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BACKGROUND Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality.

Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based on only in vitro

models and observations in patients with severe medical conditions.

OBJECTIVES This study sought to investigate associations between serum electrolyte concentrations and

changes in cardiac electrophysiology in the general population.

METHODS Summary results collected from 153,014 individuals (54.4% women; mean age 55.1 � 12.1 years)

from 33 studies (of 5 ancestries) were meta-analyzed. Linear regression analyses examining associations be-

tween electrolyte concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocar-

diographic intervals (RR, QT, QRS, JT, and PR intervals) were performed. The study adjusted for potential

confounders and also stratified by ancestry, sex, and use of antihypertensive drugs.

RESULTS Lower calcium was associated with longer QT intervals (�11.5 ms; 99.75% confidence interval [CI]:

�13.7 to �9.3) and JT duration, with sex-specific effects. In contrast, higher magnesium was associated with

longer QT intervals (7.2 ms; 99.75% CI: 1.3 to 13.1) and JT. Lower potassium was associated with longer QT

intervals (�2.8 ms; 99.75% CI: �3.5 to �2.0), JT, QRS, and PR durations, but all potassium associations were

driven by use of antihypertensive drugs. No physiologically relevant associations were observed for sodium or

RR intervals.

CONCLUSIONS The study identified physiologically relevant associations between electrolytes and electro-

cardiographic intervals in a large-scale analysis combining cohorts from different settings. The results provide

insights for further cardiac electrophysiology research and could potentially influence clinical practice, espe-

cially the association between calcium and QT duration, by which calcium levels at the bottom 2% of the

population distribution led to clinically relevant QT prolongation by >5 ms.

(J Am Coll Cardiol 2019;73:3118–31) © 2019 by the American College of Cardiology Foundation.
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BMI = body mass index

BP = blood pressure

CI = confidence interval

ECG = electrocardiogram

HTN = hypertension

Q = quantile

QC = quality control
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D isturbances in cardiac electrophys-
iology are well-recognized risk fac-
tors for cardiovascular morbidity

and mortality. Prolonged QT intervals, as col-
lective measures of ventricular depolariza-
tion and repolarization, and elevated resting
heart rates have been consistently associated
with adverse outcomes in epidemiological
studies (1–4). Electrocardiogram (ECG) pa-
rameters correlate well with cardiac electro-
physiology—in particular cardiac action
potential measurements made in single cells or tissue
preparations. The duration of the action potential
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repolarizing potassium currents with increasing
extracellular and intracellular calcium, it was also
necessary to include increasing calcium dependent
inactivation of the calcium current, to reproduce the
observed relationship (11). A decrease in the sodium-
calcium exchange may also contribute to the short-
ened action potential duration (12). In contrast, the
effects of changes in action potential duration with
extracellular magnesium are much smaller (13).
SEE PAGE 3132
Importantly, variation in serum electrolyte con-
centrations within normal ranges is associated with
occurrence of cardiovascular disease (14). For
example, risks for myocardial infarction increased by
20% for every 0.1-mmol/l rise in calcium (15). Increased
hazard ratios for mortality have been observed at the
extreme limits of the normal range for potassium (16).
Studies evaluating electrolyte effects, however, are
often cellular experiments or analyses in patient pop-
ulations with multiple comorbidities. Such studies
have difficulties in disentangling electrolyte versus
direct disease effects. There is little information on
associations between electrolytes and cardiac elec-
trophysiology amongst relatively healthy individuals.

A direct link between serum electrolyte levels and
cardiac physiology is indicated by genetic studies.
Genome-wide association studies have identified
multiple genes encoding electrolyte transporter and
signaling proteins involved in cardiac physiology
(17–19). For example, KCNH2 encodes a subunit of the
voltage-gated potassium channel hERG, and genetic
variation in KCNH2 can be associated with either a
prolonged or shortened QT interval (17). Loss of
function variants in KCNH2 were identified in 30% of
long QT syndrome cases, and gain of function muta-
tions in KCNH2 were identified in individuals with
short QT syndrome (20,21).

Our hypothesis is that variation in serum electro-
lyte levels in the general population may alter cardiac
electrophysiology. Identifying individuals at risk of
electrophysiological disturbances may aid in preven-
tion of cardiovascular disease and mortality. In this
study, we performed a large-scale systematic analysis
to investigate associations between serum electrolyte
concentrations and electrocardiogram intervals
within a healthy population free of severe cardiac
abnormalities and including various ancestries.

METHODS

STUDY SETTING. Studies were eligible to join the
project if participants had data on at least 1 electro-
lyte measured in serum and at least 1 ECG trait, both
measured at a similar time point. All contributing
studies are described in the Online Appendix and in
Online Table 1.

All studies were approved by local Medical Ethical
Committees in agreement with the declaration of
Helsinki, and all participants provided written
informed consent.

PARTICIPANT EXCLUSIONS. Individuals were excluded
if they were <18 years of age or pregnant. For quality
control (QC), outliers were excluded from the final
electrolyte and ECG dataset (>5 SDs from the mean).
Extreme RR intervals were also excluded (<500 or
>1,500 ms). To minimize bias, and to exclude in-
dividuals with cardiovascular disease, we excluded
individuals with atrial fibrillation, Wolff-Parkinson-
White syndrome, second- or third-degree atrioven-
tricular block, a history of myocardial infarction or
heart failure, or a pacemaker, and anyone taking class
I or class III blocking medication (ATC code: CO1B).

EXPOSURE, OUTCOME AND COVARIATE DATA. Four
electrolytes were considered as exposures: calcium,
sodium, potassium, and magnesium, measured in
serum in mmol/l. Five ECG measures were included in
the analysis: QT, JT (as a measure of ventricular
repolarization, where JT ¼ QT – QRS), QRS, PR, and RR
intervals, measured in milliseconds. Studies without
ECG data contributed data only for RR interval, if heart
rate was available from pulse measurements (by con-
verting to RR using the formula: RR [ms] ¼ 60,000 /
heart rate [beats/min]). Participant age, sex, body
mass index (BMI), creatinine level, diabetes mellitus
status, and hypertension (HTN) status were included
as covariates. Individuals were defined as being hy-
pertensive if they met any 1 of the following criteria: 1)
systolic blood pressure (BP) $140 mm Hg; 2) diastolic
BP $90 mm Hg; or 3) taking BP-lowering medication
(ATC codes: C02, C03, C04, C07, C08, C09). Sensitivity
analyses were performed using new cutoffs for sys-
tolic and diastolic blood pressures from the American
Heart Association/American College of Cardiology
(22). Diabetes was defined according to: 1) a doctor’s
diagnosis of diabetes mellitus; 2) a fasting glucose
concentration >6.9 mmol/l; or 3) taking any glucose-
lowering medication (ATC code: A10), which is a
generally accepted definition for harmonization
across cohorts from different countries (23). Serum
creatinine concentration levels were measured in
mmol/l and were log-transformed within all models.

STUDY-LEVEL STATISTICAL ANALYSES. A centrally
written script using R statistical software (R Foun-
dation for Statistical Computing, Vienna, Austria)
was provided to each participating study, and the
generated output files were submitted centrally

https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519
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(which included study characteristics, histograms of
variable distributions for QC, and summary statistics
of regression analysis results), so that all studies
ran identical analyses according to a harmonized
protocol. Each study contributed to as many different
models as possible, based on available data on expo-
sures, outcomes, and covariates. Analyses were
performed for each ECG trait separately, to allow for
differing sample sizes for each combination of ECG
trait and electrolyte. For studies with individuals
of different ancestries (notably, the CHS [Cardiovas-
cular Health Study], HABC [Health, Aging, and Body
Composition Study], and MESA [Multi-Ethnic Study
of Atherosclerosis]), analyses were stratified by
each ancestry.

As our primary analyses, we performed linear
regression analyses regressing each ECG trait on each
electrolyte, adjusting for sex and age. Except for
analyses on RR interval itself, all analyses were
statistically adjusted for RR interval which is generally
a more suitable heart-rate correction method than
other methods such as Bazett (24,25). Our cohorts
essentially had unrelated individuals except for the
CHRIS (Cooperative Health Research in South Tirol),
MICROS (Microisolates in South Tirol), ORCADES
(Orkney Complex Disease Study), and VIKING (Viking
Health Study - Shetland) studies, which used mixed
models to correct for relatedness between study par-
ticipants. By analyzing all paired combinations of the 5
ECG traits and 4 electrolytes, there were 20 primary
linear regression analyses in all participants. For each
electrolyte-ECG trait association, we assessed the role
of confounding by adding—one by one—the other
covariates to the statistical models (BMI [present in all
subsequent adjusted models], diabetes mellitus sta-
tus, HTN status, and creatinine). Our fully adjusted
model using all covariates contained data from only
the studies with all covariates available.

We also performed analyses stratified by sex, use
of antihypertensive drugs (þ digoxin), and HTN sta-
tus. Use of antihypertensive drugs (þ digoxin) was
defined according to ATC codes (C01AA05 for digoxin;
or C02, C03, C04, C07, C08, C09 for any BP-lowering
medication). Note that individuals would belong to
the drug-users subgroup but not to the HTN-only
subgroup if they were taking only digoxin. Similarly,
participants would belong to the HTN-only subgroup
but not in the drug-users subgroup if they were
untreated hypertensives. Due to the overlap with
HTN as a covariate in the adjusted submodels, these
subgroup analyses stratified by drug use and by HTN
status were performed for only the 2 basic models
adjusted for age, sex (and RR interval), and addi-
tionally for BMI.
Finally, to investigate the trend of associations
across electrolyte levels and across the population
distribution for the main electrolyte-ECG associa-
tions, we performed analyses stratified by quintiles of
the electrolyte concentrations. The 5 quintiles were
generated from the distribution of each electrolyte:
Q1 to Q5. Pairwise comparison analyses were per-
formed, using the minimally adjusted model
(adjusted only for age and sex), with the middle
quintile (Q3) as reference.

META-ANALYSES. After QC of the received summary
statistics data, fixed-effects inverse variance–
weighted meta-analyses were performed centrally
using the “rmeta” CRAN package in R statistical
software, pooling together the beta effect estimates
and standard errors from all studies. As further QC,
before the meta-analyses, we excluded any analysis
model results from studies that were estimated in
small sample sizes (<100 individuals). Two sets of
meta-analyses were performed: an all-ancestry meta-
analysis and 5 ancestry-stratified meta-analyses.

Due to the 20 different ECG-electrolyte associa-
tions, we corrected for multiple testing by the Bon-
ferroni method and present results with 99.75%
confidence intervals (CIs). For any significant associ-
ation from our primary analysis in the minimally
adjusted model, we used the following sequential
strategy for reporting results: 1) significant associa-
tions from the minimally adjusted model were
checked for robustness to covariate adjustment, by
comparing them with results from the fully adjusted
model; 2) the effect sizes of the robust associations
were evaluated for their physiological importance
and the plots from the quintile analyses were checked
for clear linear trends supporting association results;
and 3) associations meeting these requirements were
reported and considered further within subgroup
analyses by sex, drug use, and HTN status.

POST–META-ANALYSIS INTERACTION ANALYSES.

Based on the coefficients from the meta-analyses
from the models stratified by sex, drug use, and
HTN status, we additionally tested for evidence of
effect modification on a multiplicative scale, using
the methodology that has been previously described
by Altman and Bland (26). Two-sided p values for
interaction <0.05 were considered significant.

RESULTS

CHARACTERISTICS OF THE STUDY POPULATION. In
the present study, we used data from a total of 38
study groups from 33 cohorts representing 5 different
ancestries: European (nmax ¼ 129,169 from 30
studies); African-American (nmax ¼ 7,693 from 4



TABLE 1 Pooled Characteristics of the Study Populations

Total Sex Drug Use

Male Female Users Nonusers

Age, yrs 153,014 55.1 � 12.1 55.5 � 11.9 54.7 � 12.2 59.0 � 9.9 51.5 � 11.6

Body mass index, kg/m2 152,481 27.3 � 4.8 27.5 � 4.2 27.1 � 5.3 27.8 � 5.0 26.2 � 4.6

Creatinine, mmol/l 151,691 81.3 � 22.4 91.1 � 22.9 73.2 � 18.6 — —

Electrolytes*

Calcium, mmol/l 90,575 2.33 � 0.11 2.33 � 0.11 2.33 � 0.11 2.36 � 0.11 2.32 � 0.11

Potassium, mmol/l 129,464 4.23 � 0.37 4.27 � 0.37 4.19 � 0.36 4.20 � 0.43 4.23 � 0.35

Sodium, mmol/l 125,760 141.00 � 2.70 141.00 � 2.60 141.00 � 2.70 141.00 � 2.80 141.00 � 2.60

Magnesium, mmol/l 42,720 0.83 � 0.08 0.83 � 0.08 0.82 � 0.08 0.83 � 0.08 0.83 � 0.07

ECG measures

RR interval, ms 153,014 917.0 � 148.0 935.0 � 155.0 903.0 � 139.0 872.0 � 148.0 903.0 � 144.0

QT interval, ms 125,104 399.0 � 28.7 403.0 � 29.3 400.0 � 28.1 388.0 � 30.0 395.0 � 27.3

QRS interval, ms 123,695 92.7 � 12.9 97.8 � 12.9 90.3 � 11.6 90.3 � 13.9 91.8 � 12.1

JT interval, ms 121,355 311.0 � 28.4 304.0 � 28.3 316.0 � 27.4 297.0 � 29.4 303.0 � 27.2

PR interval, ms 124,078 159.0 � 24.3 164.0 � 24.4 158.0 � 23.5 156.0 � 25.3 156.0 � 22.9

Values are n or mean � SD. Study-level characteristics were collected from each study, with summary descriptive statistics for all continuous variables used within the analysis
models: covariates; electrolytes and electrocardiogram (ECG) measures. These characteristics were then pooled together centrally across all studies. Drug use is defined as the
use of antihypertensive drugs þ digoxin. *Due to the alternative analysis pipeline used in the ORCADES (Orkney Complex Disease Study) and VIKING (Viking Heath Study -
Shetland) studies, these studies were not able to provide means and standard deviations for the electrolytes.
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studies); “mixed” ancestry from Brazil (nmax ¼ 14,612
from 2 studies: the BAMBUI [Bambui (Brazil) Cohort
Study of Ageing] and ELSA-Brasil [Longitudinal Study
of Adult Health]); Asian (nmax ¼ 555 from 1 study: the
MESA study); and Hispanic/Latino (nmax ¼ 985 from 1
study: the MESA study). Overall, we collected data
from a total of 153,014 individuals (45.6% men)
(Table 1). Mean age was 55.1 � 12.1 years, and in-
dividuals were on average slightly overweight (mean
BMI 27.3 � 4.8 kg/m2). Serum electrolyte levels were
distributed similarly among men and women and
among drug users and nonusers. Study-specific
characteristics are presented in Online Tables 1 to 3.

ASSOCIATION BETWEEN SERUM ELECTROLYTE

CONCENTRATIONS AND ECG PARAMETERS. After
observing no substantial heterogeneity between the
different ancestry groups from inspection of forest
plots (Online Figure 1), the all-ancestry meta-analyses
were used as the primary analysis results, to maxi-
mize sample size. Of the 20 main electrolyte-ECG trait
associations, we found evidence for 14 associations
between a serum electrolyte concentration and an
ECG trait (Table 2, Figure 1). There was no consistent
heterogeneity observed between the participating
studies from inspection of cohort-level forest plots
(Online Figure 2).

High calcium was associated with shorter QT (�11.5
[99.75% CI:�13.7 to�9.3] ms per mmol/l) and JT (�15.6
[99.75% CI: �18.3 to �12.9] ms per mmol/l) intervals,
and effect sizes increased in the fully adjusted model
(Table 2), due to adjustment for HTN and diabetes
status. In contrast, high magnesium was associated
with longer QT (7.2 [99.75% CI: 1.3,13.1] ms/mmol/l)
and JT (9.9 [99.75% CI: 4.1,15.6] ms per mmol/l) in-
tervals, with similar results observed in the fully
adjusted model (Table 2). High potassium was associ-
ated with shorter QT (�2.8 [99.75% CI:�3.5 to�2.0] ms
per mmol/l), QRS (�1.6 [99.75% CI:�1.9 to �1.3] ms per
mmol/l), JT (�1.0 [99.75% CI: �1.8 to �0.3] ms per
mmol/l), and PR (�1.7 [99.75% CI: �2.4 to �1.1] ms per
mmol/l) intervals, also with similar effect sizes in the
fully adjusted model (Table 2). There were clear trends
for the calcium, magnesium, and potassium associa-
tions when study populations were stratified by
quintiles, indicating support for the associations
across the population distribution of electrolyte levels
(Online Figure 3).

High sodium was associated with longer QRS (0.1
[99.75% CI: 0.0 to 0.1] ms per mmol/l) and JT (0.2
[99.75% CI: 0.1 to 0.3] ms per mmol/l) intervals, but
sodium was associated with only QRS interval in the
fully adjusted model, suggesting an influence of
confounding, which was found to be from HTN and
diabetes (Table 2, Figure 1). Moreover, the small effect
sizes for sodium would not be viewed as physiologi-
cally relevant (0.1- to 0.2-ms increase in QRS interval
per 1-mmol/l increase in sodium), and there was no
meaningful trend in the quintile analyses to support
an association (Online Figure 3).

In general, all electrolytes examined were associ-
ated with RR interval, and results were similar in the
fully adjusted model (Table 2). Although associations
with RR intervals reached statistical significance, ef-
fect sizes were very small (e.g., 64.1-ms change in RR
per 1-mmol/l increase in magnesium). Such changes

https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519


TABLE 2 Association Between Serum Electrolyte Concentrations and ECG Measures in

the General Population

Minimally Adjusted Model
Fully Adjusted Model for
All Potential Confounders

N Beta 99.75% CI N Beta 99.75% CI

Calcium

RR interval 94,264 (33) –21.1 –33.6 to –8.7 77,520 (26) –32.1 –46.6 to –17.5

QT interval 77,479 (31) –11.5 –13.7 to –9.3 62,874 (25) –22.3 –25.7 to –18.9

QRS interval 77,471 (31) 0.45 –0.6 to 1.5 62,869 (25) 0.4 –1.0 to 1.8

JT interval 75,222 (29) –15.6 –18.3 to –12.9 62,342 (24) –22.7 –26.0 to –19.4

PR interval 76,834 (30) 1.4 –0.7 to 3.6 62,267 (24) 1.2 –1.5 to 3.9

Magnesium

RR interval 44,682 (16) 64.1 37.5 to 90.7 36,940 (13) 39.8 10.6 to 69.0

QT interval 36,165 (14) 7.2 1.3 to 13.1 30,509 (12) 6.4 0.0 to 12.8

QRS interval 36,138 (14) –1.0 –3.6 to 1.5 30,509 (12) –0.3 –3.0 to 2.5

JT interval 36,165 (14) 9.9 4.1 to 15.6 30,529 (12) 7.9 1.6 to 14.2

PR interval 35,956 (14) 2.5 –2.2 to 7.2 30,355 (12) 3.3 –1.9 to 8.5

Potassium

RR interval 126,528 (29) 13.9 10.6 to 17.3 87,875 (23) 12.4 8.5 to 16.3

QT interval 98,669 (26) –2.8 –3.5 to –2.0 66,941 (22) –2.8 –3.6 to –1.9

QRS interval 97,283 (26) –1.6 –1.9 to –1.3 65,576 (22) –1.3 –1.7 to –1.0

JT interval 96,656 (25) –1.0 –1.8 to –0.3 64,995 (21) –1.2 –2.1 to –0.3

PR interval 97,725 (25) –1.7 –2.4 to –1.1 66,312 (21) –1.6 –2.3 to –0.8

Sodium

RR interval 122,732 (28) 2.4 1.9 to 2.9 84,116 (22) 1.3 0.8 to 1.8

QT interval 94,787 (25) 0.0 –0.1 to 0.1 63,182 (21) 0.1 –0.1 to 0.2

QRS interval 93,483 (25) 0.1 0.0 to 0.1 61,815 (21) 0.1 0.0 to 0.1

JT interval 92,857 (24) 0.2 0.1 to 0.3 61,236 (20) 0.0 –0.1 to 0.1

PR interval 93,914 (24) –0.1 –0.2 to 0.0 62,541 (20) 0.0 –0.2 to 0.1

N is the number of individuals included in the analyses with the number of studies contributing to the analysis in
parentheses. Beta is the effect estimate from the linear regression model. The Minimally Adjusted Model included
adjustment for age, sex, RR interval, and cohort-specific covariates. The Fully Adjusted Model, in the cohorts with
data on all covariates available, was additionally adjusted for body mass index, diabetes mellitus status,
hypertension status, and natural log of serum creatinine concentration. The beta effect results presented are the
changes in electrocardiogram (ECG) measure in milliseconds per 1-mmol/l increase in electrolyte concentration.
A 2-sided p value was considered statistically significant.

CI ¼ confidence interval.
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would not be viewed as physiologically important,
considering the population distributions of electro-
lyte levels and RR durations. Furthermore, the
electrolyte-RR interval associations did not show
clear trends when electrolyte levels were stratified by
quintiles (Online Figure 3).

Hence, none of the associations for RR interval or
sodium were considered further. Therefore, the 8 key
associations of interest are: calcium and magnesium
with QT and JT intervals and potassium with 4 ECG
traits (QT, QRS, JT, and PR interval).

SUBGROUP ANALYSES. Based on the 8 electrolyte-
ECG trait associations observed in the main analysis,
we additionally stratified by sex, drug use, or HTN
status. With the minimally adjusted model, we found
evidence of sex-specific associations (p value
interaction <0.05) for only calcium and QT
(pinteraction ¼ 0.008) and JT (pinteraction ¼ 0.008) in-
tervals (Online Table 4, Figure 2), with stronger
associations in women than in men. Specifically, per
mmol/l increase, calcium was associated with 8.8
(99.75% CI:�12.1 to�8.0) ms and 12.1 (99.75% CI:�16.3
to�8.0) ms shorter JT intervals inmen, comparedwith
12.6 (99.75% CI: �15.5 to �9.8) and 16.9 (99.75% CI:
�20.4 to �13.4) ms, respectively, for women.

When stratified according to drug use, non–drug
users had attenuated associations between potas-
sium and QT, QRS, JT, and PR intervals (Online
Table 5, Figure 3). For each mmol/l increase in po-
tassium, QT intervals were �5.5 (99.75% CI: �6.9 to
�4.2) ms shorter in drug-users, but only �0.9
(99.75% CI: �1.8 to 0.0) ms shorter in nonusers, in the
minimally adjusted model (pinteraction <0.001). Similar
results were observed for JT intervals, and to a lesser
extent for PR and QRS intervals. Attenuation also
occurred for calcium, but to a much lesser extent, and
associations were still observed in nonusers. An in-
crease of 1 mmol/l of calcium was associated with a
�16.1 (99.75% CI: �21.1 to �10.9) ms shorter QT in-
terval in drug users, but with a �11.1 (99.75% CI: �13.4
to �7.7) ms shorter QT interval in nonusers (p value
for interaction ¼ 0.007). Results were similar when
we stratified by HTN status (drug use/140/90 mm Hg),
but the differences in associations were usually less
pronounced than when we stratified by drug use
(Online Table 6), particularly with lower hypertension
cutoffs (drug use/130/90 mm Hg or drug use/120/
80 mm Hg) in the analyses on potassium (Online
Table 7). All subgroup results remained comparable
in the adjusted model.

DISCUSSION

We investigated associations between serum
electrolyte levels and measures of cardiac electro-
physiology in a large-scale population-based meta-
analysis. We observed 8 associations that had
cardiac electrophysiological relevance. After full
adjustment for considered confounding factors, we
found that higher calcium levels were associated with
shorter QT and JT intervals, and magnesium with
longer QT and JT intervals, reflecting shortened and
prolonged ventricular repolarization, respectively.
Interestingly, the relationship between shortened
ventricular repolarization and calcium was stronger
in women. Higher potassium levels were associated
with shorter QT, QRS, JT, and PR intervals. However,
associations with potassium were observed specif-
ically in drug users (mainly antihypertensive drugs)
and hypertensive individuals. The associations with
potassium are therefore assumed to be related to
antihypertension treatment. No physiologically rele-
vant associations were observed for sodium.

https://doi.org/10.1016/j.jacc.2019.03.519
https://doi.org/10.1016/j.jacc.2019.03.519
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FIGURE 1 Associations Between Serum Electrolyte Concentrations and Measures on the Electrocardiogram
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were adjusted for age, sex, and RR interval (minimally adjusted model). Analyses in model 4 were adjusted for age, sex, RR interval, body mass index, hypertension

status, diabetes mellitus status, and natural log of serum creatinine concentration (fully adjusted model). A 2-sided p value <0.0025 according to Bonferroni

correction was considered statistically significant. Please note: RR interval associations are not shown.
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Although all 4 electrolytes were significantly associ-
ated with RR interval, none of the associations was
viewed as clinically or electrophysiologically impor-
tant. Collectively, our findings from a collection
of (population-based) cohort studies of different
settings contribute to understanding the role of
electrolytes in cardiac electrophysiology in the gen-
eral population.

Lower calcium levels were robustly associated
with longer QT and JT intervals—but not QRS



FIGURE 2 Sex-Specific Association Between Serum Calcium and QT and JT Intervals
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cohort-specific covariates. The fully adjusted model additionally included body mass index, diabetes mellitus status, hypertension status, and

natural log of serum creatinine concentration. P-int ¼ p value from the interaction analysis.
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duration—across different subgroups, reflecting ven-
tricular repolarization primarily. Biologically, calcium
is stored in large amounts in the sarcoplasm reticu-
lum, ready to be released for cardiac muscle contraction
initiated by an inward L-type calcium current.

Based on the effect sizes in the fully adjusted
model, we estimated the proportion of the general
population that has clinically significant changes in
the QT duration (which has clinical cutoff values)
(Central Illustration). According to our data, 2% of the
general population (irrespective of sex) have a cal-
cium concentration that prolongs the QT interval by
5 ms or more. The U.S. Food and Drug Administration
uses 5 ms as the threshold level for regulatory
concern following a “thorough QT/QTc study” in
healthy volunteers—a required part of the evaluation
of new treatment compounds before market launch
(27). The Food and Drug Administration practices
potentially highlight the clinical importance of our
findings and suggest the possible usefulness of ECG
assessment in patients with low calcium levels, to
prevent arrhythmic events, particularly in the pres-
ence of other interacting risk factors for ventricular
repolarization prolongation.

Our findings may be more clinically relevant to
women, due to the larger observed effects, although
we are unable to explain the sex-specific differences.
To the best of our knowledge, there are no reports on
sex-specific expression profiles of calcium channels
or receptors in cardiac myocytes. Interestingly, 17b-
estradiol—an estrogen hormone—inhibits calcium
channels (28–30). However, considering the mean age
(55 years), women in our study population are likely
to be mostly postmenopausal, with significantly
lower estradiol levels. More research is therefore
required to elucidate the cause of the sex-specific
observations.

A higher magnesium concentration was associated
with longer QT and JT intervals. However, magne-
sium effect sizes were fairly small (Central
Illustration). Nevertheless, our results suggest a bio-
logical role for magnesium in ventricular repolariza-
tion. In animal tissue samples, the effect of
magnesium on transmembrane potentials of cardiac
myocytes is also less substantial, in contrast to other
electrolytes (13). Clinically, previous research sug-
gested a linear relationship between magnesium and
coronary heart disease mortality, where a 0.1-mmol/l
increase in serum magnesium—even within normal
ranges—was associated with decreased risk (31). Our
associations for magnesium in a large-scale study
represent novel contributions, considering the fewer
published reports on magnesium, compared with
other electrolytes.

We observed shorter PR, QRS, QT, and JT intervals
with increasing potassium. The effects of increasing



FIGURE 3 Associations for Potassium and Calcium Stratified by Drug Use
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potassium concentrations are recognized to be
biphasic. Within the physiological range, increasing
extracellular potassium causes a paradoxical increase
in outward current mediated by hERG channels which
initially shortens the action potential and stabilizes
the resting membrane potential (32). Combined with
an increase in the velocity of phase 3 of the action
potential, this manifests as shortening of the QT in-
terval and peaking of the T-wave (33,34). When po-
tassium concentrations reach those associated with
clinically defined hyperkalemia, the resting mem-
brane potential decreases, reducing the upstroke ve-
locity of the action potential thus delaying
interventricular conduction (33). This results in the
classical ECG characteristics of hyperkalemia such as
a prolonged QRS duration.

Interestingly, potassium effects were significantly
greater in individuals on antihypertensive medica-
tion, with prolongation of the QT interval of 5 ms or
more in w4% of participants (Figure 4). The greater



CENTRAL ILLUSTRATION Main Electrolyte-Electrocardiogram Findings in the Unselected Population
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The main findings in our study of unselected individuals. Low calcium, high magnesium, and high potassium were particularly associated with

prolonged ventricular repolarization (longer QT and JT intervals). Sodium levels were not associated with any of the considered measures

from the electrocardiogram.
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effect of potassium on ECG intervals in individuals
taking antihypertensive medication may be explained
by direct and indirect drug effects. In vitro studies
have demonstrated inhibitory effects of beta-blockers
on hERG channels, through direct blocking of the
channel. Angiotensin receptor blockers impede
currents carried by hKv1.5, KvLQT1, KCNQ1, and
hERG(Ikr) subunits (35,36). Overexpression of angio-
tensin II type 1 receptors in mouse ventricular myo-
cytes decreases myocyte potassium currents,
lengthens action potential duration, and significantly
prolongs QT intervals (even after adjustment for QRS
duration) (37).

There are few reports on long-term effects of
antihypertensive medication on ventricular repolari-
zation in humans. Three small studies of individuals
with left ventricular hypertrophy related to hyper-
tension showed improvement in echocardiographic
and ECG findings of hypertrophy—with shortening of
the QT interval—following use of an angiotensin-
converting enzyme inhibitor, angiotensin receptor
blocker, or beta-blocker (atenolol) (38–40). These ECG
changes may be due to ventricular remodeling, or also
to changes in autonomic tone. For example, the QT/
RR slope relationship can be influenced by autonomic
tone, which could augment effects of serum potas-
sium on ECG intervals (41), as suggested by our study.
Our study did not have complete information on the
exact medications used (antihypertensive agents
or other drugs that may affect ECG intervals). How-
ever, individuals taking class I or III antiarrhythmics
were excluded meaning that the number of in-
dividuals taking digoxin is expected to be very low
and unlikely to impact results. Furthermore, in-
dications for taking these drugs may differ among
individuals, and the various underlying etiologies
may influence ECG characteristics.

Historically, an influence of circulating electrolytes
on the ECG has been known for w100 years. For
example, 20 years after Einthoven reported his string
galvanometer in 1903 (42), Carter and Andrus (43)
observed long QT durations in infants with tetany
from hypocalcemia. The QT duration decreased when
the tetanic infants were given oral calcium. Prolonged



FIGURE 4 Differences in Effects of Electrolytes on QT Durations, for Different Percentiles of Electrolyte Levels
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For each percentile point, the graphs indicate the difference between the beta estimate at that percentile and the beta estimate at the 50th percentile (in milliseconds

of QT interval per mmol/l increase in calcium). For plots A to C, the estimated effects are calculated according to the fully adjusted model. For plots D and E from

subgroup analyses, the estimated effects are calculated according to the model adjusted for age, sex, RR interval, and body mass index. The shading represents the 95%

confidence interval.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Low

blood calcium levels prolong ventricular repolarization

and lengthen the QT and JT intervals not only in pa-

tients with acute medical conditions but also in the

general population.

TRANSLATIONAL OUTLOOK: Future studies

should examine the mechanistic links underlying the

association between ionized blood calcium concen-

tration and myocardial repolarization and investigate

whether therapy guided by periodic blood calcium

measurements can prevent cardiovascular events.
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QT intervals were seen with low potassium levels as
early as 1950 (44). Several other reports on electro-
lytes and ECGs followed shortly thereafter (34,45–49).
However, electrolyte effects have not been well
described apart from patient populations. For
example, electrolyte effects were not analyzed in a
study of 32,949 normal ECGs at Vanderbilt University
(in subjects without heart disease, medications that
affect ECGs, or abnormal electrolytes) (50). Our report
represents the first large-scale ECG analysis in rela-
tion to electrolyte levels in the general population.

STUDY STRENGTHS AND LIMITATIONS. A major
strength is that our study is sufficiently powered to
investigate associations between serum electrolyte
levels and cardiac electrophysiology measures. The
large collection of (population-based) cohorts in this
study minimizes the risk of reporting cohort-specific
(false positive) results. Also, all data were analyzed
by use of a standardized protocol, to minimize dif-
ferences in analyses among the individual studies.
This would be a useful strategy to adopt for future
analyses incorporating data from multiple different
cohorts, although meta-analyses techniques should
always be performed and the assessment of nonline-
arity remains difficult. Our analyses of different an-
cestries did not show major heterogeneity in our
findings, and confounders were taken into consider-
ation (where possible). However, the list of con-
founders considered was limited by access to
individual level data available among the partici-
pating studies. The limitations in our study were that
we were not able to study dynamic interrelations
among all serum electrolytes jointly in relation to ECG
intervals because only a few cohorts had data on all 4
electrolytes. This would be an interesting area for
follow-up in a subset of the cohorts. Calcium is usu-
ally bound to albumin, and low calcium can be caused
by low albumin levels. However, we believe albumin
plays a negligible role in the present study because
low albumin levels are rare in the general population.
Although the observational nature of our study limits
causal inferences, biological evidence supporting our
results favors an interpretation the electrolyte-ECG
interval associations are causal. Finally, we strati-
fied according to use of any antihypertensive treat-
ment overall, rather than to the use of specific
antihypertensive drug classes as this information was
not available. Possible alterations in potassium ef-
fects due to different antihypertensive drugs is an
area to be explored in future studies.

CONCLUSIONS

Within our large-scale study, we identified multiple
electrolyte-ECG associations relevant to ventricular
repolarization, involving calcium, magnesium and
potassium, although causality has yet to be deter-
mined. Regarding calcium and ventricular repolari-
zation, a subgroup of the general population has an
increase in QT interval that may be medically rele-
vant, based on the effect sizes observed. Further
research is necessary to improve our understanding
of the underlying (causal) mechanisms involved.
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as well as supplemental tables and figures,
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