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Abstract

Stochastic gene expression in regulatory networks is conventionally modelled via the Chem-
ical Master Equation (CME). As explicit solutions to the CME, in the form of so-called prop-
agators, are oftentimes not readily available, various approximations have been proposed. A
recently developed analytical method is based on a separation of time scales that assumes
significant differences in the lifetimes of mRNA and protein in the network, allowing for the
efficient approximation of propagators from asymptotic expansions for the corresponding gen-
erating functions. Here, we showcase the applicability of that method to simulated data from
a ‘telegraph’ model for gene expression that is extended with an autoregulatory mechanism.
We demonstrate that the resulting approximate propagators can be applied successfully for
parameter inference in the non-regulated model; moreover, we show that, in the extended au-
toregulated model, autoactivation or autorepression may be refuted under certain assumptions
on the model parameters. These results indicate that our approach may allow for successful
parameter inference and model identification from longitudinal single cell data.

Keywords: asymptotic analysis; parameter inference; propagator; stochastic gene expression.

1 Introduction and background

Gene expression in regulatory networks is an inherently stochastic process [8]. Mathematical mod-
els typically take the form of a Chemical Master Equation (CME), which describes the temporal
evolution of the probabilities of observing specific states in the network [31]. Recent advances in
single-cell fluorescence microscopy [5, 11, 16, 29, 34] have allowed for the generation of experimen-
tal longitudinal data, whereby the fluorescence intensity of mRNA or protein abundances in single



cells is measured. While most common models assume the availability of protein abundance data,
abundances of mRNA may equally be of interest, depending on the model [19]. Here, we focus
on abundances of protein, which we assume to be measured at regular sampling intervals ∆t. A
typical data set, denoted by Q, thus consists of protein abundances ni at N + 1 different points
in time; see Figure 1A. We can group these abundances into transitions ni → ni+1; cf. Figure 1B.
A model-derived propagator Pni+1|ni

(∆t,Θ) allows for the calculation of the probabilities of such
transitions for some set of model parameters Θ. Summing over all these probabilities for all N
observed transitions, we can calculate the log-likelihood L(Θ) of that particular parameter set as

L(Θ) =
N−1∑
i=0

log Pni+1|ni
(∆t,Θ), (1.1)

which can be evaluated over a range of values for the model parameters to yield a ‘log-likelihood
landscape’, the maximum of which corresponds to the most likely parameter set Θ subject to the
measured data setQ. Assessing the log-likelihood of a model by evaluating the associated propagator
for the observed transitions in a time-lapse experiment is a feasible, established approach that has
been successfully applied previously [28, 29, 9]. Due to the complex nature of the underlying
regulatory networks, explicit expressions for Pni+1|ni

are difficult to obtain in general. Hence, a
variety of approximations have been proposed, which can be either numerical [33, 9] or analytical
[26, 23], to cite but a few examples. Here, we apply the analytical method recently developed by the
current authors [32], which was based on ideas presented by Popović, Marr & Swain [23], to obtain
fully time-dependent approximate propagators; an outline of the method is given in Section 2.

Our aim in the present article is to demonstrate the applicability of these propagators, as well as
to evaluate their performance in the context of parameter inference for synthetic data. Specifically,
we showcase the resulting inference procedure for a family of stochastic gene expression models.
First, in Section 3, we consider a model that incorporates DNA ‘on’/‘off’ states (‘telegraph model’);
see also the work of Raj et al. [24] and Shahrezaei & Swain [28]. Subsequently, in Section 4, that
model is extended with an autoregulatory mechanism, whereby protein influences its own production
through an autocatalytic reaction. In Section 5, we summarise our results and present an outlook to
future research; finally, in Appendix A, we collate the analytical formulae that underly our inference
procedure for the family of models showcased here.

2 Method

2.1 Calculation of propagators

Our method [32] is based on an analytical approximation of the probability generating function that
is introduced for analysing the CME corresponding to the given gene expression model. Propagators
can be calculated from the generating function via the Cauchy integral formula, which implies

Pni+1|ni
(∆t,Θ) =

1

2πi

∮
γ

F (z; ∆t, ni,Θ)

zni+1+1
dz; (2.1)

here, F (z; ∆t, ni,Θ) is the generating function of the (complex) variable z, which additionally
depends on the sampling interval ∆t, the protein abundance ni, and the model parameter set Θ.
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Figure 1: (A) Simulated time series of protein abundance n, with measurements at times ti and
sampling interval ∆t. (B) Histogram of the frequency kj of transitions (n0 → n)j , inferred from a
longer time series with 100 transitions.

The integration contour γ is a closed contour in the complex plane around z = 0. The choice
of contour is arbitrary; however, it can have a significant effect on computation times and on
the accuracy of the resulting integrals [2]. Here, we choose γ to be a regular 150-sided polygon
approximating a circle of radius 0.8 that is centred at the origin in the complex plane, which results
in a ‘hybrid analytical-numerical’ procedure for the evaluation of Pni+1|ni

.

2.2 Parameter inference

The parameter inference procedure proposed here can be divided into the following steps:

1) Data binning. The simulated data Q is presented as a time series {ni}, 0 ≤ i ≤ N , which
yields N transitions ni → ni+1. Generically, some of these transitions occur more than once. For
computational efficiency, we bin the data accordingly to create a binned data set Q̂ =

{(
kj , (n0 →

n)j
)}

, with 1 ≤ j ≤ N̂ for N̂ ≤ N , where kj is the frequency of the transition (n0 → n)j ; see also
Figure 1. Here, N̂ denotes the number of different transitions observed in the data, that is, the
size of the binned data set Q̂. We emphasise that binning can substantially accelerate parameter
inference, in particular for near-stationary processes.

2) Marginalisation. Frequently, some of the involved species in a model are not observed, and
hence have to be marginalised over. In the models discussed in Sections 3 and 4, we assume that
protein is measured, while mRNA remains unobserved. Marginalisation over unobserved species
is usually carried out on the transition probabilities in (2.1). However, since the marginalisation
procedure is linear, it commutes with the Cauchy integral. Introducing the linear ‘marginalisation
operator’ M, we may write

MPni+1|ni
(∆t,Θ) =

1

2πi

∮
γ

MF (z; ∆t, ni,Θ)

zni+1+1
dz, (2.2)
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where M now acts on the generating function F . Therefore, given the analytical approximation for
F resulting from our method [32], we define

F̂ (z; ∆t, ni, Θ̂) = MF (z; ∆t, ni,Θ), (2.3)

where Θ̂ ⊂ Θ is the subset of parameters that remain after the marginalisation procedure has been
applied. Note that F̂ is still a fully analytical, general expression which depends on the as yet
unspecified values of its arguments.

3) Evaluation. We choose a set Θ̂0 of numerical values for the parameters in Θ̂. Moreover, we
specify the integration contour γ, which we discretise as described in 2) to approximate the Cauchy
integral in (2.1) by a finite sum. Suppose that the contour γ is discretised as {ζ(l)}, with 0 ≤ l ≤ L
and ζ(0) = ζ(L); then, the integral of a function G along γ is approximated as∮

γ
G(z) dz ≈

L−1∑
l=0

G(ζ(l)) ∆ζ(l), with ∆ζ(l) = ζ(l + 1)− ζ(l). (2.4)

Now, for every transition (n0 → n)j in the binned data set Q̂, we evaluate F̂ , as given in (2.3), for
the chosen parameter values Θ̂0 along the discretised contour. We hence obtain the array{

1

2πi

F̂ (ζ(l); ∆t, (n0)j , Θ̂0)

ζ(l)(n)j+1
∆ζ(l)

}
for 0 ≤ l ≤ L− 1 and 1 ≤ j ≤ N̂ , (2.5)

which we sum over l to find

pj(Θ̂0,∆t) =

L−1∑
l=0

1

2πi

F̂ (ζ(l); ∆t, (n0)j , Θ̂0)

ζ(l)(n)j+1
∆ζ(l) (2.6)

as the approximate value of the propagator for the transition (n0 → n)j .

4) Calculation of the log-likelihood. To calculate the log-likelihood of the parameter subset
Θ̂0, we substitute the approximate propagators pj , as defined in (2.6), into (1.1) to obtain

L(Θ̂0) =

N̂∑
j=1

kj log pj(Θ̂,∆t). (2.7)

3 Showcase 1: The telegraph model

To demonstrate our parameter inference procedure, we consider a stochastic gene expression model
that incorporates DNA ‘on’/‘off’ states (‘telegraph model’) [24, 28]:

D
k0


k1

D∗ (DNA activation/deactivation),

D∗
ν0→ D∗ +M (transcription of DNA to mRNA),

M
ν1→ M + P (translation of mRNA to protein),

M
d0→ ∅ (decay of mRNA),

P
d1→ ∅ (decay of protein).

(3.1)
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In recent work [32], we presented an analytical method for obtaining explicit, general, time-dependent
expressions for the generating function associated to the CME that arises from the model in (3.1).
A pivotal element of the application of that method to (3.1) is the assumption that the protein
decay rate d1 is notably smaller than the decay rate d0 of mRNA, which implies that the param-
eter ε := d1

d0
is small; hence, the associated generating function is approximated to a certain order

O = k, corresponding with a theoretical accuracy that is proportional to εk. For more details on
the resulting approximation, we refer to Appendix A.

To obtain synthetic data, we simulate the model in (3.1) using Gillespie’s stochastic simulation
algorithm (SSA) [13], for fixed values of the (rescaled) parameters

κ0 :=
k0

d1
= 1.3, κ1 :=

k1

d1
= 1.2, λ :=

ν0

d1
= 3.3, µ :=

ν1

d0
= 2.85, ε :=

d1

d0
= 0.1, and d1 = 1 (3.2)

on the time interval 0 ≤ t ≤ 10, and we measure the protein abundance n with a fixed sampling in-
terval ∆t. As our method assumes that ∆t is of order ε, cf. again Appendix A, we set ∆t = ε = 0.1,
which yields N = 100 transitions. Finally, we consider random initial states, with mRNA and pro-
tein numbers chosen uniformly between 0 and 10, and we assume DNA to be in the ‘on’ state with
probability κ0

κ0+κ1
. Based on the simulated measurement data, we perform the parameter inference

procedure described in Section 2. As the data consists of protein abundances only, and as propaga-
tors for the model in (3.1) depend on abundances of both mRNA and protein, we marginalise over
mRNA, assuming a steady-state distribution reported by Raj et al. [24, Supporting Information,
Protocol S1, Equation (1)]; that distribution coincides with the steady-state limit of the associated
fully time-dependent distribution considered by Veerman, Marr & Popović [32]. We assume that
the values of κ0, κ1, ε, and d1 are known, and calculate the log-likelihood in (2.7) for varying λ and
µ. We scan these two parameters in the range

{
10−3 ≤ λ ≤ 103, 10−3 ≤ µ ≤ 102

}
, using a logarith-

mically spaced grid of 50 × 40 grid points. Figure 2 shows the resulting log-likelihood landscapes
and, in particular, a comparison of the performance of the leading (zeroth) order approximation
for the generating function, see Figure 2A, with that of the first order approximation in Figure 2B.
We emphasise that our choice of λ and µ as the parameters to be inferred is not guided in any
way by our analytical method – indeed, any other choice would have served our purpose, under the
assumption that ε is sufficiently small. Rather, we chose λ and µ for illustrative purposes.

Moreover, it is important to note that, in the analytical derivation of the propagators used to
produce Figure 2, all model parameters are assumed to be of order ε0 = 1 [32, Assumption 3.2],
which is reflected in the numerical values in (3.2). In particular, it follows that both the ratio of
the transcription and translation rates ν0

ν1
= ελµ and the ratio of the transcription and mRNA decay

rates ν0
d0

= ελ are assumed to be small. However, in Figure 2, the ranges over which λ and µ
are scanned significantly exceed these estimates without causing apparent issues for our inference
procedure. That could be taken as a sign that, while our analytical propagators were derived under
certain assumptions on the order of model parameters, the resulting expressions may in fact be
valid over a wider parameter range. On the other hand, it is worthwhile to note that noise-induced
bistability is observed in a similar gene expression model if the above assumption on λ is abandoned,
as considered with an alternative analytical approach in [7].

To quantify the performance of the method developed by Veerman, Marr & Popović [32] for
parameter inference, we compare four different scenarios:
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Figure 2: Log-likelihood landscapes inferred from a simulation of the telegraph model in (3.1)
with N = 100 transitions and parameter values as in (3.2): true value (cross) versus maximum
log-likelihood estimate (MLE; dot). (A) Leading (zeroth) order approximation. (B) First order
approximation.

(a) Parameter values as in (3.2), with sampling interval ∆t = ε = 0.1 on the time interval
0 ≤ t ≤ 10, corresponding to N = 100 transitions, which is the original setup that yields the
results shown in Figure 2.

(b) As in (a), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000 transitions.

(c) As in (a), with ε = 0.01: the sampling interval is decreased accordingly to ∆t = ε = 0.01;
measurements are taken on the time interval 0 ≤ t ≤ 1, which yields N = 100 transitions.

(d) As in (a), with µ = 28.5.

For each scenario, we infer the most likely values of the parameters λ and µ, for increasing ap-
proximation order O. The inferred values of λ and µ are compared to the ‘true’ values λtrue and
µtrue, where we consider relative errors to quantify the performance of our inference procedure. The
results of that comparison are shown in Figure 3. The accuracy of inference for λ clearly increases
when the approximation order O is increased from 0 to 1; the increase in accuracy from O = 1
to O = 2 is obfuscated by grid size effects. A ten-fold increase in the number of transitions (b)
increases the accuracy of the leading order approximation, while a ten-fold increase in the value of
µtrue (d) decreases the accuracy of the leading order approximation. For µ, there is no noticeable
increase in accuracy with the approximation order O within the parameter grid used, which could
indicate that the number of transitions remains the dominant limiting factor. However, the accuracy
of inference for µ increases overall when N is increased (b), the small parameter ε is decreased (c),
or the value of µtrue is increased (d). An alternative explanation for the apparent insensitivity of
the error in µ to the approximation order can be found in the underlying mRNA marginalisation
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Figure 3: Relative error ∆r(x) := x−xtrue
xtrue

of the inferred parameters λ (A) and µ (B), for increasing
approximation order O; for O = k, the propagators Pni+1|ni

are approximated up to and including
terms of order εk. (a) N = 100 transitions, ε = 0.1, λtrue = 3.3, and µtrue = 2.85. (b) N = 1000
transitions, other parameters as in (a). (c) ε = 0.01, number of transitions N and other parameters
as in (a). (d) µtrue = 28.5, number of transitions N and other parameters as in (a).

procedure; however, one would expect that marginalisation to negatively influence the sensitivity
of transcription (λ), rather than that of translation (µ).

4 Showcase 2: An autoregulated telegraph model

We extend the telegraph model in (3.1) with an autoregulatory mechanism, where the DNA acti-
vation rates are influenced by the presence of protein. Autoregulation is modelled in a catalytic
manner, via one of the two following reactions:

D + P
aP→ D∗ + P (autoactivation through protein), (4.1a)

D∗ + P
rP→ D + P (autorepression through protein). (4.1b)

The above pair of autoregulation mechanisms was introduced by Hornos et al. [17], and imple-
mented, e.g. by Iyer-Biswas & Jayaprakash [18]; see Section 5 for a discussion of the physical
validity of these mechanisms. Propagators for the telegraph model incorporating both autoregu-
lation through protein, as in (4.1), and autoregulation via mRNA were determined in [32]. The
protein-autoregulated telegraph model is also discussed in [15], where it is called the ‘full model’;
cf. [15, Figure 1] for a comparison and discussion of several reductions of that model.

To assess the performance of our parameter inference procedure, we fix the parameter values
as in (3.2). Again, we marginalise over mRNA, assuming a steady-state distribution; see Section
3. Note that the degree to which that steady-state assumption is valid directly depends on the
magnitude of the autoregulation rates, as protein levels influence levels of mRNA through DNA
activation rates. We generate six data sets, as follows:

(A) Simulate the model in (3.1) without autoregulation (‘null model’; aP = 0 = rP ) on the time
interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(B) As in (A), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000 transitions.
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(C) Simulate the extended model {(3.1),(4.1a)} with autoactivation for aP δ = 0.3 on the time
interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(D) As in (C), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000 transitions.

(E) Simulate the extended model {(3.1),(4.1b)} with autorepression for rP δ = 0.3 on the time
interval 0 ≤ t ≤ 10, which yields N = 100 transitions.

(F) As in (E), with the time interval increased to 0 ≤ t ≤ 100, which yields N = 1000 transitions.

Every data set consists of 10 runs of equal length.
Generating functions for the autoregulated extension, by (4.1), of the telegraph model in (3.1)

have been derived in the theoretical companion article [32] to the current work, under the assump-
tion that the autoregulation rate aP or rP is small compared to the protein decay rate d1. That
assumption implies that the ratios aP

d1
:= αP δ and rP

d1
:= ρP δ are small.

Parameter inference now proceeds as follows. We fix a data set, and take a single run from
that set. For that run, we determine the log-likelihood of the autoactivated model in {(3.1),(4.1a)},
varying 0 ≤ αP δ ≤ 1; likewise, we determine the log-likelihood of the autorepressed model in
{(3.1),(4.1b)}, varying 0 ≤ ρP δ ≤ 1. The log-likelihood L of the autoregulated extension is then
compared with the log-likelihood L0 of the non-regulated model in (3.1); as before, N denotes the
number of data points, where L is defined as in (2.7), that is, we simply evaluate the probability
of the observed transitions given the model under consideration, after marginalisation over mRNA.
The log-likelihood difference L−L0, which is equal to the logarithm of the likelihood ratio, quantifies
the evidence for that model. We repeat the above procedure for all 10 runs in the data set, and
we determine the mean and standard deviation; the outcome is illustrated in Figure 4. We observe
that 1000 transitions suffice to correctly refute autorepression in (B,D), and to correctly refute
autoactivation in (F). In the case of 100 transitions, no conclusion can be drawn from (A) and (C),
while (E) correctly refutes autoactivation; however, the small difference between L and L0, with
|L− L0| < 1, indicates low significance.

It is important to reiterate that the validity of our assumption that mRNA obeys a steady-
state distribution, which was used in the marginalisation step, is coupled to the magnitude of the
auroregulation rates. While a steady-state assumption can hence be argued to be approximately
valid for small δ, an increase in autoregulation strength increases the protein level feedback on
DNA activation rates, thereby indirectly, but dynamically, influencing levels of mRNA. We propose
that the ensuing breakdown of the steady-state assumption is reflected in the behaviour of the
log-likelihood difference shown in Figure 4. The assumption can be argued to induce a bias as
αP δ, ρP δ → 1, accordingly skewing the log-likelihood difference, which could also explain the absence
of a clear maximum in Figures 4D and 4F.

5 Discussion

In the present article, we showcase a parameter inference procedure that is based on a recently
developed analytical method [32] which allows for the efficient numerical approximation of propaga-
tors via the Cauchy integral formula on the basis of asymptotic series for the underlying generating
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Figure 4: Parameter inference for the extended autoregulated model in {(3.1),(4.1)} on the basis
of various types of synthetic data, where the performance of the model is quantified via the log-
likelihood difference L − L0. On the vertical axis, L − L0 indicates the difference between the
log-likelihood of the autoactivated or autorepressed model and that of the non-regulated model in
(3.1); the higher the value of L−L0, the more likely the associated model is. In each panel, the solid
curve indicates the mean values based on 10 model runs; dashed curves indicate the uncertainty
(one standard deviation). On the horizontal axis, the strength of autoregulation is measured by
αP δ (increasing to the right) or ρP δ (increasing to the left). (A) Data generated from the null
(non-regulated) model in (3.1), with N = 100 transitions. (C) Data generated from the model in
(3.1), with autoactivation as in (4.1a), for αP δ = 0.3 and N = 100 transitions. (E) Data generated
from the model in (3.1), with autorepression as in (4.1b), for ρP δ = 0.3 and N = 100 transitions.
(B,D,F) as (A,C,E), but with N = 1000 transitions; note that the vertical axis has a different
scaling. All other model parameters were assumed to be known.
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functions. The resulting hybrid analytical-numerical approach reduces the need for computation-
ally expensive simulations; moreover, due to its perturbative nature, it is highly applicable over
relatively short time scales, such as occur naturally in the calculation of the log-likelihood in (1.1).

We simulate protein expression with a simple stochastic simulation algorithm (SSA) [13]; the
resulting protein abundances are in the lower range of experimentally measured values [27, 22],
which does not, however, limit our proof of principle. In addition, in the presented application of
our approach, we assume that some of the model parameters are known, that protein abundances
can be measured at regular sampling intervals, and that there is no noise. We then present results
for synthetic data in a family of models for stochastic gene expression from the literature under
the central assumption that lifetimes of protein are significantly longer than those of mRNA, which
introduces a small parameter ε and, hence, a separation of scales. An extensive discussion of the
validity of our assumption that ε is small can be found elsewhere [28, 32]; see also Section 3. The
assumed smallness of ε is crucial to the underlying analytical method, as introduced by Veerman,
Marr & Popović [32]. In addition, our approach is specifically attuned to the time variability of
the expression process, in the sense that we assume the sampling interval ∆t to be small, as well;
cf. again Section 3. It is thus ideally suited to describing transient dynamics far from steady state,
as is evident in the bursting behaviour seen in Figure 1A.

In Section 3, we discuss a simple (‘telegraph’) model for gene expression without autoregulation,
showing that our approach can successfully infer relevant model parameters. Unlike in previous
work [10], the underlying implementation avoids potential bias due to zero propagator values and
large initial protein numbers through the use of ‘implicit’ series expansions in ε; see Appendix A for
an in-depth argument. Note that, in the simple telegraph model, transcription factors are assumed
to act as single molecules. Our analytical approach would have to be extended to incorporate
transcription factor dimer regulation, e.g. via the recently developed linear mapping approximation
[3].

In Section 4, we perform a model comparison in an autoregulated extension of the telegraph
model. We consider three types of gene regulation: autoactivation, autorepression, and no regulation
of DNA activity (null model). For each type, we simulate protein abundance data with 100 and
1000 transitions, respectively. Throughout, we find that 100 data points are insufficient to reject
model hypotheses with our approach. With 1000 data points, however, we can successfully reject
the non-regulated and the autorepressed model for simulated data from an autoactivated model,
in which case we can even infer the correct order of the autoactivation parameter. For simulated
autorepression, we can reject the model with autoactivation, but not the non-regulated model. Our
approach fails to identify the correct model for data from a non-regulated model for 1000 transitions,
where the autoactivated model is clearly, but wrongly, favoured. We believe that more research is
needed into the sources of these discrepancies in dependence on both model parameters and the
order of our approximation.

In both showcases, we observe a trade-off between the accuracy of inference versus the required
computation time. Computation times seem to increase exponentially with the approximation
order, at least for the setup realised in this article. For practical purposes, we hence propose an
algorithm whereby the fastest, leading order approximation is used to obtain an initial estimate for
the underlying model parameters; that estimate can then be improved by including higher order
corrections, resulting in a much more computationally efficient procedure.

10



It is insightful to compare our results with other recent work on parameter inference in regulated
gene expression models. In work by Feigelman et al. [9], three models for regulated gene expres-
sion with a slightly different structure compared to the models studied in the present article were
simulated and inferred via a particle filtering-based inference procedure that employs genealogical
information of dividing cells. Interestingly, positive and negative autoregulation could be success-
fully rejected there for data that was simulated from a no-feedback model. However, the no-feedback
model could not be rejected for data originating from the corresponding models with positive or
negative feedback. From that comparison with Feigelman et al. [9], we conclude that the structure
of the data, the intensity of regulatory feedback, and the chosen inference procedure together will
influence the extent of insight which can be obtained from an approach that is based on stochastic
models of gene expression.

We emphasise that our analytical method is not restricted to the specific models showcased here.
Our aim in the present article is to demonstrate the applicability of the method, and to investigate its
performance, rather than to assess the biological validity of a given model. Minimally, our approach
can be extended to recent, physiologically more relevant modifications of the telegraph model with
autoregulation [17] by Grima, Schmidt & Newman [14] and Congxin et al. [4]; another feasible
alternative model can be obtained by introduction of a refractory state [35]. Ideally, we would like to
test a variety of stochastic gene expression models against a given set of measurement data. Current
computational approaches struggle to provide propagators for models with more than one regulated
species, which can often only be approximated even in that simple scenario. The principal advantage
of our hybrid approach is that propagators can be evaluated in a computationally efficient manner,
via a combination of mathematical analysis and numerical integration [32]; other approaches rely
either on the calculation of propagators based on direct numerical simulation of the underlying
model – which is computationally demanding – or on the assumption that symbolic derivatives of
the generating function are explicitly known, which only holds for specific models of relatively low
complexity [23].

The input for our propagator-based approach is the abundance of the involved species, viz.
of protein. Thus, we assume that absolute protein numbers are measured, which is in practice
hampered by an unknown scaling factor between the observed fluorescence and the corresponding
abundances, and by noise. While various suggestions for inferring that factor have been made
[16, 25, 1], and while a linear scaling is customarily assumed [29, 33], an accurate experimental
determination remains extremely challenging.

It is instructive to compare our propagator-based approach to alternative approaches to param-
eter inference in the context of stochastic gene expression, such as the linear noise approximation
[30], a system size expansion with moment closure [12], or tensor-based methods for the correspond-
ing Fokker-Planck equation [21]. Both the linear noise approximation and a system size expansion
assume large system sizes and are only valid for large copy numbers, see also [30]; moreover, the
impact of moment closure on the relevance of nonlinearities is potentially non-negligible [20]. The
relatively recently developed tensor-based methods focus on steady state distributions for large sys-
tem sizes; their validity away from the thermodynamic limit is as yet unclear, nor is it clear how
results are influenced by the particular tensor decomposition method that is chosen. In contrast
to these approaches, the propagator-based approach we have employed in this article not only per-
forms well with low copy numbers, i.e. for small system sizes; our analytical propagators are also
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explicitly time-dependent, in contrast to the usual steady state assumption. Details can be found
in our theoretical companion article [32].

Finally, the showcases presented in this article are based on synthetic data that was generated
in silico; in the future, we plan to consider experimental data, such as can be found in work by
Suter et al. [29].
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A Analytical details

The hybrid analytical-numerical approach developed by Veerman, Marr & Popović [32] introduces
a probability generating function which transforms the CME corresponding to a given stochastic
gene expression model into a system of partial differential equations. Explicit expressions for the
solutions to these equations are obtained using dynamical systems techniques, in combination with
perturbation theory. The values of the associated propagators are recovered through a numerically
efficient implementation of the Cauchy integral in (2.1); see also Section 2.

A.1 Approximate generating functions

The generating functions used to approximate propagators in the present article, cf. Section 2, are
derived via the analytical method presented by Veerman, Marr & Popović [32]. For the telegraph
model in Section 3, the leading order generating function F̂0 is given by

F̂0(z; ∆t, n0, ε, λ, µ) =
[
1− (1− z)e−∆t

]n0
1F1

[
κ0, κ0 + κ1, ελ

1− f(z)

f(z)

(
1− e−f(z) ∆t

ε

)]
, (A.1)

where 1F1 denotes the confluent hypergeometric function [6, Chapter 13] and f(z) = 1+µ(1−z)e−∆t.
All parameters have been rescaled according to (3.2). The generating function has been marginalised
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over mRNA, assuming a steady-state distribution reported by Raj et al. [24]. Analogously, the first
order approximation F̂1 of the generating function is given by

F̂1(z; ∆t, n0, ε, λ, µ, χ) =
[
1− (1− z)e−∆t

]n0

×
[
1 + ε(1− χ)λ

1− f(z)

f(z)
e−f(z) ∆t

ε

(
1− ef(z) ∆t

ε

f(z)
+

∆t

ε
ef(z) ∆t

ε

)]
× 1F1

[
κ0, κ0 + κ1, ελ

1− f(z)

f(z)

(
1− e−f(z) ∆t

ε

){
1 + ε

[
1

f(z)2
+

1

f(z)

∆t

ε
+ (1− f(z))

∆t2

2ε2

]}]
;

(A.2)

here, χ = κ1
κ0+κ1

. For the autoregulated model discussed in Section 4, the same expressions for the
generating functions are used; however, χ now depends on the autoregulatory mechanism according
to

χ =



κ1

κ0 + κ1
(no autoregulation),

κ1

κ0 + κ1 + αP δ n0
(autoactivation),

κ1 + ρP δ n0

κ0 + κ1 + ρP δ n0
(autorepression).

(A.3)

A.2 ‘Implicit’ expansions

It is important to note that neither the leading order generating function in (A.1) nor the first
order approximation given by (A.2) are expressed as asymptotic series in powers of ε, as would be
expected on the basis of the perturbative approach taken by Veerman, Marr & Popović [32]. The
underlying reasoning can be summarised as follows.

First, in the derivation of these generating functions, it was assumed that the sampling interval
∆t was small, i.e. of order ε; note that this assumption is satisfied in all numerical simulations
shown in the current article, where ∆t = ε throughout. Thus, we can write

∆t = ε∆s. (A.4)

The accuracy of our series approximation depends on the asymptotic scaling of ∆t; see [32, Remark
3.6]. With the above scaling, the approximation order is equal to the order to which the resulting
propagators are accurate, in powers of ε.

With the scaling for ∆t given in (A.4), an expansion of F̂0 and F̂1, as defined in (A.1) and (A.2),
respectively, into asymptotic series in ε to the appropriate order yields

F̂0 = zn0 , (A.5)

F̂1 = zn0

{
1 + ε(1− z)

[
n0∆s

z
− (1− χ)λµ

1 + µ(1− z)

(
µ(1− z)

{
1− e[−(1+µ(1−z)]∆s}

1 + µ(1− z)
+ ∆s

)]}
.

(A.6)

From (A.5), one can immediately conclude that∮
γ
F̂0 = δn,n0 , (A.7)
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where δn,n0 = 1 if n = n0 and δn,n0 = 0 otherwise. From the series for F̂1 in (A.6), we see that we
can write

F̂1(z) = zn0

{
1 + ε

∞∑
k=−1

f1,kz
k

}
, (A.8)

with appropriately chosen coefficients f1,k; hence, it follows that∮
γ
F̂1 = 0 if n0 > n+ 1. (A.9)

More generally, an expansion of the generating function to order k in ε will yield∮
γ
F̂k = 0 if n0 > n+ k. (A.10)

From these observations, we conclude that decreasing transitions (ni → ni+1), where ni > ni+1 +k,
will be assigned a probability that is identically zero. Hence, if such transitions are present in the
data, the model is ruled out immediately, as our perturbative approach excludes the possibility
that decreasing transitions can occur. One can understand this phenomenon by considering the
definition of the small parameter ε as the ratio of the protein decay rate d1 over the mRNA decay
rate d0. A leading order approximation of ε = 0 is thus equivalent to taking d1 → 0 which, in
turn, implies that protein does not decay at all, since (natural) protein decay is the only reaction
in (3.1) that can decrease protein abundance. By the same reasoning, a straightforward expansion
of the generating function to order εk will restrict the model to transitions (ni → ni+1), where
ni+1−ni ≥ −k. It would follow that either the order O of the method would be limited from below
by the data, leading to high-order expansions in ε and, hence, to increased computation times, or
that the method could only be applied to a subset of the given data, which would introduce a bias.

Lastly, an asymptotic expansion such as (A.6) implicitly assumes that all parameters and vari-
ables in the model are of order 1 in ε. For the series expansion of F̂1 in (A.6), that assumption
would significantly restrict the range of λ; in comparison, in Figure 2, likelihood values for λ up to
order ε−3 are calculated. More importantly, the above assumption would restrict the range of n0,
implying that only a subset of the data – with sufficiently low protein numbers – could be used as
input for parameter inference.

We emphasise that none of these difficulties occur with the expressions in (A.1) and (A.2), where
the expansion order in ε is expressed ‘implicitly’ in the respective functional forms of F̂0 and F̂1.
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