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ABSTRACT
The use of neuroimaging tools, especially functional magnetic
resonance imaging, in nutritional research has increased substantially
over the past 2 decades. Neuroimaging is a research tool with great
potential impact on the field of nutrition, but to achieve that potential,
appropriate use of techniques and interpretation of neuroimaging
results is necessary. In this article, we present guidelines for good
methodological practice in functional magnetic resonance imaging
studies and flag specific limitations in the hope of helping researchers
to make the most of neuroimaging tools and avoid potential pitfalls.
We highlight specific considerations for food-related studies, such
as how to adjust statistically for common confounders, like, for
example, hunger state, menstrual phase, and BMI, as well as how
to optimally match different types of food stimuli. Finally, we
summarize current research needs and future directions, such as the
use of prospective designs and more realistic paradigms for studying
eating behavior. Am J Clin Nutr 2019;109:491–503.
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Current State of the Field of Nutritional
Neuroimaging

Introduction

The brain plays a central role in the regulation of food
intake. It integrates many different state- and trait-related neural
and hormonal signals that affect eating behavior. Understanding
how normal and maladaptive eating behaviors emerge and are
maintained is crucial for developing effective eating interventions
or treatments, such as weight loss or maintenance programs.
Thus, studying the brain structures and processes underlying
eating behavior has great potential significance, especially when

combined with information on other aspects of physiology and
psychology.

Since the late 1990s, functional neuroimaging techniques
have been increasingly used to study food-related brain activity
in humans. Among the first studies were taste/flavor positron-
emission tomography (PET) studies (1) and fMRI (2) and PET
studies on the effects of extreme hunger in healthy (3) and obese
(4) individuals. Since then, fMRI in particular has become a
widely used neuroimaging technique that is often used to study
food-related neural correlates in health and disease. We focus
here on task-based fMRI, but many of the issues addressed apply
similarly to resting-state fMRI, PET, and perfusion fMRI, as well
as structural MRI studies.

We present a set of guidelines for good practice in the use
of neuroimaging with the hope of helping researchers make the
most of these powerful but readily misinterpreted or even misused
techniques. We view the establishment of a widely accepted set
of guidelines as critical at this point in the development of the
field, in part because, although simple visual and motor tasks
yield large, robust, and readily replicable brain responses in
primary visual and motor cortex, higher-order tasks often produce
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smaller, more variable responses that are harder to replicate. For
example, the most commonly used type of fMRI task in the food
domain is the presentation of food images. Meta-analyses have
shown that even the brain regions most consistently shown to
differentially respond to food compared with nonfood images
are significantly active in less than 40% of studies (5). Although
brain responses to visual food cues in fasted overweight/obese
participants have been found to have relatively good mean-
level reproducibility, they had poor within-subject test–retest
reliability (6). Another example is the fMRI studies that examined
the functional significance of the fat mass and obesity-associated
gene FTO. Individuals with the “high-risk” AA FTO variant have
been found to show less responsivity to high-calorie food images
in a fasted state than “low-risk” TT individuals in reward-related
brain regions (7). Also, adults with the AA genotype showed less
food cue activation in the prefrontal cortex 30 min after ingesting
75 g of glucose than adults without the AA genotype, but no
differences in a fasted state (8). In contrast, individuals with the
AA or AT genotypes showed greater responsivity to food (9) and
high-calorie food images (10, 11) in reward-related brain areas
than “low-risk” TT individuals.

This variability in findings is also due, in part, to divergent
characteristics of the individual study designs, highlighting the
current scarcity and strong need for direct replication studies.
Studies of food stimulus responses and eating behavior differ in
many important ways including the structure, timing, and stimuli
of the fMRI task; software, strategy, and parameter settings used
for processing and statistical analysis of the data; and individual
characteristics such as age, gender, and eating-related traits, and
state variables such as current hunger level and weight status.
In addition, the effect size of food-related brain activation is
often modest, and isolating specific effects of interest can be
challenging because there are many confounders and interacting
factors. For example, in a food-viewing task, caloric content may
well covary with palatability, and so responses to high- compared
with low-calorie foods cannot be attributed to caloric content
per se. Further, there are clear individual differences in food
preferences and familiarity that introduce additional variance
(12). Thus, there is a need for better standardization of the food
stimuli and fMRI task designs used and the additional data that
are collected on participant’s state (hunger, mood) and personal
characteristics that may be used to control for confounding effects
in the analyses.

In addition to the variability between studies and infrequent
replication attempts, a lack of sufficient power and rigor in
individual experiments is a key factor. Just as in other fields
investigating higher cognitive processes, many of the earlier
fMRI studies on eating behavior are underpowered (13, 14).
Although there is a clear trend toward larger sample sizes in fMRI
over the past decade, only recently have tools for better power
calculation become available (15, 16). The need for informed
study planning is further highlighted by recent empirical
demonstrations stressing the importance of appropriate, validated
statistical thresholding approaches (17).

Despite previous shortcomings, there is reason to be optimistic
that this situation will improve in the near term. This optimism
stems from the ongoing development of neuroimaging hardware
and analysis software, and especially the adoption of higher-
quality standards in the field. We believe that replication studies
and open data sharing will play a central role in the ongoing

efforts to advance the utility and reliability of food-related
neuroimaging findings. The current lack of replication efforts
means that it remains unknown how robust many of the original
findings in the field are, and although meta-analyses can give
some initial indications, the accuracy of meta-analytic studies
is limited by the number and quality of the primary studies
they aggregate over and is reduced by publication bias and lack
of access to primary data (14). The aim of this article is to
foster good practice in food-related neuroimaging by presenting
guidelines for good methodological practice, outlining potential
pitfalls, and providing recommendations for food-related fMRI
task implementation.

What can we learn from fMRI?

fMRI usually refers to blood oxygen level-dependent (BOLD)
fMRI. This popular form of fMRI exploits the fact that at a site
of increased neuronal firing (brain activation), increased local
blood flow leads to a decreased concentration of deoxygenated
hemoglobin in the capillaries. This reduces the local distortion
of the magnetic field by the para-magnetic deoxy-hemoglobin,
which leads to a small increase in the fMRI signal (∼0.5–4%).
Thus, BOLD fMRI provides an indirect vascular measure of
(changes in) neuronal activity. Most fMRI studies use cognitive
or sensory tasks in which different task conditions are contrasted
to assess neural activation differences of interest (e.g., viewing
food images compared with viewing nonfood images or tasting
a chocolate milkshake compared with a control solution). This
provides information on which brain regions become more or less
active during a certain task (functional localization) and whether
this differs between study conditions such as hunger and satiety
or different groups of participants.

In recent years, there has been increasing focus on (differences
in) functional connectivity; that is, the degree to which task-
related brain activation in a specific brain region covaries with
activation in other brain regions (functional interactions) (18).
Also, “resting-state” fMRI, which examines the spatio-temporal
networks of correlated activity in the absence of a specific
task (lying still with eyes closed, or mere visual fixation), has
become a popular and promising means of assessing individual
differences in neurobiology (19, 20).

Brain findings per se can be useful, but often their combination
with other measures creates synergy and aids the interpretation
of fMRI findings; fMRI results become more meaningful when
associations with physiological signals and subjective ratings or
individual characteristics can be established and when they are
linked to relevant outcomes such as food intake (21, 22) and
weight change (23–27). Because the brain is so central in the
regulation of food intake and body weight, fMRI is well suited
for connecting different levels of understanding.

Many brain-imaging studies of neural response to food stimuli
seek to make inferences regarding the role of neural responsivity
in the development of adverse physical or mental health problems
such as obesity or eating disorders. For instance, it had originally
been suggested, based on the evidence that obese compared with
lean individuals have lower D2 receptor binding as measured by
PET, that low responsivity of reward circuitry increases the risk of
overeating and consequential obesity (28, 29). However, this is an
example of the complexity involved in drawing inferences from
cross-sectional studies because they are unable to differentiate
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neural vulnerability factors from neural consequences of these
physical and mental health problems.

Prospective studies that can show that the putative neural
vulnerability factor pre-dates and predicts future emergence of
the adverse public health outcome permit stronger inferences
than cross-sectional studies. However, they do not rule out the
possibility that some omitted third variable explains both the
neural response and the emergence of the public health outcome.
Indeed, a larger study spanning the full adult age range concluded
that there was no relation between D2 receptor levels and body
mass index (BMI) in young adults and a positive relation in
older individuals (30), casting doubt on the reward deficiency
interpretation. Furthermore, a recent meta-analysis failed to find
support for the reward-deficiency interpretation as well (31).
Together, this work highlights the importance of prospective
studies, meta-analysis, and replication in establishing reliable
links between brain structure or function and eating behavior or
health outcomes.

Prospective neuroimaging studies in the domain of eating
behavior can vary in their breadth and duration. The most basic
prospective design is to assess neural responses to experimentally
manipulated stimuli or measures of brain morphometry at
baseline and then test whether individual differences in these
variables predict future increases in, or onset of, the health
issue of interest (e.g., future weight gain or onset of obesity
among initially nonobese participants). Prospective designs
that include repeated measurements of neural responses at
multiple time points provide information on biological and
behavioral trajectories that can capture behavioral and neural
plasticity that occurs in response to weight gain or weight
loss over time (or vice versa with behavioral or neural inter-
ventions). Prospective repeated-measures neuroimaging studies
of food-related behavior and health are thus useful for study-
ing the mechanisms of action for prevention and treatment
interventions.

Overall, neuroimaging has exciting potential to contribute
to our understanding of the causes of obesity. The significant
increase in the incidence of obesity over the past 50 y has
been attributed to an interaction of individual vulnerability
and an obesogenic environment replete with inexpensive high-
calorie foods (32). Considerable evidence suggests that sub-
stantial individual vulnerability to this obesogenic environment
resides in the brain. As in the mental health literature (33),
the search for endophenotypes—that is, neural, cognitive, or
personality measures that correlate with weight gain and BMI—
has the potential to 1) provide intermediate measures for gene
discovery and 2) provide explanatory mechanisms for the neural
computations that lead to overeating and thus potentially inform
the development of therapies. Moreover, the combination of
endophenotype research and genetics, performed in different
age groups, may allow us to disentangle the two-way relation
between body mass composition and the brain, because it is
known that visceral obesity itself also causes brain changes (34),
which may favor further weight gain. However, as with any
measurement technique, the ultimate utility of MRI and other
neuroimaging methods depends directly on the experimental
designs and analysis strategies it is combined with. In the
subsequent sections, we highlight the importance of, and aim
to provide initial guidance on, good practice and minimal
standards in neuroimaging research, with a particular focus on its

application to questions surrounding dietary behavior, nutrition,
and obesity.

Methodological Aspects—Good Practice and
Minimal Standards

Good practice guidelines

A carefully compiled and commonly agreed upon set of
good practice guidelines is essential for maximizing the utility
of the complex and ever-growing set of neuroimaging tech-
niques available to researchers. Such guidelines facilitate the
design, execution, and interpretation of original research studies,
and, moreover, allow for testing of reproducibility, accurate
replication (13, 35) and better meta-analyses. In light of the
need for such guidelines, the Organization for Human Brain
Mapping initiated the Committee on Best Practice in Data
Analysis and Sharing (COBIDAS), which set out to define
best practices for data analysis and results reporting as well as
algorithm and data sharing to promote transparency, reliability,
and collaboration. This resulted in a position paper (36) and the
COBIDAS report (http://biorxiv.org/content/early/2016/05/20/0
54262), which provides details for proper reporting and specific
good practices.

Two of the most important issues for any fMRI study are
1) power in terms of both the number of participants included
and the task design (e.g., number of trials per condition) and
2) the threshold used for assessing statistical significance and
how that was determined, appropriately controlling for multiple
comparisons. These comparisons include the testing of multiple
voxels and/or regions of interest, but also extend to tests of
neuroimaging measures against multiple measures of individual
differences in cognition or health status. The following sections
will cover multiple aspects of how these general guidelines can
be applied to neuroimaging studies of dietary behavior, nutrition,
and obesity. An overview of requirements and recommendations
is provided in Table 1. After briefly summarizing general
good practice guidelines for neuroimaging, we discuss specific
experimental design and analysis features for studies using visual,
olfactory, or physical foods/liquids as stimuli. We would like to
note that the AJCN is committed to the COBIDAS standard and
encourages authors to follow the recommendations of that report.
Upon submission, authors will be asked to complete a checklist
based on Appendix D of the COBIDAS report. All items flagged
as mandatory need to be satisfied as a minimal standard. This
checklist is available as Supplemental Checklist S1.

Power calculation and study planning

The prevalence of underpowered studies in neuroimaging,
as well as many other scientific disciplines, is one of the
biggest, but also most concretely addressable, issues we face
(14, 37, 38). Power analysis is important not simply to avoid
performing a futile study, but also to ensure that any positive
findings are likely to be true positives; as noted in a previous
study (37), low power increases the likelihood that any positive
findings are false positives and thus reduces the likelihood
that findings from underpowered studies are replicable. To
date, sample-size calculations based on realistic power analyses
have been made only rarely during the planning stages of

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/article/109/3/491/5369498 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 03 M
ay 2021

http://biorxiv.org/content/early/2016/05/20/054262


494 Smeets et al.

TABLE 1 Overview of requirements and recommendations for nutritional neuroimaging1

Requirement/recommendation Level

Participant description
Report age M
Report gender and test for possible effects M
Report race and ethnicity R
Report handedness and account for nonrighthandedness in analyses M
Report socio-economic status R
Report physical activity level R
Report use of relevant medication, tobacco, alcohol, and caffeine R
Report menstrual cycle phase and how this was accounted for in the analysis HR
Report BMI or age-adjusted BMI and test for possible effects M
Report further adiposity measures, e.g., percentage body fat, waist–hip ratio R
Report a measure of dietary restraint R
Report a measure of stress R
Report personality traits such as reward sensitivity and impulsivity R

Eating disorder scales R
Report weight history; weight lost or gained in the weeks before brain imaging HR
Report time since last meal M
Standardize the last meal before brain imaging R
Report appetite ratings HR
Report thirst ratings R

Study design/procedures
Describe the hunger state(s) and how they were achieved M
Report food stimulus details including macronutient composition and energy content M
For pre- compared with postfeeding studies, motivate why fasted and fed conditions could not be completed on separate

days to avoid order effects
M

fMRI task
Mandatory items in the COBIDAS checklist (S1) M
Provide a power calculation HR
Report the task instructions M
Report the number and timing of the task events and how their order was randomized and/or optimized M
Describe the stimuli used and how they were matched, e.g., on visual characteristics M
Report stimulus liking and where appropriate intensity M
For taste stimuli: report temperature, volume, flow rate, and swallowing instructions M
For olfactory stimuli: report temperature, flow rate, and sniffing instructions M

fMRI data analysis
Mandatory items in the COBIDAS checklist (S1) M
Indicate how correction for multiple comparisons was done and how the threshold used was determined M
Test multiple ROIs with a single combined ROI mask M
Use appropriate covariates, such as stimulus liking, gender, menstrual cycle phase, and BMI HR
Include blood parameters as covariates, if available R

Statistical inference/interpretation
Avoid reverse inference HR
Be as specific as possible in the degree of overlap when comparing activated brain regions with regions found in other

studies
HR

1General requirements and recommendations for reporting neuroimaging methods can be found in the COBIDAS checklist (Supplemental Checklist S1).
COBIDAS, Committee on Best Practice in Data Analysis and Sharing; HR, highly recommended; M, mandatory; R, recommended; ROI, region of interest.

fMRI studies. At least, such calculations are rarely reported
in literature. This shortcoming is by no means specific to the
use of fMRI for nutrition research, but is nonetheless a serious
limitation and often results in inconclusive, nonreplicable, or
even misleading findings. We now know that common rules
of thumb about statistical power for fMRI studies (e.g., 20–
30 participants per group) do not hold in many cases and
often result in underpowered studies, particularly when the
goal is to examine individual differences (39). Underpowered
studies are most often a waste of funding as well as the
time and effort of both researchers and study participants
(38, 40).

Making realistic power calculations requires careful thought
and effort, but the necessary tools for doing so are available.
Most statistical software packages include dedicated functions
for power analyses. Moreover, in recent years, more accessible
and fMRI-specific tools [e.g., (15, 41)] have been developed
to help researchers make appropriate power calculations that
incorporate both within- and between-subjects factors. It is
important to remember that power is a function of the number of
participants but also of the heterogeneity of the study population
and the amount and quality of data collected per participant.
In conjunction with sample-size calculations, it is important to
optimize the design of fMRI tasks in terms of the number,
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temporal distribution, and duration of different trial types (for
general guidelines, see http://imaging.mrc-cbu.cam.ac.uk/imag
ing/DesignEfficiency; for an example of a tool for testing
efficiency of an fMRI task design, see http://www.neuropower
tools.org/).

The ever-growing number of studies in the literature and
the move toward open data sharing mean that, in many cases,
data are readily available for use in making estimates of power
and requisite sample sizes for new studies. However, it should
be noted that effect sizes based only on published studies are
likely to be inflated due to publication bias. Therefore, the use
of existing data should generally be complemented by piloting
the exact experimental procedures. In many cases, researchers
and funding agencies will still need to invest significant time
and resources into collecting more specific pilot data to make
realistic power calculations. However, the returns on such initial
investments are worthwhile, and the cost of not conducting
appropriate study planning is far greater.

Last, we note that collecting more data (trials or subjects)
is not the only way to improve statistical power in fMRI
research. The traditional method for analyzing fMRI data (i.e.,
the mass univariate approach) involves the repeated testing of a
regression model in tens or hundreds of thousands of individual
voxels. These multiple tests require corrections for multiple
comparisons that reduce statistical power. These corrections
are necessary for valid inference and cannot be avoided for
mass univariate analyses. However, mass univariate analyses
are only one means of analyzing fMRI data (42). Multivariate
analyses (43) and data-reduction or aggregation techniques such
as independent or principal-components analyses, or predefined
regions of interest (ROIs), significantly reduce the number of
comparisons conducted and thus the degree of correction for
multiple comparisons required. Beyond simply increasing power,
there is ample reason to believe that multivariate and network-
level analyses (44, 45) provide additional insight into brain
function, and the application of such techniques to the domain
of food choice and nutrition represents an important and as yet
relatively underexploited opportunity.

Proper experimental and task design

Eating behavior and nutritional decisions are determined by
a plethora of factors. In order to draw strong conclusions
from neuroimaging results, we have to know precisely which
factors were controlled and which were manipulated. The nature
of the scientific question will determine exactly which geno-
and phenotypic information is most appropriate to measure or
manipulate and report. It is now standard to report BMI as
an anthropometric measure, age of the participants, and sex.
However, for many specific questions, a deeper phenotyping
may be necessary. For example, it is clear that BMI does
not provide enough information concerning body composition
(46). Better methods to describe the body composition are bio-
impedance measures, dual-energy X-ray absorptiometry (DXA),
MRI, or BOD POD assessment of body composition. However,
the method used for a given study should be appropriate for
the aims of the study and justified in terms of costs and
benefits to both researchers and participants. Ideally, however,
there should be overlap in the measures used to allow better
accumulation of evidence. Accordingly, a set of high-priority

measures, including MRI, has been proposed to achieve common
usage and thereby increase the breadth and impact of obesity
research (47).

Hunger state and related factors.

An important factor to control in nutritional studies is hunger
state and caloric deprivation because they affect food wanting and
food-related brain responses (3, 48–51). In addition, the quan-
tification of food intake is especially important for intervention
studies because nutritional composition can also affect neuronal
processes. For example, fasting-state studies generally require
a 12-h fast and try to control for the subjective hunger state
using visual analog scale measures of appetite. However, it has
been established that the macronutrient composition of even a
single meal can affect hormonal responses extending beyond 12 h
(52). Thus, there is added value in the assessment, and inclusion
as covariates in analyses, of major hormonal factors related
to nutrition. For example, glucose, insulin, leptin, and ghrelin
could be included for nutritional studies of neural responses in
specifically induced feeding states such as hunger compared with
satiety. This would allow researchers to disentangle physiological
and subjective factors related to eating processes.

Another issue is that nutritional preferences are culturally
and individually determined, and therefore the creation and
use of standardized food stimuli can be difficult. Moreover,
these evaluations are dependent on the time of day, season,
and (hunger) state. For example, a heavy breakfast with savory
components is very uncommon in many parts of the world, and
if studies are performed during the morning hours this has to be
taken into account. Thus, acquiring individual evaluations of the
experimental stimuli is another standard operating procedure that
should be incorporated into neuroimaging studies of nutrition-
related behavioral or physiological responses. In addition, it
is advisable to use a standardized meal, for example on the
evening before the measurement, or at least to request participants
in a repeated-measurements design to consume the same meal
preceding all measurements.

Finally, an important challenge in all nutritional studies,
including those using neuroimaging, is that the assessment
of nutritional intake is difficult to quantify in normal daily
life. Currently, most studies use diaries for nutritional intake.
However, such self-reports are unreliable (53). There are several
ongoing efforts to measure nutritional intake using smartphone
applications. However, an assessment of the validity and degree
of advantage or disadvantage of smartphone-based methods
relative to traditional diary methods and the doubly labeled water
method for assessing habitual caloric intake will require further
study.

Personal characteristics.

In addition to physiological factors, care must be taken to
account and, whenever possible, control for psychological factors
in studies of the neurobiology of eating behavior. Personality or
cognitive traits may modulate food-related brain responses (12).

Most studies test for eating disorders to exclude clinically
relevant diseases. However, it would be advisable to control
statistically for subclinical scores on eating-disorder scales.
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Choosing and matching food-related stimuli.

Eating engages all of our senses. The extraoral sensations of
vision and olfaction provide information about food availability
to guide food acquisition. The oral sensations of somatosensation
(e.g., texture and temperature), chemesthesis (e.g., astringency,
spiciness), gustation (sweet, sour, salty, bitter, umami, and
possibly fat and starch taste), and retronasal olfaction provide
information to guide consumption once the food is acquired
and in the mouth. For example, one uses oral somatosensation
to localize a bone in a bite of fish that needs to be extracted
before swallowing, whereas the taste of sweetness produces a
metabolic cascade to facilitate glucose metabolism (54). The
choice of stimulus will depend upon the particular goals of the
study. An in-depth discussion of relevant factors to consider for
visual, olfactory, and oral food-related stimulation is provided as
Supplemental Material S2.

fMRI data analysis

Statistical thresholding for whole-brain and regions of
interest.

fMRI analyses can be performed at several levels. When
using common mass univariate approaches that take all voxels
in the brain into account, appropriate corrections for multiple
comparisons must be implemented. This has been noted early on
(55) but was highlighted several years ago by a conference paper
reporting on scans of a dead salmon that was instructed to perform
an emotion-recognition task (56). When appropriate correction
techniques were not applied, there appeared to be task-related
brain activation in the salmon. Naturally, these false-positive
activations were no longer seen when appropriate corrections for
multiple testing were used.

This infamous “case study” is a salient reminder of the impor-
tance of using appropriate statistical methodology in the analysis
of neuroimaging data. In many subfields of neuroimaging, it
has been commonplace to use rule-of-thumb corrections for
multiple comparisons (e.g., a voxel-level threshold of P < 0.001
uncorrected combined with a cluster-extent threshold of 10
voxels). However, it is now clear from creative examples such as
the salmon study and more rigorous and extensive investigations
that such rules are inadequate in controlling false-positive rates.
Recent comparisons of correction methods for multiple testing
in fMRI data indicate that permutation-based procedures are
the best choice and that cluster-based methods should be used
correctly (17, 57). Specifically, when Gaussian random field
theory is used for cluster-based inference, the cluster-forming
threshold should be P = 0.001 to avoid inflated false-positive
rates (17). More stringent cluster-forming thresholds also help to
avoid problems in interpreting the very large activation clusters
that often result from low cluster-forming thresholds (57). Note
that cluster-based corrected findings indicate that there is likely
to be significant activity somewhere within the cluster rather than
indicating that all voxels within the cluster are significant. Thus,
if we only show that somewhere within a very large cluster there
is probably a significant difference between conditions or groups,
then we cannot infer or conclude much at all.

In addition to whole-brain analyses, the current literature on
the neurobiology of nutrition is substantial enough to justify ROI
analysis for certain brain regions or connections between regions.

However, in order to be valid, ROI analyses must be planned a
priori, ideally preregistered, and the hypotheses about the region
must be clearly stated. To avoid biased results, both anatomic
and functional ROIs should be defined based on independent data
sets or functional localizer tasks. Note that multiple comparison
corrections must be applied across the ROIs when multiple ROIs
are tested for a given hypothesis. Furthermore, the assumptions
underlying cluster-based correction methods are rarely satisfied
in small volume analyses, and their use in this case should be
avoided (58).

Minimizing the influence of movement.

fMRI data are prone to movement-related artifacts because
movement causes displacement and distortions in the data. In
particular, oral stimulation can be accompanied by significant
movement. Movement from swallowing and other activities
such as breathing may be larger because of greater body
mass. In addition, there is evidence that head motion and
BMI share genetic influences, suggesting that movement is a
neurobehavioral trait that is greater in obesity [e.g., (59)]. These
movements can be counteracted in real time or modeled post hoc
during data analysis.

a) Real time. Movement can be minimized physically by the
use of cushions around the head, a personalized head case
from a 2-part foam mold, or a bite bar. Movement can also
be minimized through behavioral training or feedback. One
way is to provide the participant with a stationary reference,
which has been done by using a cloth strap or tape across the
forehead that attaches to the head coil. When the participant
moves, they can clearly feel this by the friction on their
forehead. This feedback works well and leads to substantial
improvement because movement from swallowing mostly
results in small movement in the z-plane, which is hard
to feel in most head coils. Again, training is important
to improve comfort and ability to lie still. Training will
also allow participants to learn to swallow with minimal
movement of the head by isolating movement to the jaw and
tongue during swallowing. The use of real-time feedback
with a head motion tracker in a mock scanner may be most
efficient (available, for example, at Psychology Software
Tools https://pstnet.com/). Scanners with newer software
may include real-time monitoring of movement and allow
experimenters to immediately redo runs that invoked too
much movement. Another solution is to remove the need
to swallow altogether by suctioning out liquids (60) or
instructing participants to hold the liquid in their mouth
until they receive a cue to swallow (61). The downside of
these methods, as elaborated in Supplemental Material S2,
is that a large area of stimulation is overlooked, that aromas
in flavors cannot be perceived, and that an important part of
the process of ingestion is omitted.

b) Post hoc analysis. Correction for head motion via image
registration is performed as a standard part of the fMRI
preprocessing pipeline, but it is clear that this is not suffi-
cient to remove the residual effects of head motion on image
intensities (62); for this reason, motion parameters and
their derivatives (which quantify change from time point to
time point) are often included as nuisance regressors in the
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statistical model. However, these too may be insufficient
to address large amounts of motion, and it is common to
reject data from individual participants, runs, or time points
based on motion estimates. The state-of-the-art techniques
for motion detection and cleaning have been developed in
the context of resting-state fMRI, where head motion is
a critical problem (63). In addition to the use of motion
estimates and their derivatives as nuisance regressors,
it is common to compute a measure of “frame wise
displacement,” which measures the overall displacement of
the images between each pair of subsequent time points,
and a measure called DVARS (derivative or root mean
square variance over voxels), which quantifies the mean
change in image intensity between time points. These
measures may be used to “scrub” time points with motion
that exceeds a particular threshold, varying from 0.2 to 0.5
mm frame-wise displacement (64), along with surrounding
time points; in the context of task-based fMRI analysis,
this scrubbing can be performed as part of the statistical
model by including single time point regressors for each
excluded time point in the model (65). Individual runs or
subjects exceeding a threshold level of scrubbed volumes
may be dropped; the use of faster imaging with multislice
acquisition can improve the handling of motion by reducing
the relative amount of data that needs to be removed.

An estimate of vigor of swallowing and exact timing of
swallowing may be obtained with expanding bellows and a
spirometer (66, 67), which will allow the use of swallowing as
either the onset of an event of interest or, alternatively, a nuisance
regressor to be covaried out. Similarly, movement from breathing
can be estimated with most standard scanner equipment and
incorporated into the single-subjects analysis. These variables
can also be included as regressors in group analyses to address
their confounding effects. Finally, independent component anal-
ysis can be used to remove the effects of motion artifacts and
physiological noise from breathing and heart beating (68–70).

Analysis of prospective designs.

Although significant advances have occurred in analytic
approaches for longitudinal data that better account for autocor-
relation of data from the same participant over time, missing
data, and nested data (71), these advances are not supported
by commonly used fMRI analytic packages. The most basic
approach if the data are only collected at 2 time points is to
use change scores for the outcome (e.g., T2 BMI–T1 BMI)
and simply regress the change scores on BOLD response from
the contrast of interest [e.g., (72)]. However, it is critical to
covary for baseline BMI because a change in an outcome over
time is typically negatively related to baseline values of the
outcome (73). Ideally, we recommend using random effects
growth mixture models or other types of hierarchical linear
models that use full information maximum likelihood to confirm
that we model change in behavioral outcomes optimally. This is
particularly important when data are collected at 3 or more time
points, because there is the potential for nonlinear change over
time (e.g., quadratic growth). The slopes and intercepts (coded to
reflect baseline values) can then be exported to any of the standard
fMRI analytic statistical packages and the slopes regressed

against the BOLD response, controlling for the intercept [e.g.,
(27)]. For repeated-measures studies, which can include natural
history observational studies [e.g., (74)] or intervention trials
[e.g., (75)], one can simply use repeated-measures ANOVA
models to test for differential change in BOLD response in
contrasts of interest over time across 2 or more groups. Although
one might be tempted to directly contrast BOLD response to
the event of interest (e.g., taste of milkshake) from multiple
assessment points, we do not recommend this approach because
a number of factors can contribute to a variation in BOLD
signal over time (e.g., variability in physiological variables,
instability of MRI hardware), which may introduce bias. Instead,
the contrast of the event of interest against an appropriate control
event (e.g., tasting tasteless control solution) should be used.
An alternative approach is to read out parameter estimates from
the contrast of interest at each assessment and use standard data
analytic packages, such as SAS or R to conduct regression models
or repeated-measures analyses, but this requires an ROI approach,
which does not make use of all the data collected and may miss
important peaks that were not anticipated a priori.

Predictive modeling.

One of the potential uses of MRI is the prediction of future
outcomes, such as eating behavior, weight change, or treatment
responses. A mounting number of studies suggest that neural food
cue reactivity can predict outcomes such as energy intake outside
the laboratory (76), weight gain (27, 77, 78), weight variability
(79), and weight-loss success (23, 80).

However, care must be used during model fitting in order
to achieve predictive accuracy on new samples. When model-
fit and goodness-of-fit estimates are obtained from the same
data, the estimated goodness of fit is inflated because the data
have in a sense been used twice (81). One approach to address
this is to use cross-validation to assess out-of-sample predictive
accuracy; in this method, the model is fit iteratively to subsets
of the data and tested on the remaining data that were held
out during training (https://web.stanford.edu/∼hastie/ElemStatL
earn/). This method provides more accurate estimates of how
well the model can predict outcomes in new samples; however,
predictive accuracies can be highly variable with small samples
(82), and accuracies can be inflated if many different parameter
sets are tested without proper control (83). For this reason, testing
a model (e.g., regression, support vector machine, etc.) fit to
one data set against an entirely separate and independent data
set remains the gold standard for quantification of predictive
accuracy.

Preregistration and data sharing

The importance of transparency for reproducible research is
increasingly realized. Studies can be registered at accredited
public trial registries such as clinicaltrials.gov, but that does
not preclude exploration of the data beyond the testing of the
primary hypotheses, although study plans including planned
analyses can also be preregistered [e.g., at the Open Science
Framework (osf.io)]. To counter publication bias, an increasing
number of journals accept registered reports; the study plan
is peer-reviewed, and, if accepted, the journal will publish the
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results of the planned analyses regardless of their nature (see
https://cos.io/rr/).

Transparency and reproducibility are further aided by the
sharing of research materials such as task scripts and analysis
code as well as the data. There is a spectrum of data sharing,
which involves a trade-off between the ease of sharing and the
utility of the data (84). On the one hand, meta-analysis has largely
relied upon activation coordinates from published papers (85, 86),
which are easy to obtain but limited in comparison with meta-
analysis based on full statistical images (87). For this reason, it is
now recommended to share the unthresholded statistical images
from neuroimaging studies using a database such as Neurovault
(88). At the other end of the spectrum is the sharing of complete
raw data sets via resources such as OpenNeuro, INDI/FCP, and
NITRC. The sharing of raw data sets requires substantially more
time and effort than sharing of coordinates or statistical results
but provides greater utility of the data, such as allowing different
analyses to be applied to the same data or allowing raw data to be
combined across studies in a “mega-analysis.” Recent projects
such as the Human Connectome Project (89) and ENIGMA
Consortium (90) have demonstrated the substantial utility of
sharing large samples of raw MRI data.

Appropriate Interpretation

What can be concluded from fMRI findings (and what
cannot)?

Although research on the exact meaning of changes in the
BOLD fMRI signal is still ongoing, most researchers assume
that differences in BOLD signal reflect differences in neuronal
activity “averaged” over the piece of brain tissue that was
sampled (voxel). One could argue that as long as we can
detect apparently meaningful differences between conditions or
groups, BOLD fMRI is of use regardless of the exact underlying
neuronal and physiological correlates of these signal differences.
Nevertheless, underlying processes such as coupling between
neuronal and vascular response may differ between subjects and
may be affected by disease states. Notably, obesity is associated
with increased cerebrovascular disease risk, and this may affect
neurovascular coupling (91). Studies examining cerebrovascular
reactivity can be used to assess whether this might be a problem
in specific study populations.

A particular point of attention for clinical and intervention
studies is that baseline or “resting-state” brain activity may
differ between patients and controls or may change due to the
study treatment (e.g., meal ingestion or a diet intervention). This
may explain observed differences in task-related brain activation,
which is usually the main outcome parameter. In addition,
because fMRI results usually rely on a comparison between
2 task conditions or groups, the direction of the underlying
BOLD signal changes should be examined by extracting cluster
parameter estimates to aid interpretation. This allows one to
distinguish less deactivation from greater activation, for example.
Group × task condition interactions should be reported only
where there is a main effect of the task in one of the groups. For
example, when there is no clear activation in a region for “food
compared with nonfood,” great caution should be exercised in
reporting and interpreting a group × stimulus type interaction in
this area.

It can be challenging to design an fMRI task such that a
specific cognitive process is subtracted out by contrasting a task
of interest with a control condition. First, in the food domain in
particular, it is inherently harder to match stimuli due to their
sensory complexity and possible cognitive associations, and we
can only approximate control conditions by matching on as many
characteristics as we can. Second, the observed differences in
regional brain activation may be driven by associated but not
necessarily food-specific processes such as arousal, attention,
emotion, or motivation. This is not necessarily a drawback, but
it is important to be aware of this. Third, fMRI is sensitive such
that task instructions and mind set or attentional focus can alter
the pattern of brain activation observed [see, e.g., (92–95)]. Thus,
when interpreting findings and comparing with the literature, it is
important to take seemingly minor differences in task design and
instruction into account.

As alluded to before, conclusions can be strengthened
by showing that differences in BOLD signal changes corre-
late with relevant parameters such as stimulus or personal
characteristics.

Reverse inference

A common practice in the interpretation of neuroimaging
results is the use of reverse inference (96). This refers to
interpreting activation of a particular brain region as evidence
for the engagement of a particular cognitive process. Although
they can provide some information, such inferences are not
deductively valid and need further substantiation. In particular,
when activation of a brain region cannot be pinpointed to a
specific process or when evidence for selective engagement of
that region during a specific neural process is weak, reverse
inference should be done with caution. For example, areas that are
often found to be activated in many studies, also outside the food
domain, are the insula, cerebellum, and prefrontal cortex (97, 98).
For such large and heterogeneous regions, special care should be
taken to consider the exact subregion found in combination with
the process of interest. In conclusion, reverse inference should be
used with caution and involve as much specificity as possible.

Comparability of findings in “the same” brain region

In general, the discussion of fMRI findings often lacks
accuracy. Often it is unclear whether the area being discussed
is really in the same part of the larger structure, say within a
10-mm radius, and located in the same hemisphere. This may
be particularly true for large areas such as the insula and long
gyri (e.g., the inferior frontal gyrus). It is advisable to be as
specific as possible (e.g., by distinguishing between anterior,
middle, and posterior insula). Likewise, indicative labels such
as “dorsolateral prefrontal cortex” or “ventromedial prefrontal
cortex” may be used to refer to very different locations. Thus,
in all cases, comparison of findings between studies should not
be done without checking the exact location to allow appropriate
wording of the degree of similarity. In addition, it is important
to be clear on the paradigm or other relevant aspects of the
study such as the sample size or population used, which can
significantly affect comparability of findings and thus the strength
of the inferences made. We see the open sharing of unthresholded
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group-level statistical maps (e.g., through Neurovault.org) as the
most promising way to resolve such ambiguities. If these data
are available for all published studies, then comparing the spatial
locations of new and existing findings becomes as simple as
overlaying 2 or more maps.

A useful approach to overcome regional/functional impre-
cision is to use meta-analytical results to pinpoint functional
areas. Online repositories of meta-analyses such as the ANIMA
database (99) or Neurosynth (www.neurosynth.org) (86) can
be queried to identify specific functional locations (e.g., the
ventromedial prefrontal cortex area that encodes stimulus value
or the insular subregion that responds to taste stimuli).

Research Needs and Future Directions

Fostering comparability, data pooling, and meta-analysis

Scientific progress can be promoted by better comparability
of research findings, allowing better data pooling and more
accurate meta-analyses. This requires better standardization of
(neuroimaging) methods and associated measures, along with
the application of advanced analysis and modeling techniques
to nutritional neuroscience data (100). This would be aided by
minimal standards in the field as to which descriptive data must
be reported, in addition to common descriptives such as age and
gender. This might include as a minimum handedness, BMI,
and a measure of hunger state, but could be expanded for many
studies by additional measures such as information on diet, body
composition (percentage body fat), hormonal status (menstrual
cycle phase, appetite-related hormones), and personal as well
as personality characteristics (dietary restraint, food attitudes,
reward sensitivity, impulsivity).

Task-related fMRI studies would do well to use established
paradigms with standardized stimuli adjusted for the population
under study and also evaluated by the study participants to
confirm (e.g., familiarity). This is aided by sharing of the
stimuli used in online databases (see Supplemental Table S1
in Supplemental Material S2) and sharing of the associated
task paradigms and code, preferably at established reposito-
ries like the Open Science Framework (https://osf.io/) and
GitHub.

An excellent way to make more use of existing data or achieve
greater yield from studies is to use the same paradigm and
analysis pipeline across many centers. This is particularly useful
when it concerns specific (clinical) populations that may be hard
to recruit in sufficient numbers by a single center. An example
of this is the ENIGMA (90) working groups that assess cortical
thickness for different disorders by pooling results obtained from
the analysis of anatomic MRI scans from many centers (http://en
igma.ini.usc.edu/). Although mainly focused on brain disorders
so far, there is an eating disorder group as well (http://enigma.ini
.usc.edu/ongoing/enigma-anorexia/).

Another noteworthy initiative is the use of standardized
analysis pipelines for neuroimaging data analysis (101) as
provided at the OpenNeuro platform (https://www.openneuro.or
g/). This may help to reduce variation in study results and allows
researchers to see how robust their outcomes are when assessed
with different software packages. As a minimum, (neuroimaging)
analysis scripts should be shared alongside data to better allow
replication by others.

Toward predicting future outcomes

The vast majority of nutritional neuroimaging studies are
cross-sectional. As alluded to above, to learn more about the
causality of obesity and eating disorders it is crucial to promote
long-term follow-up studies (e.g., by adding MRI measures
to adequately powered cohort studies). Adding to existing or
newly formed cohorts would also ensure detailed phenotyping.
Individual differences in fMRI task responses or structural data
at baseline can then be used to predict future changes in relevant
outcomes such as onset of a disease state or growth in symptoms
[see, e.g., (27)]. Ideally, phenotyping including neural measures
would be done repeatedly to be able to examine neural plasticity
that may occur in response to (nutritional) interventions or
disease conditions (e.g., onset of an eating disorder or obesity).

Technological advances

More realistic food cue exposure and choice
context—potential of virtual reality.

Another direction for future work is the development of more
realistic fMRI paradigms which better reflect the reality of
food cue exposure and choice. A supine-positioned, immobile
participant lying in a narrow, noisy MRI tube, located in a
hospital, might reasonably be expected to behave differently
than one walking around a supermarket or sitting at the dinner
table. There is ample evidence that situational factors influence
momentary goals and preferences, and thereby food choice (102,
103). For example, in-store communication and cues at the
consumption site can trigger hedonic- or health-related goals and
thereby steer choices toward goal-congruent alternatives (104–
108). The above-mentioned contextual cues, which are normally
present at the point of purchase, are lacking in most fMRI studies.
However, possibly more problematic, situational factors in the
fMRI research setting, like seeing medical equipment, might
activate associated information (i.e., thoughts about disease,
medical treatments) and influence current goals (e.g., prevention
of disease) itself and thereby influence behavior. It is unknown
how the presence of medical equipment influences food choice
and underlying cognition, and this is a relevant topic for further
study. Further, given the strong effects of situational factors
on choice and potentially on the neural processes leading to
that choice, it is important that authors describe the complete
study setting with a high level of detail. For example, it should
minimally be mentioned whether the experiment was carried
out at a hospital or at a research-dedicated MRI scanner in a
nonmedical facility.

Aside from these situational factors, fMRI food choice tasks
are generally highly simplified, showing (cut-out) images on
a plain background, and are thus very different from the
real-life food-choice environment (109–113). Situational and
task-related factors combined might result in very different
choices in fMRI research than in real life. If choice behavior
differs between fMRI tasks and real life, how can we be confident
that the cognitive process we measure during choice is the one
we actually aim to measure? So far, to our knowledge, only a
few studies have related choices made in the scanner to a “real-
life” measure of eating behavior; namely, intake at a subsequent
ad libitum laboratory buffet meal (114) and intake at a buffet
lunch the next day (115). In the former study, however, in-scanner
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choices were not related to intake at the buffet. To assess how
representative food-choice behavior in fMRI tasks is for real-life
food choices, future studies should incorporate real-life measures
of eating behavior and relate these to in-scanner behaviors. This
will allow us to establish the need for more realistic fMRI food-
choice paradigms.

One approach to develop more realistic fMRI paradigms is
by using virtual reality (VR). VR provides the ultimate level
of immersion, creating a sense of physical presence in the 3D
virtual environment, and has been successfully applied in a wide
range of fields including psychiatry and medicine (116, 117).
Moreover, in recent years, several virtual supermarkets have been
developed (118–120), which enables collection of purchase data
in a very controlled yet realistic environment. VR has a major
potential for use in neuroimaging food-choice research because
individuals quickly feel “embedded” in VR environments, such
that the actual situation (lying in an MRI scanner) is suppressed in
favor of the virtual situation (walking in the supermarket) (121).
Several studies have shown that purchasing behavior in virtual
supermarkets is relatively similar to actual purchase behavior
(122–125). However, increased realism might come at the cost of
increased noise and excessive visual stimulation, which might de-
crease sensitivity to detect signals of interest. To our knowledge,
to date only one virtual supermarket paradigm that can be used
in fMRI research has been developed (http://nutritionalneuroscie
nce.eu/index.php/resources/neuroshop-virtual-supermarket). In
this paradigm, participants can first freely navigate through the
virtual supermarket with a joystick. This serves to embed the
participant in the virtual supermarket and foster involvement
in the task of grocery shopping. Subsequently, participants
perform a more standardized fMRI choice task in which
shelves with the same design are shown, and choice blocks
are interspersed with movies of walking around from shelf to
shelf, in order to maintain embedding. This provides a first
step toward exploiting the potential of VR to produce more
ecologically valid measures of food choice and underlying neural
processes.

More realistic feeding paradigms.

To better mimic ingestive behavior, there is a need to move
beyond stimulation with passive reception of small boluses
of liquid. The major hurdle here has been the sensitivity of
fMRI to movement. However, recent advances in hardware and
software offer hope that sequences can be compiled that will be
more robust and perhaps even allow us to measure responses
to active sipping, swallowing, and even chewing solid foods.
For example, multiecho fMRI increases the signal-to-noise ratio
by a factor of 4 (126), whereas multiband acquisition provides
enhanced speed to increase the temporal resolution, allowing
greater ability to deconvolve the BOLD response in the context
of movement. Also in development is echo planar imaging with
the “keyhole technique,” which increases the signal readout
even further, allowing 25–30% increases in either spatial or
temporal resolution. These improvements in data acquisition
can then be coupled to new technology enabling delivery of
solid foods to participants lying in the scanner bore. Although
there is some way to go, and chewing poses an additional
risk of movement artifacts as well as aliasing of activity from

the temporalis muscles, such technologies are on the horizon
(127).

Discussion
The potential of functional neuroimaging for leveraging our

understanding of the drivers of eating behavior is substantial
because it can elucidate the underlying neural processes and how
these are affected by the diverse determinants of eating behavior.
However, to maximize the yield of neuroimaging methods, it is
of paramount importance to adhere to high standards in terms
of experimental and task design, and subsequent data analysis to
ensure sufficient detection power, specificity, and interpretability.
To accommodate the complexity of nutrition research and to be
able to distinguish noise from meaningful variability, the use
of standardized methods, proper phenotyping, and reporting of
sufficient methodological detail are necessary to enhance data
pooling and meta-analyses of nutritional imaging data. Moreover,
there is a need for more prospective and repeated-measures
studies to elucidate etiology and establish neural markers so as
to provide novel and specific targets for intervention.

None of the authors has a potential conflict of interest. The authors’
responsibilities were as follows—All authors designed and wrote the paper;
PAMS had primary responsibility for final content; and all authors read and
approved the final manuscript.
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