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Background
Deep learning has revolutionised image processing [1]. For specific biomedical image 
analysis tasks such as cell segmentation [2, 3], cell classification [4–6] or in-silico stain-
ing [7, 8], deep learning algorithms now achieve higher accuracy than trained experts 
[6, 9, 10] and outperform humans at data processing speed and prediction consistency 
[11, 12]. However, machine learning algorithms are mostly developed to solve one spe-
cific problem. Moreover, applying them often requires a strong computer science and 
machine learning background.

We here provide InstantDL, a pipeline that automates pre- and post-processing for 
biomedical deep learning applications. InstantDL bundles commonly used deep learning 
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Results: We have thus developed InstantDL, a deep learning pipeline  for four 
common image processing tasks: semantic segmentation, instance segmentation, 
pixel-wise regression and classification. InstantDL enables researchers with a basic 
computational background to apply debugged and benchmarked state-of-the-art 
deep learning algorithms to their own data with minimal effort. To make the pipeline 
robust, we have automated and standardized workflows and extensively tested it in 
different scenarios. Moreover, it allows assessing the uncertainty of predictions. We 
have benchmarked InstantDL on seven publicly available datasets achieving competi-
tive performance without any parameter tuning. For customization of the pipeline to 
specific tasks, all code is easily accessible and well documented.

Conclusions: With InstantDL, we hope to empower biomedical researchers to con-
duct reproducible image processing with a convenient and easy-to-use pipeline.
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algorithms in one easy-to-use framework.  We did not change the bundled algorithms or 
tune them for a specific problem. Still, InstantDL achieves competitive results on differ-
ent biomedical image datasets.  It can be used for semantic segmentation (i.e. the clas-
sification of each pixel into a particular class), instance segmentation (i.e. the detection 
and classification of objects), pixel-wise regression (i.e. for in-silico staining) and image 
classification (i.e. to discriminate cancerous from healthy cells). InstantDL is an easy-to-
use python package that can be executed by setting only two variables: the task and the 
data directory. For advanced users, twelve parameters can be set  to adapt InstantDL to 
the specific task (see Methods). Moreover, different examples are provided in the docu-
mentation, which the user can follow. We provide 10 pre-trained models for  transfer 
learning, since biomedical datasets are often sparsely annotated, as manual annotation is 
laborious and costly.

InstantDL is benchmarked on seven publicly available (see “Results” section) datasets: 
nuclei detection in divergent images [13], multi-organ nuclei segmentation [14, 15], lung 
segmentation from CT scans [16], in-silico prediction of a mitochondrial and a nuclear 
envelope staining [7], cell classification in digitized blood smears [17, 18], and cancer 
classification on histopathology slides [19]. Without any hyperparameter tuning, we 
achieve competitive results.

InstantDL serves as a centralized repository and provides a straight-forward wrapper 
to execute image computing tasks. It is designed for users interested in applying deep 
learning to their own data. A basic understanding of programming suffices. In contrast 
to easy-to-use browser based segmentation tools [3, 20], it is not limited to one specific 
task and ensures data privacy. The code is open source and well documented for those 
who want to customize the pipeline to their needs. By providing a debugged, tested, and 
benchmarked pipeline we help reduce errors during code development and adaptation, 
and contribute to reproducible application of deep learning methods.

Implementation
InstantDL offers the four most common tasks in medical image processing: Semantic 
segmentation, instance segmentation, pixel-wise regression, and classification [21, 22]. 
In the following we describe the algorithms implemented in InstantDL to address these 
tasks and how they can be applied within the pipeline.

Semantic segmentation

One of the standard approaches for detecting image patterns is semantic segmentation 
[23]. For each pixel in the input image a class label is predicted by the algorithm. The 
U-Net [24] is a commonly used architecture for semantic segmentation with numer-
ous applications in biomedicine [25, 26]. It consists of a symmetric contractive path to 
capture context and an expansive path to capture fine localizations [24]. In InstantDL 
we made minor changes to the architecture from [24]: we (i) use padded convolutions 
to receive the same output and input dimensions and (ii) have implemented dropout 
layers in the encoder. These do not affect the performance of the network, but enable 
uncertainty quantification. The U-Net outputs continuous values between 0 and 1 for 
each pixel, which can be interpreted as probabilities to belong to a given class. InstantDL 
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allows for two classes (background vs. foreground) and thresholds the output using 
Otsu’ method [27, 28].

Instance segmentation

Instance segmentation is used to detect objects (instances) within an image [23, 28]. We 
implemented the Mask-RCNN [29] in InstantDL for this task. It first detects a bound-
ing box for each object in the image and then performs a segmentation in each bound-
ing box. Our Mask-RCNN is based on a ResNet50 from Abdullah’s [30] implementation. 
The Mask-RCNN requires instance level ground truth: For each image in the training 
set, a set of labels has to be created, each containing a segmentation mask of one single 
instance. An algorithm to create instance level ground truth from binary semantic seg-
mentation ground truth is provided as a jupyter-notebook with the pipeline.

Pixel‑wise regression

Tasks where no pixel-wise class labels but a continuous pixel value is desired (such as 
in-silico staining, [7]) are called pixel-wise regression. InstantDL uses the same U-Net 
implementation as for semantic segmentation. The only difference is that the U-Net out-
put is not interpreted as probabilities to belong to one or another class, but is regarded 
as a regression. We thus use continuous labels for training and the mean-squared-error 
as regressive loss as proposed previously [7].

Image classification

Here, the task is to classify each image into one of a specific number of given classes. For 
this task a residual network [31] is implemented. These architectures are widely used for 
biomedical image classification [12, 32]. Residual networks use residual blocks, a refor-
mulation of layers as learning residual functions, which enable the use of many layers, 
while ensuring convergence [31]. We use a slightly modified ResNet50 with 50 layers in 
InstantDL, where we have added dropout layers to enable uncertainty estimation.

The InstantDL pipeline
Data preparation

Data has to be manually split in a train and a test set (see Fig. 1a) according to the user’s 
hypothesis: For one dataset a random split might be suitable [33], while for others a split 
on patient or tissue slide level is methodically appropriate [6]. InstantDL can process 
stacked images, enabling the prediction from multiple channels. Input and ground truth 
images must have the same filename including the file ending (Table 1).

Pipeline settings

After data preparation the user can specify tasks and parameters in the configura-
tion file (see Fig. 1a) or run InstantDL with default settings only providing the task 
and data path. A maximum of twelve parameters can be set. These are: The task (i.e. 
Semantic segmentation, instance segmentation, regression, or classification), the seed 
for reproducibility, the path to the project directory containing the train and test 
files, the pre-trained weights for model initialization, the batchsize, the number of 
iterations over the dataset (i.e. epochs), the data augmentations, the loss function, the 
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number of classes, if the images should be resized during import, if the uncertainty 
should be calculated after training, and if the model should be automatically evalu-
ated after training. Within the pipeline one.json file serves as a config file.

Fig. 1 InstantDL provides an easy to use pipeline for the analysis of biomedical images. a Flow diagram of 
the pipeline with indicated user action highlighted in gray. (1) One out of four tasks (semantic segmentation, 
instance segmentation, pixel-wise regression, classification) is selected by the user. Up to twelve parameters 
can be set in the configuration file to adapt the pipeline to the task. A code snippet illustrates task selection 
and six of the twelve parameter settings in the configuration file: selected task (“use_algorithm”), path to 
folder (“path”), if pre-trained weights should be used the path to these (“pretrained_weights_path”) should 
be set, batch size (“batchsize”) and epochs chosen (“Iterations_Over_Dataset”). (2) Input data is split into 
train and test sets. The user specifies these by putting the data in the corresponding folders. After executing 
the python configuration file the pipeline will automatically load the data from the train folder, create a 20 
percent validation split, normalize and augment the data (see Methods for details). Training is initiated with 
either a pre-trained or randomly initialized model. After training, the model predicts test labels: segmentation 
masks, pixel values or labels for the images in the test set according to the chosen task. (3) Results can be 
interpreted by the user via statistical and visual assessment of the predicted outcome by comparing it to 
the ground truth in the test set. b Example output for a 2D semantic segmentation task: Cell nuclei in a 
brightfield image (left) are segmented with InstantDL (Prediction) using the U-Net, and compared to the 
original annotation (Groundtruth). The Errormap indicates over- and under-predicted pixels. The image is 
part of the 2018 Kaggle nuclei segmentation challenge dataset [13]. c Example output for a 2D instance 
segmentation task (same image as in b): A binary mask is predicted for each object in the image using 
InstantDLs Mask-RCNN algorithm and compared to the groundtruth. d Example output for a 3D pixel-wise 
regression task using a U-Net. From stacks of bright-field images (Image) [7] the pipeline predicts a nuclear 
envelope (Prediction) that resembles the true staining (Groundtruth). The first row shows the x–y-plane, 
the bottom row the x–z plane of the 3D volume. e Example output for a classification task of benign and 
leukemic blood cells in blood smears from 200 individuals [17]. We show two exemplary microscopy images 
(left) of two white blood cell classes, a monoblast and a neutrophil. The white blood cell type is predicted 
with a ResNet50. The confusion matrix (middle) shows that most of the 15 classes can be well predicted, in 
accordance to Matek et al. [6]
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After setting these parameters, the user executes the configuration file which starts 
the training with InstantDL on the desired task using the training data with the pre-
trained weights and the chosen configurations.

Transfer learning

Pre-trained weights can be used to initialize a training process, a practice called 
transfer learning. The choice of weights can have a huge influence on the performance 
of the algorithm. Depending on the dataset and problem, transfer learning from natu-
ral images such as ImageNet to the medical domain can or cannot be the preferred 
solution [34]. With InstantDL we provide 10 pre-trained weight sets: four pre-trained 
weights from 2D nuclei segmentation (two from semantic and instance segmentation 
of the nuclear detection challenge dataset [13] and the nuclei in microscopy images 
of multiple organs segmentation, respectively [14, 15]), two pre-trained weights from 
2D lung segmentation [16] (from semantic and instance segmentation), two from 3D 
in-silico staining [7] (from predicting mitochondria and the nuclear envelope from 
brightfield images), and one from the classification of white blood cells [17, 18] and 
metastatic cancer [19], respectively. Moreover, ImageNet weights can be loaded. 
InstantDL will load the weights given in the configuration file. It automatically selects 
weights for layers which fit the desired model and reports them in the logfile. As it is 
not clear which pre-trained weight will lead to a performance increase on the desired 
task we recommend to use weights from a task with similar characteristics to the 
dataset at hand in terms of structure and color. Expert users can choose to only train 
desired layers in the model file.

Data augmentation

Data augmentation is a method commonly used in machine learning to artificially 
increase the variance in the training dataset and thereby train the network to general-
ize better [35]. We implemented spatial (horizontal and vertical flip, zoom and rotation) 
and color (contrast, brightness, poisson noise, feature scaling, standard-mean normali-
zation, resampling, gamma shift) augmentations. The user can choose the desired aug-
mentations, which are then randomly applied online, while importing the input images. 
The user can choose to visualize the augmentations used for training to ensure sensible 
inputs.

Table 1 Overview on  the  image processing tasks implemented in  InstantDL, required 
input, label, and output format

Semantic 
segmentation

Instance segmentation Pixel‑wise regression Classification

Input image 2D & 3D 2D 2D & 3D 2D

Labels Binary images Images with float pixel 
values

Images with float pixel 
values

Labels in a .csv 
file

Output Binary images Binary masks Images with float pixel 
values

Labels in a .csv 
file

Architecture U-Net Mask RCNN U-Net ResNet50
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Model training

InstantDL reads data from the corresponding folders and prepares for training and 
testing. This includes the following steps: (i) Model initialization with pre-trained 
weights, if selected. (ii) Import of data and normalization, split of validation data from 
the data contained in the train data folder, shuffle of training data, batch creation and 
online data augmentation. (iii) Training of the model using the Adam optimizer [36] 
for the given number of epochs using early stopping, which can be monitored live 
using tensorboard and automated saving of the best model. (iv) Prediction of labels 
from the test dataset. (v) For semantic segmentation, pixel-wise regression and clas-
sification uncertainty can be calculated after training.

Model evaluation

The trained model is evaluated on the unseen test images and labels (i.e. the 
groundtruth). For semantic segmentation, instance segmentation and pixel-wise 
regression, the network predictions are saved as image stacks to ease evaluation 
of large datasets with limited CPU capabilities. This also allows an initial manual, 
qualitative evaluation and quality control. In the second step the predictions can be 
quantitatively evaluated. For that, accuracy, mean relative and absolute error, pixel-
wise Pearson correlation coefficient and Jaccard index over all pixels of the test set 
are calculated. Boxplots are generated to visualize quantitative model performance. 
The standard quantitative evaluation output plots (i) the input images side-by-side 
to the corresponding labels and predictions and (ii) an error map between the labels 
and predictions to visualize training performance (see example evaluation Fig. 1b–d). 
For classification the predicted labels in the test set are compared to the true labels 
and multiple error scores (Jaccard index, mean absolute error, mean squared error, 
area under curve) are calculated. A confusion matrix and a receiver operating char-
acteristic (ROC) curve are automatically visualized (Fig. 1e). All evaluation steps are 
implemented in the pipeline and can be set to be executed after testing. Additionally, 
post-processing (i.e. statistical analysis and visual assessment) is accessible in jupyter 
notebooks for customization, which are provided with InstantDL.

Uncertainty quantification

Neural networks predictions can be unreliable when the input sample is outside of the 
training distribution, the image is corrupted or if the model fails. Uncertainty estima-
tion can measure prediction robustness, adding a new level of insights and interpret-
ability of results [37, 38]. Bayesian inference can be approximated in deep Gaussian 
processes by Monte Carlo dropout [37]. We have implemented Monte Carlo drop-
out for semantic segmentation, pixel-wise regression and classification in the pipe-
line. During the inference phase, 20 different models are created using Monte Carlo 
dropout and model uncertainty is calculated on the test set. For pixel-wise regression 
and semantic segmentation, the pipeline saves an uncertainty map. From this, pixel 
uncertainty can be plotted and saved to the project folder or average pixel uncer-
tainty for an image can be calculated (Fig.  2a, b). For classification InstantDL adds 
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the uncertainty score to the results file where a score close to zero indicates certain 
predictions, and score close to 1 indicates high uncertainty (Fig. 2c, d).

Implementation of InstantDL

InstantDL is implemented in Python and leverages Tensorflow and Keras [39], which 
provide an excellent framework for our pipeline due to the modular, composable and 
user friendly design. The pipeline can be run locally ensuring data protection, on a 
cluster or with Google-Colab [40], which has successfully been used for deep learn-
ing projects [41] making it usable for those with limited computational resources. We 
provide the pipeline as one package in a Docker image [42] to simplify installation and 
application.

Hardware requirements

InstantDL can run on a CPU with or without GPU acceleration, locally or on a server. 
For users with limited hardware InstantDL can also be run using Google Colab. The 
notebook to execute InstantDL in Google Colab is provided with the package. On an 
Nvidia GeForce RTX2070, the multi-organ segmentation dataset requires 8  min to 
train with semantic segmentation and 14  min with instance segmentation. Semantic 

Fig. 2 Uncertainty of semantic segmentation, pixel-wise regression and classification can be estimated 
with InstantDL. a The distribution of average pixel uncertainty u for 162 images of a semantic segmentation 
task [13]. The distribution is approximately bi-modal. b Three exemplary semantic segmentations from the 
data visualized in a with InstantDLs pixel uncertainty estimation. Correct predictions correspond to a low 
average pixel uncertainty u (top and middle row), while a high average pixel uncertainty indicates failed 
segmentations (bottom row). Regions with ambiguous predictions are indicated by high pixel uncertainty 
(right column). c For the prediction of white blood cells classes [6], classification uncertainty indicates 
incorrect predictions. d The distributions of classification uncertainty for correct and false predictions differ 
significantly (p value < 0.001, Mann–Whitney rank test)
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segmentation with Google-Colab GPU took 9  min. This dataset contains 120 training 
images of size 512 × 512 pixels and we ran it with a batch size of 1 for 37 epochs. 

Results
To evaluate InstantDL broadly, we applied it to seven publically available datasets (four 
of which come from data science challenges) and compared its performance to pub-
lished results. If no test set was provided, we took 20% of the data to create our own 
test set. This was done on the highest level of abstraction, for example on patient level 
or tissue-slide level whenever possible, otherwise the data was randomly split. We used 
the same evaluation metrics as published in the respective papers (Jaccard index, AUC, 
Pearson correlation) to compare our results appropriately.

For pre-processing, we transformed the images to.tiff files and classification labels to 
a.csv file to adapt them to the InstantDL requirements. Training was performed by sav-
ing the best model using early stopping. As data augmentation we used horizontal and 
vertical flipping. For pixel-wise regression we used mean squared error loss, for seman-
tic segmentation we used binary cross entropy loss and for classification we used cat-
egorical cross entropy loss. For instance segmentation, binary cross-entropy was used 
as segmentation loss in combination with the localization and classification loss in the 
Mask-RCNN [29].

We evaluated the performance of semantic segmentation and instance segmentation 
on three datasets. In the first dataset we segmented nuclei in microscopy images con-
tained in the Data Science Bowl 2018 [13] dataset. Using InstandDL instance segmen-
tation we reached a median Jaccard index of 0.60 (25–75%ile: 0.61 to 0.58 estimated 
from bootstrapping), while using semantic segmentation we reached a median Jaccard 
index of 0.16 (25–75%ile: 0.15 to 0.17). The winner of the challenge reached a Jaccard 

(See figure on next page.)
Fig. 3 InstantDL achieves competitive performance on published datasets and computer vision challenges 
without hyperparameter tuning. a InstantDLs instance segmentation achieves competitive results on 
the nuclear detection challenge dataset [13], which contains a variety of experimental conditions, cell 
types, magnifications, and imaging modalities. We show one exemplary image from the dataset and the 
corresponding prediction using InstantDL’s instance segmentation. The winner of the challenge achieved 
a Jaccard index of 0.63 (solid line), while the median participant achieved 0.42 (dotted line). InstandDLs 
instance segmentation achieved a median Jaccard index of 0.60 without hyperparameter tuning. We 
estimate the Jaccard index distribution by bootstrapping, sampling 100 times half of the test set. Boxes 
indicate the median and the 25/75%ile of the distribution, whiskers indicate the 1.5 interquartile range. b 
For the challenge of segmenting nuclei in microscopy images of multiple organs with hematoxylin and 
eosin staining [14, 15], the winner achieved a Jaccard index of 0.69 (solid line) and the median participant 
0.63 (dotted line). InstantDL using instance segmentation reached a Jaccard index of 0.29, and 0.57 using 
semantic segmentation. c Evaluation of instance segmentation of lung CT images from the Vessel-12 
dataset [16]. The winner of the challenge reached an area under the receiver operating characteristic curve 
(AUC) of 0.99, while the median participant reached 0.94. InstantDL reached an AUC of 0.90 with semantic 
segmentation, and 0.94 with instance segmentation. d InstantDL’s pixel-wise regression performs similarly 
well as the published approach ([7] for in-silico staining of bright-field images in three dimensions, but with 
a higher variability. We achieved a median pearson correlation of 0.85 for nuclear envelope staining and 
0.78 for mitochondria staining. e For classification of leukemic blast cell images vs. benign white blood cell 
images [17, 18], InstantDL achieved an AUC of 0.99, while Matek et al. report 0.99. f Classification of metastatic 
cancer in small image patches taken from larger digital pathology scans on histopathological images [19]. 
InstantDL achieved an AUC of 0.93 while the winner of the challenge achieved an AUC of 1.0 and the median 
participant 0.91
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index of 0.63 while the median participant reached 0.42 (solid and dotted line, Fig. 3a). 
The second task was the multi-organ nuclei segmentation challenge. Here, 30 micros-
copy images of various organs with hematoxylin and eosin staining are provided [14, 15]. 
We reached a median Jaccard score of 0.57 (25–75%ile: 0.56 to 0.59) with InstantDL’s 
semantic segmentation and 0.29 (25–75%ile: 0.28 to 0.30) with instance segmentation. 
The winner of the challenge reached 0.69 and the median participant scored 0.63 (solid 
and dotted line, Fig. 3b). Thirdly, we benchmarked InstantDL on lung CT images from 
the Vessel-12 challenge [16]. Using instance segmentation we reached an area under the 
receiver operator curve (AUC) of 0.94 (25–75%ile: 0.94 to 0.94), and 0.90 (25–75%ile: 
0.88 to 0.92) with semantic segmentation. The winner of the challenge reached a score of 
0.99 and the median participant 0.94 (solid and dotted line, Fig. 3c).

To evaluate InstantDL’s performance for pixel-wise regression, we predicted the 3D 
nuclear envelope and mitochondria staining from brightfield images [7]. For the nuclear 
envelope staining prediction, we achieved a median pixel-wise Pearson correlation to 
the real staining of 0.85 and 0.78 for the prediction of mitochondria staining (Fig. 3d), 
similar to the published result.

Classification performance was evaluated on two datasets. In Matek et al. images of 
single white blood cells from 100 leukemic and 100 non-leukemic individuals were clas-
sified into leukemic blast cell images vs. benign white blood cell subtype images [6]. We 
reached an AUC of 0.99 where Matek et al. reached 0.99 (Fig. 3e). The second task was 
to classify metastatic cancer image patches of digital pathology scans, taken from the 
Histopathologic Cancer Detection Kaggle challenge [19]. We reached an AUC of 0.93, 
while the winner reached 1.00 (solid line in Fig. 3f ) and the median participant scored 
0.91 (dotted line, Fig. 3f ).

Discussion
We present InstantDL, a deep learning pipeline for semantic segmentation, instance 
segmentation, pixel-wise regression and classification of biomedical images. InstantDL 
simplifies the access to the advantages of deep learning algorithms for biomedical 
researchers with limited computer science background. The only requirement is a solid 
understanding of the data (and how appropriately split it into training and test set), as 
well as of the task and loss function that should be optimized during training the model 
(see e.g. [1, 43]). The pipeline is designed for maximum automation to make training and 
testing as convenient and as easy as possible. However, some parameter settings depend 
on the dataset properties and therefore cannot be automated. After setting a maxi-
mum of 11 parameters, the pipeline can be run without further user interactions. We 
included state-of-the-art analysis metrics that are accessible out of the box. Moreover, 
we included uncertainty prediction to provide an additional level of interpretability of 
predictions.

We tested the performance of InstantDL on a variety of publicly available datasets and 
achieved competitive results without any hyperparameter tuning. While we could not 
reach the winners’ performance (typically using elaborate problem specific algorithms 
and data pre- and post-processing) of the respective image computing challenges with 
our out-of-the-box approach, the output of InstantDL suffices for standard biomedical 
data analytics performed after the image processing step.
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To improve performance on a specific dataset we recommend to select specialized 
data augmentations and a suitable loss function in the configuration file for higher per-
formance. Expert users can also adapt InstantDL’s code to their needs. We plan to extend 
InstantDL by implementing self-supervised and semi-supervised learning methods to 
utilize unlalleded data optimally in the future [34]. To improve semantic segmentation 
specifically, we will implement specialized loss functions, such as Malis loss [46]

The networks currently implemented are suitable for the most frequently used image 
processing tasks. Due to InstantDLs modular implementation it is however easy for 
users with python knowledge to exchange deep learning algorithms for a taylormade 
solution, e.g. other classifications networks like the ResNext [44] or MobileNet [45].

Other deep learning frameworks such as OpenML [46], ImJoy [47] and ZeroCost-
DL4Mic [48], nucleAlzer [3] and yeastspotter [20] allow for the application of deep 
learning methods on user data (Table  2). However, they all require data upload to a 
cloud system. OpenML, e.g., offers an online ecosystem of datasets and machine learn-
ing models, but the dataset will be made publically available with upload. The web tools 
nucleAlzer [3] and yeastspotter [20] are extremely easy to use, but provide only cell and 
nuclei segmentation using drag-and-drop with pre-trained machine learning models. 
ImJoy [47] and ZeroCostDL4Mic [48] are more flexible frameworks. ImJoy is an online 
tool where users can select plugins for processing their data, which is easy and conveni-
ent, yet not locally executable. Users can create their own plugins requiring professional 
programming knowledge. ZeroCostDL4Mic requires similar knowledge about program-
ming as InstantDL, but solely relies on Google Colab. This requires the upload of data 
to the users Google drive, which has a memory limit of 15 GB in the free version and 
a runtime limit of 12 h. This can impose a hurdle for users, in particular for large data-
sets, common e.g. in computational pathology applications. InstantDL is applicable to 
any 2D or 3D image segmentation task and the only tool offering uncertainty estima-
tion. Our pipeline can easily be installed and run locally on a computer or server, ensur-
ing data scalability, privacy and security. However, InstantDL can also be used on cloud 
solutions, such as Google Colab. Table 2 compares the features of InstantDL with other 
frameworks.

Table 2 Comparison of InstantDL to other deep learning frameworks

InstantDL Open ML ImJoy ZeroCostDL4Mic

Host Local, on cluster, or 
Google-Colab

Web based Web based platform Web based (Google-
Colab)

Data privacy Yes (running locally) No (shared with 
upload)

Limited (hosted in 
the cloud)

Limited (hosted in the 
cloud)

Target audience Researchers and 
developers

Researchers and 
developers

Biomedical 
researchers

Biomedical research-
ers

Developed for Biomedical images All kinds of data All kinds of data Biomedical images

Customizability of 
Code

Open source Open source Open source Open source

Cost Free Free Free Free
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Conclusions
InstantDLs code is publicly available and convenient to tune and extend. It is ideal for 
labs looking for a customizable tool to apply deep learning to their own data. We thus  
hope to empower biomedical researchers to conduct reproducible image processing 
with a convenient and easy-to-use pipeline.

Availability and requirements

Project name: InstantDL.
Project home page: https ://githu b.com/marrl ab/Insta ntDL
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: cudatoolkit: 10.1.243 # in case of GPU existence, cudnn: 7.6.5 
# in case of GPU existence, h5py: 2.9.0, hdf5: 1.10.4, imageio: 2.6.1, keras: 2.2.4, mat-
plotlib: 3.1.1, numpy: 1.16.4, python: 3.6.7, scikit-image: 0.15.0, scikit-learn: 0.21.3, 
scipy: 1.3.0, tensorboard: 1.14.0, tensorflow: 1.14.0, tensorflow-gpu: 1.14.0 # in case 
of GPU existence, pandas: 1.0.3
License: MIT.
Any restrictions to use by non-academics: None.
For reproducing our results, all data used for illustration and benchmarking is availa-
ble for download at https ://hmgub ox2.helmh oltz-muenc hen.de/index .php/s/YXRD4 
a7qHn Ca9x5 .

Availability and implementation
InstantDL is available under the terms of MIT licence. It can be found on GitHub: 
https ://githu b.com/marrl ab/Insta ntDL

Supplementary informationWeights and validation data are available under: 
https ://hmgub ox2.helmh oltz-muenc hen.de/index .php/s/YXRD4 a7qHn Ca9x5 
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