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85764, Germany and 2Department of Limnology & Bio-Oceanography, Centre of Functional Ecology, University
of Vienna, Althanstrasse 14, Vienna 1090, Austria
∗Corresponding author: Department of Limnology & Bio-Oceanography, Centre of Functional Ecology, University of Vienna, Althanstrasse 14, Vienna
1090, Austria. Tel: +43 1 4277 76416; E-mail: christian.griebler@univie.ac.at

One sentence summary: Biogeography of microbial communities in groundwater ecosystems.

Editor: Martin Hahn
†Lucas Fillinger, http://orcid.org/0000-0001-5341-8097

ABSTRACT

Several studies have analyzed biogeographic distribution patterns of microbial communities across broad spatial scales.
However, it is often unclear to what extent differences in community composition across different regions are caused by
dispersal limitation or selection, and if selection is caused by local environmental conditions alone or additional
broad-scale region-specific factors. This is especially true for groundwater environments, which have been understudied in
this context relative to other non-subsurface habitats. Here, we analyzed microbial community composition based on exact
16S rRNA amplicon sequence variants (ASVs) from four geographically separated aquifers located in different regions along
a latitudinal transect of ∼700 km across Germany. Using a combination of variation partitioning and ecological null models
revealed that differences in microbial community composition were mainly the product of selection imposed by local
environmental conditions and to a smaller but still significant extent dispersal limitation and drift across regions. Only
∼23% of the total variation in microbial community composition remained unexplained, possibly due to underestimated
effects of dispersal limitation among local communities within regions and temporal drift. No evidence was found for
selection due to region-specific factors independent of local environmental conditions.
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INTRODUCTION

The elucidation of processes that determine the biogeographic
distribution of species is a central goal in community ecology
and has further moved into the focus of microbial ecology over

the past decade (Martiny et al. 2006; Nemergut et al. 2013; Meyer
et al. 2018; Langenheder and Lindström 2019). Different the-
oretical concepts have been developed, which share overlap-
ping perspectives on the processes that cause differences in
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community composition across space (Vellend 2010; Chase and
Myers 2011; Leibold and Chase 2018). In essence, these processes
can be broadly categorized as processes related to species sort-
ing (selection), dispersal and random ecological and evolution-
ary drift due to stochastic migration, extinction and speciation
events. These processes can act simultaneously and to varying
degrees depending on the spatial scale at which communities
are being investigated (Chase and Myers 2011). Within regions,
sets of local communities that are linked by dispersal, and hence
share a common regional species pool, have been defined as
metacommunities (Leibold et al. 2004). Local communities may
differ from each other as a result of species sorting caused by
differences in local environmental conditions that select for dis-
tinct sets of species that are able to thrive under these condi-
tions, provided that a certain degree of dispersal exists between
communities to allow species to track environmental gradi-
ents. In such a case, differences in community composition
would be strongly linked to differences in environmental condi-
tions, while spatial distance between locations would have lit-
tle effect (Leibold et al. 2004). However, community composition
can be uncoupled from environmental conditions by processes
that affect species dispersal. Apart from species sorting, differ-
ences between local communities can also arise due to disper-
sal limitation, in which case the impeded exchange of species in
combination with random drift causes communities to diverge
over time (Chase and Myers 2011). Additionally, dispersal limita-
tion no longer allows species to track environmental differences
and reach locations with their preferred environmental condi-
tions, causing differences in community composition to be pre-
dominantly associated with spatial distance between locations
rather than differences in environmental conditions. On the
other hand, high similarities between communities can arise,
and species sorting be over-ruled, under conditions with high-
dispersal rates. Strong dispersal can homogenize local commu-
nities and allow species to occur even under unfavorable envi-
ronmental conditions, if dispersal rates are sufficient to outpace
species extinction caused by the unfavorable conditions. Also, in
this case, differences in community composition would be less
well predicted by differences in environmental conditions (Lei-
bold et al. 2004).

Since local communities are subsets of a regional metacom-
munity, they are not independent of the regional species pool
from which they are assembled. Understanding the processes
that structure these metacommunities might, therefore, be an
important step towards explaining local community diversity
and biogeographic distribution patterns (Ricklefs 2008; Lind-
ström and Langenheder 2012). Broad-scale region-specific fac-
tors like climate, geology, land use and historical events can
leave a lasting imprint on community structure and thus may
add to or even over-ride the effect of local contemporary envi-
ronmental conditions (Martiny et al. 2006; Andersson et al. 2014;
Fukami 2015; Stegen et al. 2016b; Vass and Langenheder 2017;
Rummens, De Meester and Souffreau 2018; Svoboda et al. 2018).
However, a common problem with studies that have investi-
gated differences in community composition over large spatial
scales is that distance decay relationships or the contribution
of spatial distance in variation partitioning models can poten-
tially be caused both by dispersal limitation over large spatial
distances as well as by selection due to broad-scale regional fac-
tors (Leibold, Economo and Peres-Neto 2010; Hanson et al. 2012;
Wang et al. 2013). Therefore, it is often unclear to what extent
adaptation to these broad-scale factors, relative to dispersal lim-
itation and drift, contribute to differences between communities

across regions. Moreover, their effect on local community com-
position within regions, on top of dispersal, drift and selection
imposed by the local environment, which may shape these com-
munities as discussed above, is not well understood (Heino et al.
2017).

Several studies have investigated patterns of microbial bio-
geography over different spatial scales in various habitats,
including soil, marine environments and surface freshwater
systems like ponds, streams and lakes (for reviews see Han-
son et al. 2012; Lindström and Langenheder 2012; Langenheder
and Lindström 2019). However, the majority of studies so far
have focused on local communities within a region, while only
a few studies have explicitly investigated communities at larger
spatial scales across regions (e.g. Martiny et al. 2011; Alma-
sia et al. 2016; Comte et al. 2016; O’Brien et al. 2016; Ma et al.
2017; Hassell et al. 2018; Power et al. 2018; Shi et al. 2018). More-
over, a common conclusion from the reviews cited above is
that the importance of selection relative to dispersal and drift
not only changes depending on spatial scale, but also varies
among habitat types (see also Wang et al. 2013). Strikingly, stud-
ies on groundwater ecosystems and related subsurface habitats
are largely under-represented in this context compared to stud-
ies on surface habitats. Although recent studies have investi-
gated the impacts of environmental conditions and selection
processes on microbial community composition in subsurface
environments (Shabarova et al. 2014; Stegen et al. 2015; Beaton
et al. 2016; Graham et al. 2016a, 2017; Stegen et al. 2016a; Ste-
gen et al. 2016b; Stegen et al. 2018; Savio et al. 2019), they mainly
focused on local communities within a single aquifer, whereas
studies that compared communities across aquifers from dif-
ferent regions are scarce (Ben Maamar et al. 2015; Danczak et al.
2018). Considering that groundwater-saturated zones of the ter-
restrial subsurface constitute the largest inland aquatic habi-
tat for microorganisms on earth, and are estimated to harbor
a significant fraction of the global microbial biomass (Griebler
and Lueders 2009; McMahon and Parnell 2013; Magnabosco et al.
2018), the limited understanding of processes that shape micro-
bial communities in these environments is a critical knowledge
gap in microbial ecology.

In this study, we analyzed microbial community composi-
tion based on exact 16S rRNA amplicon sequence variants (ASVs;
Callahan et al. 2016a) from four distinct shallow porous aquifers
located in different catchment areas along a latitudinal transect
of ∼700 km across Germany. We used a combined approach of
variation partitioning and ecological null models to determine,
first, the individual effects of local environmental conditions,
spatial distance within regions and region identity on micro-
bial community composition; second, the contributions of selec-
tion, dispersal and drift to community turnover within as well as
across regions and third, the extent to which differences in com-
munity composition across regions were the result of disper-
sal limitation and selection caused by either broad-scale region-
specific factors or local environmental conditions.

MATERIALS AND METHODS

Sample collection

A total of 45 samples were collected on single sampling cam-
paigns between spring 2016 and summer 2018 from four dis-
tinct unconfined, shallow, porous aquifers, mainly consisting of
unconsolidated gravel and sand, located in four different regions
across Germany (Fig. 1). Region NOR (n = 12; September 2018;
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Figure 1. Schematic map of Germany. Locations of the investigated regions are
shown as black squares; rivers are shown in grey.

53.72◦N, 10.01◦E) was located in Norderstedt near the city of
Hamburg in the catchment of the Elbe River; region WUR (n = 13;
May 2016; 49.77◦N, 9.93◦E) was located in Würzburg in the Main
River catchment; region AUG (n = 12; June 2016; 48.25◦N, 10.90◦E)
was located near Augsburg in the Lech River catchment; region
MIT (n = 8; July 2018; 47.41◦N, 11.26◦E) was located near Mitten-
wald at the foothills of the German Alps in the Isar River catch-
ment. Groundwater from the sampled areas of all aquifers was
classified as non-contaminated and is used for drinking water
production in their respective regions. Prevalent types of land
use in each region were forests, grasslands and fallow agricul-
tural land.

Groundwater samples were collected from fully screened
monitoring wells using a submersible pump (MP1; Eijkelkamp
Soil & Water, Giesbeek, the Netherlands) that was submerged
at about half the depth of the water column in the well. Stag-
nant well water was purged prior to sample collection by pre-
pumping to allow for approximately two volume exchanges and
until physicochemical parameters (electrical conductivity, pH,
temperature, dissolved oxygen concentration) had stabilized. All
sample containers were sterilized prior to sampling and rinsed
with sample water three times before sample collection. All
samples were kept in the dark at 4◦C for transport to the lab and
until processing. Samples for dissolved organic carbon (DOC)
measurements were collected in glass bottles that were baked at
450◦C for 4 h or soaked in 10% w/v sodium persulfate overnight.
DOC samples were passed through a 0.45 μm filter (Millex-HV;
Merck-Millipore, Carrigtwohill, Ireland) rinsed once with sam-
ple water prior to sample collection and were acidified on-site
to a final pH ≤ 2 with HCl. Samples for total prokaryotic cell
counts were collected in Falcon tubes and fixed with 2.5% v/v
glutardialdehyde (final concentration) immediately after sam-
pling. Samples for DNA extraction (5 L) were collected in auto-
claved glass bottles or plastic containers rinsed three times
with 1 M HCl followed by three washing steps with 80% v/v
ethanol (residual ethanol was allowed to evaporate overnight).
Cells were collected on a 0.2 μm polycarbonate filter membrane
(Merck-Millipore) within 48 h after sample collection and stored
at −20◦C until DNA extraction using the protocol by Pilloni et al.
(2012).

Measurements of environmental variables

To estimate local environmental conditions, we measured 13
physicochemical parameters for each groundwater sample in
addition to total prokaryotic cell counts. Electrical conductiv-
ity, pH, temperature and dissolved oxygen concentrations were
measured on-site using field sensors (WTW, Weilheim, Ger-
many). DOC concentrations were measured as non-purgeable
organic carbon using high-temperature combustion (680◦C) and
infrared detection of CO2 on a TOC-V CPH Analyzer coupled to an
ASI-V autosampler (Shimadzu, Kyoto, Japan). Inductively cou-
pled plasma atomic emission spectrometry (ARCOS; Ametec-
Spectro, Kleve, Germany) was used for the determination of
cations (calcium (measured spectral element line: 183.801 nm),
magnesium (279.079 nm), potassium (766.491 nm) and sodium
(589.592 nm)) with radio frequency power set to 1400 W and
argon as plasma gas at a flow rate of 15 L min−1. Samples
were introduced by a peristaltic pump connected to a micromist
nebulizer with a cyclon spray chamber. Anion concentrations
(chloride, nitrate, orthophosphate, sulfate) were determined by
ion chromatography (Dionex ICS-1500; pre-column: Dionex AG4;
analytical column: Dionex AS4; Thermo Scientific, Idstein, Ger-
many) with Na2CO3 (1.8 mM) + NaHCO3 (1.7 mM) as eluent at a
flow rate of 1 mL min−1. Total prokaryotic cell counts were deter-
mined by flow cytometry (FC500 CYTOMICS; Beckman Coulter,
Brea, CA, USA) with instrument settings as in Bayer et al. (2016).
Cells were fluorescently stained in a 500 μL sample aliquot with
SYBR Green I (Invitrogen, Darmstadt, Germany) at a ratio of
1:10 000 and incubated in the dark at 37◦C for 13 min. 100 μL sus-
pension of fluorescent beads (Trucount Tubes; BD Biosciences,
San Jose, CA, USA) was added to each sample as internal stan-
dard for quantification. Measurements were done in biological
and technical duplicates.

16S rRNA amplicon sequencing and data processing

DNA concentrations in raw extracts were determined using the
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Paisley, UK).
DNA extracts were diluted to 1 ng μL−1 with EB buffer (Qia-
gen, Hilden, Germany) and used as template (1 μL) for ampli-
fication of the V4 region of 16S rRNA genes using the primer
pair 515FB (5′-GTGYCAGCMGCCGCGGTAA) (Parada, Needham
and Fuhrman 2016) and 806RB (5′-GGACTACNVGGGTWTCTAA
T) (Apprill et al. 2015) extended with Illumina adapters. Each
reaction (25 μL) contained 12.5 μL NEBNext high-fidelity 2X PCR
master mix (New England Biolabs, Ipswich, MA, USA), 3.75 μL
2% w/v BSA (Roche Diagnostics, Mannheim, Germany), 0.5 μL
of each primer (10 μM) and 6.75 μL nuclease-free water. Initial
denaturation was achieved at 98◦C for 30 s followed by 25 ampli-
fication cycles (98◦C, 10 s; 50◦C, 30 s; 72◦C, 30 s) and final elon-
gation at 72◦C for 5 min. Each sample was amplified in inde-
pendent triplicate reactions; triplicates were pooled after ampli-
fication. Pooled amplicons were purified using magnetic beads
(AMPure-XP; Beckman Coulter) at a bead:sample ratio of 0.8 and
an incubation time of 5 min at room temperature. After wash-
ing (twice; 200 μL 80% v/v ethanol) and air-drying (10 min, room
temperature), amplicons were eluted from the beads with 30 μL
EB buffer. Amplicon size and concentration were determined by
capillary gel electrophoresis (Fragment Analyzer; Agilent Tech-
nologies, Santa Clara, CA, USA) using the DNF-473 standard sen-
sitivity NGS fragment analysis kit (Agilent Technologies). 10 ng
amplicons were used as template for index PCR using Illumina
Nextera XT Index Kit v2 primers (Illumina, San Diego, CA, USA)
according to the manufacturer’s specifications and with the
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same polymerase as above. After purification and electrophore-
sis as above, barcoded amplicons were pooled in equimolar con-
centrations (4 nM) and used for paired-end sequencing (2 × 300
bp) on an Illumina MiSeq platform.

Sequence data were processed in R (version 3.5.0) (R Core
Team 2018) using DADA2 (version 1.10.1) (Callahan et al. 2016a)
for quality filtering, merging of paired reads, inference of ASVs
and chimera removal, according to the workflow by Callahan
et al. (2016b) with slight modifications as described in the fol-
lowing. Truncation length during quality trimming was set to
280 bp and 200 bp for forward and reverse reads, respectively,
after primer trimming. Negative controls were excluded from
the model building step to infer error rates from the sequence
data. ASVs were inferred across all samples using pseudo-
pooling, which prevents discarding ASVs as singletons based
on the occurrence in a single sample, if it is represented by at
least two error-free reads in at least two samples in the full
data set. ASVs found in negative controls or with sequence
lengths < 261 bp were discarded. In addition, to facilitate down-
stream processing and reduce sparsity of the data, ASVs with
an abundance < 0.001% across all samples were removed. Tax-
onomic assignment was done using the online implementa-
tion of IDTAXA (Murali, Bhargava and Wright 2018) by map-
ping ASV sequences against the SILVA SSU reference database
(release 132) (Quast et al. 2013) with a 50% confidence thresh-
old. ASVs that were classified as mitochondria or chloroplasts
were discarded, as well as ASVs that could neither be classi-
fied as bacteria nor archaea. To infer phylogenetic relationships,
ASV sequence alignments were obtained using the ‘DECIPHER’
package (version 2.10.1) (Wright 2015) and passed on to Fast-
Tree (Price, Dehal and Arkin 2009) for building a midpoint-rooted
phylogenetic tree. The final ASV table contained 9153 ASVs;
abundances were rarefied to 6281 reads per sample, which was
the lowest number observed in a single sample. For a number
of samples rarefaction curves did not reach saturation at this
depth, which led to an underestimation of ASV richness by ∼30%
on average compared to the total expected richness in the com-
munities based on estimated asymptotes obtained from extrap-
olating rarefaction curves according to Chao et al. (2014) using
the ‘iNEXT’ package (version 2.0.19) (Hsieh, Ma and Chao 2016).
However, comparing the ASV richness after rarefaction to the
estimated asymptotic richness by linear regression showed that
this underestimation was uniform across samples, and further-
more that Shannon diversity was almost unaffected by the rar-
efaction. Additionally, differences in community composition
based on all three beta diversity metrics relevant to this study
(Bray–Curtis dissimilarity, β-mean nearest taxon distance and
β-mean pairwise distance; see below) were well maintained in
the rarefied data set compared to the original unrarefied data.
Therefore, we can assume that rarefaction did not distort the
overall structure of the data and still allowed meaningful com-
parisons between samples within our data set (Fig. S1, Support-
ing Information). Sequence data are publicly available at the
NCBI sequence read archive (accession no. SRP191753).

Data analysis

All analyses were done in R. ASV richness and Faith’s phylo-
genetic diversity (PD) were calculated using the ‘picante’ pack-
age (version 1.7) (Kembel et al. 2010). Differences in micro-
bial community composition were analyzed based on β-mean
nearest taxon distance (β-MNTD), which is the mean phylo-
genetic distance of species in one community to their clos-
est relatives in another community and thus focuses on short

phylogenetic distances, i.e. the tips of a phylogenetic tree, indi-
cating turnover of lineages that have diverged relatively recently
in evolutionary history. We additionally used β-mean pair-
wise distance (β-MPD), which is the overall mean phylogenetic
distance between species in two communities and thus also
captures deeper phylogenetic distances, indicating turnover of
deeper branching phylogenetic lineages (Fine and Kembel 2011;
Liu et al. 2017). β-MNTD and β-MPD were calculated with abun-
dance weighting using the functions ‘comdistnt’ and ‘comdist’,
respectively, of the ‘picante’ package. Differences in microbial
community composition were illustrated by non-metric multi-
dimensional scaling (NMDS) using the ‘metaMDS’ function of
the ‘vegan’ package (version 2.5.3) (Oksanen et al. 2018). Envi-
ronmental variables were standardized to z-scores for all anal-
yses. Variables containing censored data, i.e. values below the
detection limit (nitrate: < 0.131 mg L−1; orthophosphate: < 22.2
μg L−1), were handled according to Helsel (2011) using rank-
transformation with tied ranks for values below the detec-
tion limit. Overall environmental differences were calculated as
standardized Euclidean distances between samples considering
all measured variables. Permutational analysis of multivariate
dispersion (PERMDISP; Anderson 2006) was used for pairwise
tests of differences between regions in microbial community
beta diversity, environmental differences and spatial distance
between sampling locations, respectively, using the ‘betadisper’
function (‘vegan’) with 10 000 permutations. Differences in ASV
richness were assessed using Kruskal–Wallis non-parametric
analysis of variance with Dunn’s mean rank sum tests for pair-
wise comparisons and Holm correction for multiple testing.

We applied the null model approach by Stegen et al. (2012,
2013) to study the contributions of selection and dispersal pro-
cesses on community turnover within as well as across regions.
This approach is based on a two-step procedure: first, under
the assumption that phylogenetic similarity between closely
related taxa approximates ecological similarity, and that disper-
sal between communities exists at least to a minimal degree
over evolutionary time scales to allow species sorting to act and
outpace the evolution of distinct communities in situ (Stegen
et al. 2013), the strength of species sorting is evaluated in the
first step based on the β-nearest taxon index (β-NTI). β-NTI is
the standardized effect size of β-MNTD, which indicates how
much the observed difference between a pair of communities
differs from a null distribution of β-MNTD calculated with ran-
domized phylogenetic relationships for which species labels and
abundances are repeatedly shuffled across the tips of the phy-
logenetic tree. β-NTI < −2 (β-NTI > +2) indicates that species in
two communities are phylogenetically significantly more (less)
closely related than expected by chance, suggesting selection of
similar (different) species in both communities (referred to as
homogeneous and variable selection, respectively, sensu Dini-
Andreote et al. (2015) and Stegen et al. (2015). β-NTI < 2 indi-
cates no significant deviation from the null distribution, sug-
gesting that processes other than selection are responsible for
the observed differences in community composition, i.e. dis-
persal, dispersal limitation and drift. In this case, the RCBray

index is used in the second step to identify these alternative
processes. Because phylogeny is assumed to be irrelevant to
the chance of species being subject to dispersal, dispersal lim-
itation, or random drift, RCBray does not consider phylogenetic
relationships to calculate differences between communities, but
only uses information on species occurrence and abundance.
RCBray is a measure for the departure of the observed Bray-
Curtis dissimilarity between two communities from a null dis-
tribution of dissimilarities between probabilistically assembled
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communities, which include species proportional to their
respective abundances in the two compared communities and
their occurrence frequencies in the data set, while maintaining
local species richness and the number of individuals. RCBray <

−0.95 (RCBray > +0.95) indicates that two communities share sig-
nificantly more (less) species than expected by chance, which is
interpreted as homogenizing dispersal (dispersal limitation and
drift) being responsible for the observed differences between a
pair of communities. |RCBray| < 0.95 indicates that two commu-
nities share as many species as expected by chance, indicating
drift acting alone. β-NTI and RCBray were calculated as in Ste-
gen et al. (2012, 2013) with 999 randomizations. For the analyses
within regions, β-NTI and RCBray were calculated for each region
separately based on null distributions that only considered ASVs
found within a given region. For the analysis across regions, β-
NTI and RCBray were calculated across all samples with ASVs
found in the full data set.

As mentioned above, the ecological inference drawn from β-
NTI regarding the influence of selection on differences between
communities is based on the assumption that phylogenetic
similarity between species across short phylogenetic distances
approximates ecological similarity. This requires that phyloge-
netic distance between species correlates positively with dif-
ferences in environmental optima (i.e. environmental optima
have a phylogenetic signal). We tested this assumption for our
data set using Mantel correlograms as done by others (Wang
et al. 2013; Dini-Andreote et al. 2015). Differences in environ-
mental optima between ASVs were estimated as standard-
ized Euclidean distances between relative abundance-weighted
means for environmental variables that were shown to have
a significant effect on microbial community composition by
distance-based redundancy analysis (db-RDA; see below) (Ste-
gen et al. 2012; Dini-Andreote et al. 2015). The phylogenetic
signal was evaluated at phylogenetic distance steps of 2% of
the maximum phylogenetic distance with Mantel correlograms
using Pearson correlation and 999 permutations for significance
testing; P-values were adjusted for multiple testing using pro-
gressive Holm correction (‘mantel.correlog’; ‘vegan’). The analy-
sis was done for each region separately only considering ASVs
found within a given region, as well as with ASVs found across
regions in the full data set. For the latter, we randomly selected
4500 ASVs similar to Dini-Andreote et al. (2015) since an analysis
comprising all 9153 ASVs was computationally unfeasible. In all
cases significant positive correlations were found mainly over
short phylogenetic distances (12%–18% of the maximum phylo-
genetic distance) confirming that the assumption of a phyloge-
netic signal was met for our data set (Fig. S2, Supporting Infor-
mation).

We used variation partitioning based on db-RDA to exam-
ine the relative importance of local environmental conditions,
spatial distance with regions, and region identity on differences
in microbial community composition and the degree to which
these components were responsible for species sorting (Legen-
dre and Anderson 1999; Legendre 2007). To study the effect on
differences in community composition, abundance weighted β-
MNTD and β-MPD were used as response matrices in the db-
RDA models, respectively. Local environmental conditions were
represented by standardized environmental variables. To reduce
variance inflation, collinear environmental variables (electrical
conductivity, sodium, calcium, magnesium, chloride and sul-
fate concentrations) were replaced by the first principal compo-
nent resulting from a PCA of these six variables (referred to as
ionPC1). IonPC1 was significantly positively correlated with all
six variables and explained 74% of the variance. Environmental

variables were selected by forward selection using the adjusted
R2 of a full db-RDA model containing all environmental vari-
ables as stopping criterion (Blanchet, Legendre and Borcard
2008) (function ‘ordiR2step’ with 10 000 permutations; ‘vegan’).
Calculation of variance inflation factors (VIF) (function ‘vif.cca’;
‘vegan’) confirmed low degrees of redundancy among the
selected variables in all models (all VIF < 2). The marginal sig-
nificance of each selected environmental variable was assessed
using permutation tests (function ‘anova.cca’ with 10 000 per-
mutations; ‘vegan’). Spatial distance within regions and region
identity were included as independent components in the db-
RDA models following the approach used by Declerck et al. (2011).
Region identity representing spatial distance across regions
was included as a dummy-coded variable matrix. Spatial dis-
tance between sampling locations within regions were rep-
resented by a staggered matrix of Moran’s eigenvector maps
(MEMs) as described by Declerck et al. (2011), where MEM vec-
tors were arranged in blocks such that each block represents
the spatial variation between locations within a given region,
while locations from different regions are assigned a value of
0. MEMs are sets of orthogonal vectors derived from principal
coordinate analysis on Euclidean geographic distances between
connected sites, where individual vectors represent distances
between sites at different spatial scales (Dray, Legendre and
Peres-Neto 2006). The MEM matrix was constructed using the
‘create.dbMEM.model’ function in the ‘adespatial’ package (ver-
sion 0.3–2) (Dray et al. 2018). Permutation tests were used as
above to assess the overall significance of each component (i.e.
region identity, MEM matrix, and the set of selected environmen-
tal variables) in individual db-RDA models and only significant
components were subsequently used for variation partitioning
(function ‘varpart’; ‘vegan’).

To study the effect on selection processes, we repeated the
db-RDA including the same three explanatory components as
above, but this time using the β-NTI matrix calculated across all
samples as response matrix. The rationale behind this approach
is that changes in β-NTI should only result from selection
since the effects of dispersal, dispersal limitation and drift are
accounted for in the null distribution by maintaining species
abundances within samples during the randomization of phy-
logenetic relationships (Stegen et al. 2013; Wang et al. 2013).
Accordingly, the fraction of variation in β-NTI explained by vari-
ables used to estimate local environmental conditions indi-
cates that these variables impose selection, whereas a signif-
icant effect of spatial distance or region identity would indi-
cate selection by spatially structured unmeasured environmen-
tal variables or broad-scale region-specific factors, respectively,
rather than dispersal limitation. Since db-RDA requires only pos-
itive distance values, β-NTI was scaled to range between 0 and
1 as in Stegen et al. (2013).

RESULTS

Differences in microbial community composition and
environmental conditions within and across regions

Analyses of differences in environmental conditions and micro-
bial community composition by PCA and NMDS based on β-
MNTD, respectively, revealed distinct clustering of samples by
region with little overlap of samples from different regions
(Fig. 2). In terms of environmental conditions, regions along
the North–South transect were mainly separated along the sec-
ond PCA axis, mostly influenced by differences in pH and con-
centrations of oxygen, potassium and DOC. Samples from the
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Figure 2. (A), PCA showing differences in local environmental conditions (O2: dissolved oxygen; DOC: dissolved organic carbon; K+: potassium; TCC: total prokaryotic

cell counts; PO4
3− : orthophosphate; Na+: sodium; Temp: temperature; Cl−: chloride; SO4

2−: sulfate; EC: electrical conductivity; Ca2+: calcium; NO3
− : nitrate; Mg2+ :

magnesium). (B), NMDS showing differences in community composition based on abundance-weighted β-MNTD.

WUR region additionally separated from the other three regions
along the first PCA axis, mostly influenced by temperature, elec-
trical conductivity and concentrations of various ions (sum-
mary statistics of individual environmental variables are listed
in Table S1, Supporting Information). In contrast to the turnover
of closely related ASVs across regions indicated by β-MNTD,
clustering of communities was weaker when differences in com-
munity composition were assessed across broader phylogenetic
scales based on β-MPD (Fig. S3, Supporting Information). Con-
gruently, while > 65% of the ASVs were exclusively detected
within a single region, the majority of higher taxonomic groups
from phylum to genus level (∼69%–73%) were observed across
more than one region, further corroborating that differences
between regions were mainly caused by turnover of related
ASVs within broader clades such as genus or family. Regard-
less of the taxonomic level, taxa that occurred in more than
one region also showed higher average relative abundances
suggesting that local communities were dominated by more
widespread taxa (Fig. S4, Supporting Information). The most
dominant taxonomic groups in all four regions were Alpha,
Delta and Gammaproteobacteria, in addition to Bacteroidia, Acti-
nobacteria and taxonomically unclassified bacteria (Fig. S5, Sup-
porting Information). Despite the dominance of these classes,
community evenness calculated at the ASV level was high in
all regions with Pielou’s index values ranging between 0.8 and
0.9 on average (Fig. S6, Supporting Information). Accordingly,
average relative abundances of the most dominant individ-
ual ASVs within a single region were relatively low ranging
between 0.6% and 6%. These dominant ASVs were predomi-
nantly found within the families Burkholderiaceae, Caulobacter-
aceae, Pseudomonadaceae and Rhodocyclaceae in the WUR, AUG and
MIT regions, and Thiovulaceae, Gallionellaceae as well as members
of the Thaumarchaeota in the NOR region (Table S2, Supporting
Information).

Comparing the dispersion of samples in the PCA and NMDS
analyses shown in Fig. 2 suggested that regions with larger dif-
ferences in environmental conditions also displayed larger dif-
ferences in microbial community composition. This was con-
firmed by significant differences of within-region environmen-
tal heterogeneity and differences in community composition,
respectively, revealed by pairwise PERMDISP tests (Fig. 3). Also
in this case, patterns of observed differences in community

composition based on β-MNTD matched the patterns of differ-
ences in environmental conditions better than β-MPD (Fig. S7,
Supporting Information).

Since we had to rely on access to pre-installed monitoring
wells during the sampling campaigns, it was unfortunately not
possible to obtain samples from each region with the same spa-
tial coverage. However, these differences in spatial coverage did
not seem to have biased the estimates of ASV richness (Faith’s
PD showed the same pattern as richness, Fig. S8, Supporting
Information), differences in microbial community composition,
or environmental differences. For example, even though region
WUR had the smallest spatial coverage, it displayed the second
highest alpha and beta diversity estimates as well as the second
largest environmental differences (Fig. 3).

Effect of selection and dispersal processes on
community turnover inferred from null models

When evaluated within the individual regions as well as for pair-
wise comparisons of communities across regions, median β-NTI
values were not significantly different from the null expecta-
tion, except for the NOR region, thus indicating no significant
effect of selection on community assembly on average. However,
the distributions of β-NTI in all regions as well as for compar-
isons across regions were strongly positively skewed (Fig. 4). Cal-
culations of the fractions of pairwise community comparisons
indicative of the different turnover processes showed that the
contribution of selection to the observed differences between
communities varied for each region between 32% (WUR) and 75%
(NOR) (Fig. 4). In most cases, variable selection was the domi-
nating process, indicating that communities were more differ-
ent than expected by chance, except for the AUG region, where
homogenous selection was the dominating selection process,
suggesting that communities were more similar than expected.
The fractions not accounted for by selection processes were
largely dominated by dispersal limitation and drift in most
cases, or drift acting alone in the MIT region. Across regions,
variable selection was the dominating process, accounting for
69% of the observed differences between communities while the
remaining fraction was indicated to result from dispersal limi-
tation and drift.
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Figure 3. (A), Spatial distance between sites within regions. (B), ASV richness within regions (total number of ASVs observed within each region is given in paren-
theses). (C), Differences in local environmental conditions (standardized Euclidean distance considering all environmental variables) within regions. (D), Differences

in microbial community composition (abundance-weighted β-MNTD) within regions. Asterisks indicate significant differences inferred from PERMDISP tests (10 000
permutations) (A, C, D) and Dunn’s rank sum tests (B) (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). Note: we chose to display distances on their original scales as distances to
group centroids obtained from PERMDISP revealed the same patterns as shown in A, C and D.

Variation partitioning of differences in microbial
community composition and changes in selection

We applied db-RDA and variation partitioning to identify envi-
ronmental variables that shaped microbial community compo-
sition (β-MNTD), and to dissect the individual contributions of
these variables relative to spatial distance within regions and
region identity (Table 1). Contradictory to the null model results
for the individual regions that hinted at dispersal limitation,
spatial distance between sites within regions represented by
MEMs did not have a significant effect on differences in micro-
bial community composition in an individual db-RDA model
(adjusted R2 = −0.03; P = 0.916) and were therefore not con-
sidered for variation partitioning. In contrast, region identity
and variables representing local environmental conditions (pH,
ionPC1, and concentrations of dissolved oxygen, orthophos-
phate and DOC) together explained ∼77% of the variation in
community composition, of which the majority (i.e. ∼41%) was
shared between both components. The effect of environmental
variables alone was still significant after controlling for region
identity (pH, dissolved oxygen) and explained ∼27% of the vari-
ation, whereas region identity alone explained only ∼9% after
controlling for the effect of environmental variables. In con-
trast to the results obtained for β-MNTD, < 7% of the total vari-
ation could be explained for β-MPD, and the individual frac-
tions explained by local environmental conditions and region

identity were almost equally low (∼2%) (Table S3, Supporting
Information). Hence, together with the results described above,
differences in community composition both in response to local
environmental and regional differences were best reflected by
turnover across short phylogenetic distances represented by β-
MNTD compared to turnover across broader phylogenetic scales
captured by β-MPD.

Given that region identity alone explained a significant
amount of the variation in community composition, we further
explored to which extent this variation was due to dispersal
limitation or caused by selection either by local environmen-
tal conditions or region-specific factors. To this end, we used
variation partitioning as above, only this time using the β-NTI
matrix calculated for the full data set as response matrix in
the db-RDA (Table 1). As in the analysis above, spatial distance
between sites within regions, which would reflect the contri-
bution of spatially structured unmeasured environmental vari-
ables, did not have a significant effect (adjusted R2 = −0.04; P
= 0.996), whereas region identity together with local environ-
mental conditions (pH and concentrations of dissolved oxygen,
orthophosphate, nitrate and DOC) explained ∼62% of the varia-
tion in β-NTI. However, the effect of region identity was strongly
tied to the effect of local environmental conditions, such that
the variation explained by region identity alone dropped to zero
after controlling for the effect of environmental variables (note
that negative adjusted R2 although significant is interpreted as
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Figure 4. (A), Distribution of β-NTI values for pairwise community comparisons. Dashed lines indicate the range of β-NTI under the null expectation of no significant
effects of selection (< |2|). Solid lines within violins represent quartiles (1st, median, 3rd). (B), Contribution of individual turnover processes to observed differences in
microbial community composition derived from null models as classified by Dini-Andreote et al. (2015) and Stegen et al. (2015). Null models were run for each region

separately; for the analysis across regions, null models were run on the full data set, and only results for pairs of communities from different regions are shown.

Table 1. Partition of variation in microbial community composition (abundance-weighted β-MNTD) and selection (β-NTI) between local envi-
ronmental conditions (Env; significant environmental variables are listed in the rightmost column) and region identity (Reg). Env+Reg represents
the total variation explained by both components; Env|Reg (Reg|Env) represents the marginal fraction of variation explained by each component
after controlling for the other; Env∩Reg represents the fraction of explained variation shared between both components. The explained varia-
tion is given as adjusted R2. Significance of each component and individual variables was tested using 10 000 permutations (note: significance
of Env∩Reg cannot be tested). Spatial distance between sites within regions represented by MEMs was not significant in either case (adj. R2 =
0, P > 0.9) and was therefore not included in the analyses.

Response matrix Component df Adj. R2 P Significant variables (P <0.05)

β-MNTD Env 5 0.6772 0.0001 pH, O2, ionPC1∗, PO4
3−, DOC

Reg 3 0.4972 0.0001 Dummy-coded region identity
Env+Reg 8 0.7691 0.0001
Env∩Reg 0 0.4053
Env|Reg 5 0.2719 0.0001 pH, O2

Reg|Env 3 0.0919 0.0001
Residuals 36 0.2309

β-NTI Env 5 0.6618 0.0001 pH, O2, PO4
3−, NO3

−, DOC
Reg 3 0.3747 0.0001 Dummy-coded region identity

Env+Reg 8 0.6238 0.0001
Env∩Reg 0 0.4127
Env|Reg 5 0.2492 0.0001 pH, O2, DOC
Reg|Env 3 −0.0380 0.0022

Residuals 36 0.3762

∗Principal component representing 74% of the variance in electrical conductivity and concentrations of sodium, calcium, magnesium, chloride and sulfate (all positively
correlated with ionPC1).

zero (Legendre 2007)). In contrast, environmental variables alone
were still significant (pH, dissolved oxygen, DOC) and explained
almost 25% of the variation in β-NTI after controlling for region
identity. About 38% of the variation was unexplained, represent-
ing regionally and spatially unstructured, unmeasured environ-
mental variables that imposed selection.

DISCUSSION

The aim of our study was to establish the relative contribu-
tions of processes that cause variation in microbial commu-
nity composition in groundwater environments across distinct
aquifers located in different regions. We hypothesized that
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variation in community composition can be due to species sort-
ing imposed by local environmental conditions measured at the
time of sampling, and potential broad-scale region-specific fac-
tors like climate, geology or historical events, in addition to pro-
cesses related to dispersal and drift within as well as across
regions. Our analyses showed that differences in local environ-
mental conditions were well reflected by differences in microbial
community composition within regions. This observation points
towards the influence of species sorting, where stronger envi-
ronmental gradients within a region are predicted to increase
niche diversity in a metacommunity, and hence cause different
species to sort into local communities along these environmen-
tal gradients (Langenheder and Lindström 2019).

The results obtained from the null models only partially
agreed with this observation. On the one hand, the different
degrees to which selection was indicated to be responsible for
the differences in community composition in the NOR region
compared to the AUG and MIT region did match the observed
differences in environmental heterogeneity for these regions.
This would support the hypothesis outlined above that stronger
environmental gradients increase the influence of species sort-
ing. On the other hand, contradictory results were found for the
WUR region, which showed the second largest environmental
differences, but exhibited the lowest contribution of selection.
However, we have to mention that parts of the aquifer in the
WUR region are artificially recharged with treated river water
during the summer months (i.e. May to October) but not dur-
ing the rest of the year. The samples for this study were col-
lected at the early stage about 2 weeks after the start of the
annual infiltration period, which may have constituted a per-
turbation to the microbial communities. It has been shown that
random colonization through dispersal and drift can gain impor-
tance on community assembly in disturbed environments (Fer-
renberg et al. 2013; Zhou et al. 2014; Fukami 2015; Langenheder
and Lindström 2019), which could explain the relatively low con-
tribution of species sorting in the WUR region. Furthermore, the
null models indicated relatively strong contributions of disper-
sal limitation acting alongside drift, especially in the WUR and
AUG region. Although comparable results have been obtained in
previous studies on microbial community assembly in ground-
water environments (Stegen et al. 2013; Beaton et al. 2016; Gra-
ham et al. 2017), this is at odds with our observation that spatial
distance within regions did not have a significant effect on dif-
ferences in community composition in the db-RDA.

Such apparently conflicting results between distance-based
regression approaches and ecological null models have previ-
ously been reported by Langenheder et al. (2017) in a study on
community assembly in lake biofilms. There are two possible
explanations for these observations. One is that the inferences
drawn from the null models might be an oversimplification of
the actual ecological processes that shape microbial commu-
nities. The null model approach assumes that selection should
mainly manifest itself in stronger or weaker phylogenetic com-
munity turnover than expected by chance (i.e. significant val-
ues for β-NTI). The basic underlying assumption that phylo-
genetic relatedness tends to approximate ecological similarity
between microbial taxa has been confirmed by previous studies
(Stegen et al. 2012; Wang et al. 2013; Dini-Andreote et al. 2015;
Martiny et al. 2015; Liu et al. 2017), and was further suggested by
a significant phylogenetic signal of environmental differences
between ASVs in our data set (Fig. S2, Supporting Information).
In the light of these findings, inferring the effect of selection
from phylogenetic community turnover seems valid. However, it
is also known that certain microbial traits are phylogenetically

not well-conserved (Martiny et al. 2015), as we will further dis-
cuss below, and therefore selection involving such traits would
not be reflected by phylogenetic turnover metrics like β-NTI, but
could still result in higher than expected taxonomic community
turnover reflected by RCBray, which does not consider phyloge-
netic relationships. Thus, a significant deviation from the null
expectation of RCBray could still be the result of selection pro-
cesses even if phylogenetic community turnover does not devi-
ate from the null expectation of β-NTI (Langenheder et al. 2017).
Alternatively, it is possible that mere spatial distance does not
appropriately reflect actual groundwater flow paths via which
microorganisms may disperse in porous aquifers (Freimann et al.
2015; Schmidt, Cuthbert and Schwientek. 2017; Smith et al. 2018).
In this case, differences in community composition would not
necessarily correlate with spatial distance even if dispersal was
limited between local communities. For our study, this seems
to be the more likely explanation, as we did not find significant
correlations between changes in RCBray and differences in envi-
ronmental conditions within the individual regions (based on
Mantel correlation tests with 10 000 permutations; all P > 0.05;
data not shown). This suggests that we may have underesti-
mated the effect of dispersal limitation between local communi-
ties in the db-RDA, although we cannot fully rule out that selec-
tion involving phylogenetically non-conserved traits may have
played a role as well.

In this context, we further have to point out that the abil-
ity to detect effects of species sorting and dispersal in our study
was limited to differences in community composition that could
be resolved based on 16S rRNA sequences. It has been shown
that even closely related strains of the same species with near
identical 16S rRNA genes can differ significantly in their eco-
logical preferences and show distinct biogeographic distribu-
tions (Hahn et al. 2016; Larkin and Martiny 2017; Chase et al.
2018; Choudoir and Buckley 2018). Therefore, our results need
to be interpreted with the necessary caution, bearing in mind
that the high degree of conservation of 16S rRNA genes did
not allow complete differentiation between microbial ecotypes
beyond the level of ASVs in our study.

Even though we might have missed the variation in commu-
nity composition caused by dispersal limitation between local
communities, the majority of the total variation in community
composition evaluated across all regions (> 75%) could still be
explained by local environmental conditions and region iden-
tity. Variation partitioning of β-MNTD revealed a larger marginal
effect of local environmental conditions (27%) compared to the
effect of region identity (9%). This strongly indicates that micro-
bial communities were shaped by these local environmental
conditions, whereas region-specific factors and dispersal limi-
tation between regions only played a secondary albeit still sig-
nificant role. This was furthermore supported by the large con-
tribution of selection to differences in community composition
across regions inferred from the null models, similar to find-
ings reported by Danczak et al. (2018). It is worth noting that
the four different regions in our study were sampled at differ-
ent time points due to logistic constraints, although all sampling
campaigns were conducted roughly in the same season, i.e. late
spring and summer. Still, the variation in community composi-
tion possibly caused by temporal drift independent of environ-
mental conditions, in addition to possibly undetected effects of
dispersal limitation within regions, which both would be rep-
resented by the residual fraction of unexplained variation, was
comparatively small (∼23%).

Interestingly, the effect of environmental conditions and
region identity were mainly reflected by turnover of closest
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relatives between communities, i.e. turnover over short phylo-
genetic distances measured as β-MNTD, but not by turnover
of deeper branching phylogenetic lineages measured as β-MPD.
Responses of microbial communities to environmental condi-
tions have previously been shown to affect turnover across short
phylogenetic distances, which indicate evolutionary relatively
recent adaptations (Wang et al. 2013; Liu et al. 2017). Deep phylo-
genetic distances on the other hand capture more distant evolu-
tionary events (Fine and Kembel 2011), which we hypothesized
may include region-specific adaptations or evolutionary origins
of phylogenetic clades within regions (Ricklefs 2006). This, how-
ever, was not the case as > 93% of the variation in β-MPD could
not be explained by region identity and local environmental con-
ditions, which both had equally miniscule individual effects.

The dominance of species sorting by local environmental
conditions is in line with the meta-analysis by Hanson et al.
(2012), who compared studies on microbial communities across
various habitats and spatial scales and found that environ-
mental conditions explained most of the variation in micro-
bial community composition in the majority of analyzed stud-
ies. Similar conclusions were drawn from a literature review
by Lindström and Langenheder (2012). Additional evidence for
the importance of local environmental conditions on microbial
community structure in groundwater environments in particu-
lar was provided by Ben Maamar et al. (2015) who reported simi-
larities in microbial community composition in relation to sim-
ilar environmental conditions across three unconnected frac-
tured groundwater aquifers, as well as by other studies on sin-
gle aquifers within a region (Stegen et al. 2013; Beaton et al. 2016;
Graham et al. 2017). Nevertheless, region identity still explained
a significant fraction of the variation in community composi-
tion after controlling for local environmental conditions in our
study, comparable to previous studies that compared micro-
bial community composition over broad spatial scales in vari-
ous aquatic and terrestrial habitats (Souffreau et al. 2015; Power
et al. 2018; Plassart et al. 2019), or similar examples from stud-
ies on larger organisms (Declerck et al. 2011; Viana et al. 2016;
Heino et al. 2017). However, in these studies it largely remained
unclear whether such large-scale distance decay relationships
were the result of dispersal limitation across regions or selec-
tion by regionally structured factors. Using the standardized
effect size of differences in community composition obtained
from null models like β-NTI in addition to raw metrics like β-
MNTD allows making such a distinction, because β-NTI quanti-
fies the degree to which the phylogenetic turnover between two
communities is stronger (or weaker) than expected given the
observed differences in species richness, occupancy and abun-
dance caused by dispersal and drift (Stegen et al. 2013; Wang
et al. 2013). By partitioning the variation in β-NTI between region
identity and local environmental conditions, we could show that
local environmental conditions, both explained by measured
variables and by unmeasured, spatially unstructured variables
represented by the residual fraction, explained most of the vari-
ation in selection, whereas region identity alone did not have
a significant effect. Combined with the results obtained for β-
MNTD, this leads to the conclusion that the variation in β-MNTD
explained by region identity was mainly due to dispersal limita-
tion and drift across regions rather than species sorting imposed
by broad-scale regional factors.

CONCLUSION

Our study showed that differences in microbial community
composition across distinct aquifers from different geographic

regions were mainly the product of species sorting imposed by
local environmental conditions, with a relatively smaller but
still significant contribution of dispersal limitation and drift
across regions. However, we did not find evidence for significant
selection effects caused by region-specific factors independent
of local environmental conditions (represented by both mea-
sured and unmeasured variables). Although species sorting also
played a determining role in structuring local microbial commu-
nities within the individual regions, we found partially incon-
sistent results between distance-based analyses and ecologi-
cal null models regarding the contribution of dispersal limita-
tion and drift within regions. Hence, combining microbial com-
munity analyses with hydrological models to map groundwater
flow paths and identify possible dispersal routes for microor-
ganisms will be important for future research to allow for more
accurate estimates of the contribution of dispersal to micro-
bial community assembly in groundwater environments. This in
turn would be an important step towards a better understanding
of the link between microbial community composition and bio-
geochemical functions in these ecosystems (Graham et al. 2016b;
Graham and Stegen 2017).

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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