of gene expression, or a gain of function,

resulting in mis- or overexpression, frequently in a

dominant mode of inheritance. For example, point

mutations in ZRS, an enhancer located 1 Mb from its

target gene, SHH, cause polydactyly [208]. Biallelic

variants in the 25-kb region downstream of PTF1A

abolish regions´ enhancer activity, disrupt the expres-

sion of PTF1A, and cause isolated pancreatic agenesis

[209]. SVs in regulatory regions can also disturb nor-

mal chromatin folding. For example, rearrangements

of the WNT6/IHH/EPHA4/PAX3 region results in

limb malformations due to disruption of protein-cod-

ing topologies and consequent inappropriate

Fig. 5. Reasons leading to an inconclusive genetic diagnosis. Each box provides a potential cause or a contributor to the disease across

protein-coding genes, noncoding regions, and the non-Mendelian inheritance.
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expressions and interactions [210]. Finally, de novo

mutations are enriched in neurodevelopmental disor-

ders and could provide a diagnosis for up to 3% of

currently undiagnosed patients [211]. Increasing gen-

ome sequencing in mitochondrial disorders such as in

the UK or mitoNET is considering such modes of dis-

ease. Although the prioritization and interpretation of

variants in regulatory regions are still underdeveloped,

the implementation of complementary OMICS tools to

the DNA analysis could provide additional informa-

tion to pinpoint the affected transcript and protein.

Apart from the regulatory regions, ncRNAs* are

also emerging as important factors in pathogenesis

(Box 3). Indeed, transcriptome analyses revealed that

up to 75% of the genome is pervasively transcribed

[215]. It is clear that apart from mRNAs, other vari-

ous classes of ncRNAs contribute to the cellular tran-

scriptome and have important rules in gene regulation

[216]. Among ncRNAs, microRNAs (miRNAs) and

their role in transcriptional and translational regula-

tion have been well studied [212]. Moreover, long non-

coding RNA (lncRNAs) and circRNAs are emerging

as important players in gene regulation and chromatin

states [214,217]. Large-scale genome-wide screenings

reported that 2–8% of targeted lncRNAs are impor-

tant for cellular growth, implying their significance

[218–220]. Although miRNAs and lncRNAs have been

usually associated with the human disease just through

changes in expression levels or as part of syndromic

deletions [221,222], a handful of Mendelian disorders

has been caused by variants in miRNAs [223–225]. In
addition, Ang et al. (2019) reported mutations in

lncRNAs in patients with neurodevelopmental disor-

ders, identifying lnc-NR2F1 as an important regulator

of neurogenesis and a potential cause of disease [226].

Still, little is known about the variants affecting the

genomic loci that encode ncRNAs as their effect may

not be as straightforward as for protein-coding genes.

Focusing on mitochondria, numerous miRNAs and

lncRNAs have been described to target variety of mito-

chondrial functions by binding not only mRNAs, but

also miRNAs and proteins, and even to be encoded by

the mtDNA itself [216]. For example, lncRNA Cerox1

has been described as a modulator of OXPHOS, by

binding miR-488-3p in the cytoplasm and preventing its

inhibitory effect on the complex I transcripts [227].

However, the field of ncRNAs in mitochondria is heav-

ily understudied, with disappointingly small study over-

lap and rare replications of findings, and direct

association between ncRNAs and mitochondrial disease

is yet to be reported [216]

In the last decade, the ribosome profiling data and

proteomic analyses identified a surprisingly large num-

ber of micropeptides* derived from upstream open

reading frames (uORFs*), as well as ORFs corre-

sponding to the lncRNAs [125,228–231], arguing for

the coding potential of noncoding regions and faults

in current genome annotation (Box 3). More than

twenty ncRNA-encoded proteins have been character-

ized in depth [235], including the mtDNA-encoded

humanin, MOTS-c, and SHLPs [236–238], with roles

in mitochondrial bioenergetics and metabolism, and

mitoregulin, involved in the formation of OXPHOS

supercomplexes, fatty acid oxidation, and Ca2+ dynam-

ics [239]. Interestingly, 5% of mitochondrial proteome

is represented with micropeptides [21], and the newly

reported ncRNA-encoded micropeptides are enriched

in the organelle [230,231]. With their correct genome

annotations, these discoveries will increase the

sequence spectrum while searching for causes of mito-

chondrial disease, and potentially lead to identification

of a novel disease gene. This emerging coding, but also

disease-causing, potential of noncoding regions pre-

sents an additional argument for implementation of

WGS over WES, where these regions are invisible.

Non-Mendelian inheritance

Implementation of systematic approaches, for instance,

WES, in diagnostics has enabled finding novel

BOX 3. ncRNAs

ncRNAs present a heterogeneous class of transcripts

that are not translated into proteins. miRNAs are a

class of short ncRNAs. Single-stranded 19–23 nucleo-

tides in length regulate gene expression by binding to

the mRNAs, leading to cleavage, degradation, or

translational repression [212]. Long noncoding RNAs

(lncRNAs) are defined as non-protein-coding tran-

scripts longer than 200 nucleotides. They include inter-

genic transcripts, enhancer RNAs (eRNAs), and

overlapping (sense or antisense) transcripts that over-

lap other genes [213]. circRNAs are a class of

ncRNAs formed during alternative splicing of pre-

mRNAs, with the linked 30 and 50 ends [214].
Micropeptides are biologically active peptides smaller

than 100 amino acids, resulting in them often being

overlooked by the traditional ORF cutoffs [232].

uORF presents an ORF within the 5’-untranslated

region (5’UTR) of an mRNA. These short coding

sequences usually act as cis-acting repressors of trans-

lation [233,234].
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disease-associated genes at a fast pace [18]. Yet, these

discoveries will likely reach the plateau in the future,

paving a way to studying more complex pathomecha-

nisms that have been barely reported in mitochondrial

disease. Currently, the search for a genetic cause is

made on the assumption that the pathogenic variant is

rare and fully penetrant. However, incomplete pene-

trance, especially for the mtDNA-encoded pathogenic

variants [240,241] and variable phenotype expressivity,

presents well-known features and challenges of mito-

chondrial disorders. The contribution of the other

(epi)genetic factors, including genetic modifiers,

digenic, oligogenic, and polygenic inheritance, as well

as tissue specificity and environmental influences, is

neglected during genetic diagnosis, but slowly gaining

the attention of researchers (Fig. 5).

In addition to the mtDNA variants, two examples of

reduced penetrance associated with nuclear-encoded

disease gene have been reported. Homozygous SDHB

variant was shared by a patient with leukoencephalopa-

thy and complex II deficiency and her healthy sister

[242]. Across 29 families, 30 of 31 homozygous male

carriers and just three of seven homozygous male carri-

ers of rare DNAJC30 variants expressed a LHON phe-

notype, resembling the similar observations as in the

maternally inherited LHON [130]. This story, revealing

a novel mitochondrial complex I repair mechanism,

also represents one more example how the discovery of

novel mitochondrial disease genes improves our knowl-

edge of mitochondrial physiology and pathomecha-

nism. Detection and interpretation of such variants are

exceptionally difficult due to the absence of conclusive

segregation analysis, higher allele frequency in the pop-

ulation, and usually few mitochondrial disease cases

with the same clinical presentation.

Genetic modifiers, alleles that modulate the effect of

the disease-causing one, are becoming more recognized

as contributors to Mendelian diseases [243]. In mito-

chondrial diseases, several studies reported the contri-

bution of a variant in nuclear-encoded genes to the

phenotypic effect of pathogenic mtDNA variants. For

example, a heterozygous start-loss variant in SSBP1

cosegregates with hearing loss in carriers of the homo-

plasmic m.1555A>G variant [244]. Two studies

reported that the presence of X-linked c.157C>T in

PRICKLE3 and c.572G>T in YARS2 in LHON

patients with m.11778G>A leads to a visual failure

[245,246], offering a possible explanation for the varia-

tions in penetrance and sex well known in LHON. The

same variant in YARS2 leads to deafness in combina-

tion with the m.7511A>G variant [247]. It is notewor-

thy that these studies were based on a genetic and

segregation analysis of a small number of large

multigenerational families, and a more systematic, sin-

gleton study is missing.

Another consideration could be that the suspected

disease is caused by digenic or oligogenic factors. Such

pathomechanisms are seldom considered during stan-

dard DNA analysis as they are difficult to interpret.

One example was an adult patient with PEO and sev-

ere neurological presentations, where the combined

effect of de novo ANT1 and homozygous POLG1 may

explain such a complex clinical picture [248]. Imple-

mentations of complementary OMICS tools may help

pinpoint the contribution of more than one gene to

the disease. Indeed, such approach was recently uti-

lized to decipher the molecular mechanism behind

complete spontaneous recovery observed in patients

with reversible infantile respiratory chain deficiency.

Here, digenic inheritance of homoplasmic m.14674T>C
variant with heterozygous pathogenic variants in

nuclear genes, EARS2 and TRMU variants, respec-

tively, leads to the clinical manifestation of the disease,

activating the three-phase metabolic events that even-

tually lead to recovery [249]. Concerning the mtDNA,

it has been postulated that the phenotypic variability

of mtDNA homoplasmic variants could be explained

by additional low-level heteroplasmic variants [250].

Variable expressivity in mitochondrial disease con-

tributes a lot to the heterogeneous clinical presenta-

tions of patients. It may be attributable to ‘weaker’

even common variants, and their interactions. How-

ever, these interactions, better covered in the research

of complex diseases, are difficult to study in a rare dis-

ease setting, as they require a large number of patients

with comprehensive genotypic and phenotypic data.

Such catalogs could be generated in more common

mitochondrial disease, such as LHON. Indeed, the

effect of pathogenic mtDNA variants on LHON phe-

notype was shown to be influenced by the mtDNA

haplogroups, as reported in a study of over 3600

patients [251]. However, it is rather unlikely to gener-

ate such a cohort for the majority of mitochondrial

diseases, but should nevertheless serve as an encour-

agement for mitochondrial researchers to expand their

collaborations and share their data. The GENOMIT

network stands as a positive example, with the collec-

tion of ~ 3000 WES data and developing a global reg-

istry of mitochondrial disease patients. To overcome

the issue of statistical power, the latest studies were

based on data from large GWAS of complex traits.

They demonstrated the involvement of common poly-

genic factors in the variable expressivity of rare dis-

eases [252–254]. Mitochondrial function and genetic

variation have been previously associated with meta-

bolic diseases such as obesity, metabolic syndrome,
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insulin resistance, and diabetes, as well as cardiovascu-

lar disease, Parkinson´s disease, and immune response

[255–262]. Also, recent studies focused on regulatory

links between the mitochondrial and nuclear genome.

They have identified 11 significant associations

between mitochondrial genome mutations and nuclear

gene expression [263], associations between variants in

mitochondrial RNA-binding proteins and haplogroup-

specific mtDNA gene expression [264], and 64 nuclear

loci associated with expression levels of 14 mtDNA

genes [265]. These results provide evidence for the in

trans effects between two genomes regarding the gene

expression. Finally, by performing meta-analysis across

45 cohorts with up to 170 000 individuals, Kraja et al.

(2018) reported that seven mtDNA SNVs and 109

nuclear genes predicted to have a role in mitochondria

have a significant association with at least one of seven

inspected metabolic traits [266]. This suggests that the

common genetic variants have downstream effects that

may influence disease risk and manifestation.

Finally, the cause of the disease may be outside the

four base pair genetic code. Human disease can also

be caused by rare epigenetic variation (epivariation,

epimutations) [267], defined as an alteration in DNA

methylation, irrespective of their underlying etiology

(sporadic events such as imprinting anomalies [268] or

sequence variation [269]). Although the contribution of

epivariations to mitochondrial disorders remains unex-

plored, recent studies reported enrichment of de novo

epivariation in congenital disorders and neurodevelop-

mental disorders, followed by altered gene expression

[270,271]. Epivariation has been reported as a cause of

the inborn error of metabolism, where the cause of the

disease, MMACHC, harbored a secondary epimuta-

tion in its promoter on one allele and a frameshift

variant on the other. The secondary epimutation,

marked by promoter hypermethylation, was caused by

the antisense transcription of adjacent mutated

PRDX1 [272]. These studies indicate that adding

methylation profiling to the sequencing approaches

may reveal pathogenic epivariation and fill in the

diagnostic gap.

Conclusions and Perspectives

The last decade has greatly advanced our understand-

ing of the genetics behind mitochondrial disorders: Of

almost 1200 currently described mitochondrial pro-

teins, more than 500 are associated with disease, out

of which over 340 as a cause of mitochondrial disease

[20]. Following the developments in genetic tools,

genetic diagnostics has shifted from candidate gene

screens into the unbiased analysis of the complete

genetic variation landscape. NGS methods, inseparable

from computational tools, have allowed generating

large genome databases, an increase in the discovery

of pathogenic variants, and exponential growth in the

number of newly discovered disease-associated genes.

These patient datasets now provide big data that can

be used not only for diagnostics but also for unravel-

ing mitochondrial biology. The newly diagnosed cases

help both disease management and unraveling its

underlying etiology. On the one side, the established

genetic cause may offer vast opportunities for clinical

trials and the development of therapeutic approaches

such as gene replacement, antisense oligonucleotides,

and gene editing [273]. On the other side, the undiag-

nosed cases call for the implementation of better

methods, but also require us to go beyond the protein-

coding regions when formulating a diagnosis. Comple-

mentary OMICS tools, as well as long-read and

single-cell sequencing, offer improvements in the vari-

ant prioritization, interpretation, and detection. Mov-

ing away from the protein-centric approach, the roles

of noncoding regions in biological functions and

human diseases are gaining more attention. This could

not only lead to discoveries of disease-related noncod-

ing genes and variants, but also unravel new pathome-

chanisms. Finally, the non-Mendelian factors are

emerging as modulators of mitochondrial disorders.

Recent examples of digenic nuclear–mitochondrial

interactions suggest that such co-occurrence should be

evaluated in mtDNA diseases. Moreover, the influence

of genetic background and common variants is yet to

be elucidated and will provide a better understanding

of the disease risk and clinical manifestation. Such

expanding views and hopefully consequent findings

will further explain the mechanisms behind the com-

plexity of the mitochondrial disease. To conclude, the

development of technologies and increased publicly

available datasets will steadily improve diagnostics and

enable discoveries of novel pathomechanisms behind,

thus paving the way for developing gene-targeted ther-

apies for mitochondrial diseases.
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