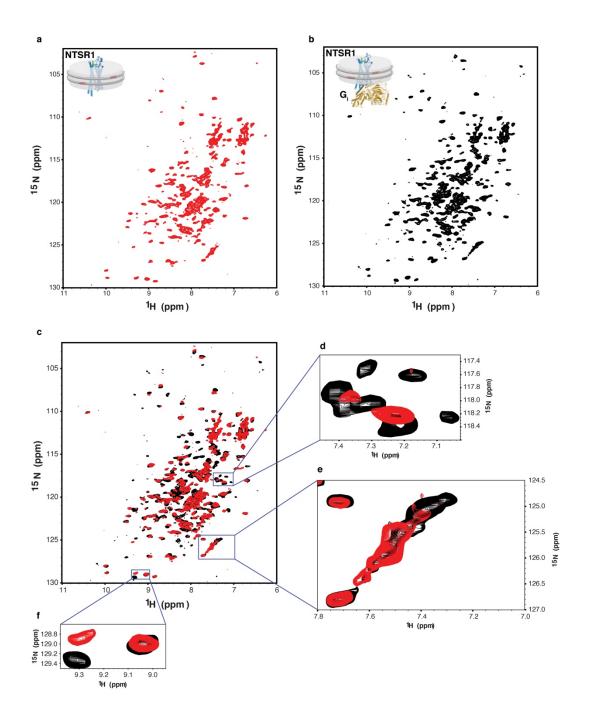

Supplementary information


Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs

In the format provided by the authors and unedited

Supplementary Fig. 1 | Thermostability enhancement of NTSR1, G_i, and NTSR1-G_i complexes by incorporation into cNDs. a-b, Circular Dichroism (CD) spectra at 20 °C before (solid line) and after (dashed line) treatment at 95 °C of (a) NTSR1 in DH₇PC detergent micelles; (b) NTSR1 in cNDs. c, Temperature-dependent CD signals of NTSR1 in detergent micelles (black) and cNDs (red) at 220 nm. d-e, CD spectra at 20 °C before (solid line) and after (dashed line) treatment at 95 °C of (d) G_i in DH₇PC detergent micelles; (e) G_i in cNDs. G_i was reconstituted into cNDs by incubation with POPC/POPG lipid, cNW9, and cholate, followed by detergent removal and size-exclusion chromatography. f, Temperature-dependent CD signals of G_i in detergent micelles (black) and cNDs (red) at 220 nm. The melting temperature (Tm) of cNDs is 93 °C (data

not shown) and therefore does not affect transitions before this temperature. **g-h**, CD spectra at 20 °C before (solid line) and after (dashed line) treatment at 95 °C of (**g**) NTSR1-G_i in LMNG/GDN/CHS detergent micelles; (**h**) NTSR1-G_i in cNDs. **i**, CD spectra of 2 μM G_i-cND (solid line) and 2 μM empty cND (dashed line), showing nearly 50% signal contribution from G_i. NTSR1 and G_i account for at least 50% of CD signals even in the presence of cNDs. NTSR1 in detergent micelles irreversibly unfolds during temperature increase with a Tm of 62 °C. In contrast, NTSR1-cND changes structure around 80 °C and does not lose much secondary structure after decreasing temperature to 20 °C. Similar observations were made for G_i, where the protein irreversibly and completely unfolds with Tm of 57 °C in detergent micelles but displays no clear transition temperature in cNDs. For the NTSR1-G_i complex in cND, only mild unfolding was observed around 82 °C. These observations indicate that lipid bilayers improve the stability of NTSR1, G_i and NTSR1-G_i complexes relative to detergent micelles.

Supplementary Fig. 2 | Characterization of the interaction between NTS-NTSR1 and G_i in cNDs by two-dimensional ¹H, ¹⁵N-TROSY HSQC NMR spectroscopy. a-b, NMR spectrum of ¹⁵N-labeled NTS-NTSR1 in cNDs in the (a) absence and (b) presence of G_i. c, Overlay of (a) (red) onto (b) (black) showing structural and dynamical changes of NTS-NTSR1 upon binding to G_i in cNDs. d, A region showing conformational stabilization of NTSR1. More peaks are observed in

the presence of G_i , suggesting that NTSR1 is highly dynamic in the absence of G_i and resonances are averaged out among a wide range of conformers resulting in low signal-to-noise ratio and even disappeared peaks. Upon interaction with G_i , NTSR1 is stabilized into fewer conformers and becomes less dynamic, which leads to better signal-to-noise ratio and more resonances being observed. \mathbf{e} , A region showing dynamically slow-exchange shift of NTSR1 upon interaction with G_i . \mathbf{f} , A region showing chemical shift perturbation of NTSR1, suggesting conformational change of NTSR1 upon binding to G_i in cNDs.