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15. Charité – University Medicine Berlin, corporate member of Freie Universität Berlin, 

Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and 

Craniofacial Sciences, Department of Periodontology and Synoptic Dentistry, 14197 

Berlin, Germany  

16. Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), partner site Munich 

Heart Alliance, 80636 Munich, Germany  

17. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 

Munich, Germany  

18. Institute for Medical Informatics, Biometry and Epidemiology, University Hospital 

Essen, 45147 Essen, Germany  

19. Centre for Urbane Epidemiology, University Hospital Essen, 45147 Essen, Germany  

20. Institute of Human Genetics, University of Bonn School of Medicine & University 

Hospital Bonn, 53012 Bonn, Germany  

21. Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research 

Center for Environmental Health, 85764 Neuherberg, Germany  

22. Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, 81377 

Munich, Germany. 

23. Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University 

Medical Center, Johannes Gutenberg University, 55101 Mainz, Germany 

24. Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-

University (LMU) Munich, 81377 Munich, Germany. 

25. Institute of Epidemiology II, Helmholtz Zentrum München, 85764 Neuherberg, 

Germany  

26. Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, 

Germany  

27. Center for Internal Medicine with Gastroenterology and Nephrology, Lipid Clinic, 
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1 Abstract 

Aims: 

Coronary artery disease (CAD) has a strong genetic predisposition. However, despite 

substantial discoveries made by genome-wide association studies (GWAS), a large proportion 

of heritability awaits identification. Non-additive genetic-effects might be responsible for part 

of the unaccounted genetic variance. Here we attempted a proof-of-concept study to identify 

non-additive genetic effects, namely epistatic interactions, associated with CAD.  

 

Methods and Results: 

We tested for epistatic interactions in ten CAD case-control studies and UK Biobank with focus 

on 8,068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair 

located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for 

CAD (odds ratio [OR]=1.37, p=1.07×10-11), peripheral arterial disease (OR=1.22, p=2.32×10-

4), aortic stenosis (OR=1.47, p=6.95×10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels 

(beta=0.39,p=1.41×10-8), and Lp(a) serum levels (beta=0.58, p=8.7×10-32), while individual 

SNPs displayed no association. Further exploration of the LPA locus revealed a strong 

dependency of these associations on a rare variant, rs140570886, that was previously associated 

with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR=1.46, 

p=9.97×10-32) and individuals homozygous for the minor allele (relative OR=1.77, p=0.09) of 

rs140570886. Using forward model selection, we also show that epistatic interactions between 

rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. 

 

Conclusions:  

These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and 

provide rare evidence of an epistatic interaction in a complex human disease. We were directed 

to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. 

In summary, this study provides deeper insights into the genetic architecture of a locus 

important for cardiovascular diseases.  
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Translational Perspective:  

Genetic variants identified by GWAS studies explain about a quarter of the heritability of 

coronary artery disease by additive genetic effects. Our study demonstrates that non-additive 

effects contribute to the genetic architecture of the disease as well and identifies complex 

interaction patterns at the LPA locus, which affect LPA expression, Lp(a) plasma levels and 

risk of atherosclerosis. This proof-of-concept study encourages systematic searches for epistatic 

interactions in further studies to shed new light on the aetiology of the disease. 
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2 Introduction 

Coronary artery disease (CAD) is one of the largest contributors to morbidity and mortality 

worldwide1. A fundamental aspect of CAD is its complex and multifactorial aetiology, which 

includes numerous environmental risk factors, such as obesity and smoking2, as well as a strong 

genetic predisposition. Overall, the genetic variance is estimated to explain 40-50% of the 

variability in disease manifestation3. 

 

A decade of genome-wide association studies (GWAS) shed light on the genetic architecture 

of the disease, discovering 163 genetic loci associated with CAD risk4,5. About a quarter of 

CAD heritability can be explained by additive effects of these and other common genetic 

variants4,5. More complex models involving gene regulatory networks6 may help to better 

explain the heritability of the disease. In addition, at some of these loci, multiple independent 

signals were described, showing intra-locus allelic heterogeneity7. Until now non-additive 

genetic effects, such as epistatic interactions, are largely neglected for explaining the 

heritability of CAD. However, epistasis has been postulated by some to account for part of this 

“missing heritability”8 and has also been found to act alongside additive effects to influence 

complex phenotypes.9,10 

 

Epistatic interactions have profound effects in bacteria11 as well as in other higher model 

organisms12 and have been shown to regulate some quantitative traits in humans13. However, 

evidence of epistasis in human genetics remains very scarce, because individual-level data with 

large sample sizes are required for epistasis studies. Moreover, the combinatorial nature of 

epistasis makes hypothesis-free genome-wide interaction analyses (GWIAs) computationally 

demanding and plagued with a high multiple testing burden. Finally, associations based on 

interactions appear to suffer from a low replication rate14 and genetic interactions are sometimes 

difficult to disentangle from the tagging of haplotypes15. Indeed, a non-causal combination of 

alleles at multiple SNPs co-inherited with a rare causal variant could act as a tag for this variant.    

 

To face the computational complexities in search for interacting loci affecting risk for CAD, 

we conducted a two-stage statistical scanning procedure for epistasis using a GPU-accelerated 

software16 on individual level data from several GWAS on CAD. The scan was based on 

susceptibility regions defined around the top 56 known CAD loci, thereby limiting the multiple 
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testing correction burden while maximizing the likelihood to discover biologically-relevant 

interactions.  

3 Methods 

3.1 Cohorts 

3.1.1 CAD case-control studies  

Individual-level genotypes were obtained from ten CAD case-control studies. From Germany: 

the German Myocardial Infarction Family Studies (GerMIFS) I17, II18, III (KORA)19, IV20, V21, 

VI22; the LUdwigshafen RIsk and Cardiovascular Health Study (LURIC)23; from Germany, 

England, and France: Cardiogenics; from England: Wellcome Trust Case Control Consortium 

(WTCCC)24,25; from France, Italy, Germany, and the United States: Myocardial Infarction 

Genetics Consortium (MIGen)25,26. Data from the WTCCC were obtained via the Leducq 

network “CADgenomics” (https://www.fondationleducq.org/network/understanding-

coronary-artery-disease- genes/). MIGen data were obtained via the database of Genotypes And 

Phenotypes (dbGaP; project ID #49717-3)27. The genotype processing procedures including 

QC and imputation are provided in the Supplementary Methods. The final sample sizes for each 

study after QC are listed in Supplementary Table 1. All participants were of European origin 

and gave prior written informed consent, which specifically addressed that the materials will 

be used for genetic studies. All studies obtained institutional review board approval from their 

local Ethical Committees and were performed in accordance with the 1964 Helsinki Declaration 

and its later amendments. Ascertainment and assessment methods for CAD of each study are 

provided in the corresponding publications.  

 

3.1.2 UK Biobank  

The UK Biobank (UKBB) project (http://www.ukbiobank.ac.uk) is a large prospective cohort 

study of ~500,000 individuals from across the United Kingdom, aged 40-69 years at 

recruitment28. In the present study, CAD cases were defined using the “SOFT” and “HARD” 

criteria22, i.e., as individuals with fatal or nonfatal myocardial infarction (MI), percutaneous 

transluminal coronary angioplasty (PTCA), coronary artery bypass grafting (CABG), chronic 

ischemic heart disease (IHD) and angina. Peripheral arterial disease (PAD) cases were defined 

as self-reported history of PAD, leg claudication / intermittent claudication, or either 

hospitalization or death due to ICD9-443.9, ICD9-444, ICD10-I73.9, or ICD10-I74. Aortic 

valve stenosis cases were defined as a self-reported history of aortic stenosis, or either 

hospitalization or death due to ICD9-424.1 or ICD10-I35.0. The post-imputation sample quality 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 8 

control (QC) performed in the UKBB dataset is detailed in the Supplementary Methods. UKBB 

data were accessed under approval of UKBB within project 9922. The study was conducted 

following the principles of the declaration of Helsinki and all participants gave prior written 

informed consent. 

3.1.3 KORA F3/F4 studies and STARNET-Study: 

Individual-level genotypes were obtained from population studies from Augsburg, Germany29: 

KORA F3 and KORA F430,31 along with lipid measurements including total lipoprotein(a) 

[Lp(a)] levels and the number of Kringle repeats of the Lp(a) protein. RNAseq data were 

generated from liver tissue of 522 CABG CAD patients from the Stockholm-Tartu Reverse 

Network Engineering Task (STARNET) study32. These studies obtained institutional review 

board approval from their local Ethical Committees and were performed in accordance with the 

1964 Helsinki Declaration and its later amendments. All participants gave prior written 

informed consent. Further information about these studies are provided in the Supplementary 

Methods.  

3.2 Epistasis scan 

3.2.1 Broad Sense CAD susceptibility region 

We focused our analysis on 56 loci with previous evidence from GWAS on CAD20,25 

(Supplementary Table 14) in order to restrict the number of variants for testing of statistical 

epistasis. Our aim was to enhance computation time and the likelihood of true positive findings 

by easing the multiple testing correction burden. CAD susceptibility regions were defined as 

±500kb around each of the 56 lead SNPs20,25. This window size was chosen to capture the loci 

as completely as possible while minimizing the computational burden: The variance explained 

by the lead SNPs accounted for only 46% of the variance explained when including their 

flanking ±500kb regions (Supplementary figure 2, Supplementary Methods). We then pruned 

the variants in each region to 8,068 SNPs with pairwise r2<0.5 located in the broad CAD 

susceptibility regions.  

3.2.2 Statistical interaction analysis  

We used the general framework for detecting statistical epistasis in quantitative genetics as 

proposed by Hansen and Wagner33 on the pairwise epistasis between two loci (SNPs) and 

implemented a two-stage statistical scanning procedure (Figure 1). The first step of the testing 

procedure consisted in a loose but fast statistical filtering using the GLIDE GPU computation 

tool16. For each possible pair of SNPs, we fitted a linear model with the CAD phenotype as the 

dependent variable and the marginal effect of the two SNPs and their interaction term as 

predictors (Eq(1)). Each SNP’s genotype was encoded in four different models, dosage, 
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dominant, recessive and heterozygous with respect to the minor allele and all combinations of 

24 models were tested for each pair of SNPs.  

y ~ b
0 
+ b

1
×snp

1 
+ b

2
×snp

2 
+ b

int
×snp

1
×snp

2   
(1) 

A relatively loose and arbitrary significance level (p < 1×10-8) was applied for primary filtering, 

with the assumption that if true epistasis existed between two SNPs, signals of moderate 

strength should be detectable between the SNPs within the corresponding linkage 

disequilibrium (LD) block. This threshold was defined with the aim to detect such pair in LD 

with the true epistasis signal and to forward a manageable number of pairs to the second step.  

 

The second step included the fine-mapping of candidate SNP pairs to screen for the strongest 

signal among the SNPs in the same LD block. For this purpose, we used R to fit a logistic 

regression model, slower than the linear model used in step 1, but suited better for the binary 

CAD phenotype, and extended Eq(1) to correct for population structure by adding the first ten 

multidimensional scaling (MDS) components of the genetic relationship matrix (designated as 

MDS1..10 in Eq(2) and following equations).In this second step, we applied a stringent 

significance threshold of 4.6×10-9 , calculated as a Bonferroni correction (0.05 ⁄ (nSNP_indep × 

(nSNP_indep - 1) / 2) = 4.6178e-9 ) on the number of LD independent SNPs resulting from step 1 

(nSNP_indep = 4,654). Each SNP pair was encoded in the genetic model displaying the highest 

significance in step 1.  

y~b
0 
b

1 
×snp

1
b

2 
×snp

2 
b

int 
snp

1
×snp

2
b

c1 
MDS

1
b

c2 
×MDS

2
...b

c10 
×MDS

10  
(2) 

In the discovery phase, the same epistasis testing procedure was performed in each of the ten 

CAD case-control studies separately. The models used genotype data imputed to the 1000 

Genomes Phase 3 (1000GP3) reference panel. This regression analysis was followed by fixed-

effects meta-analysis to estimate the overall effect size and standard error. The final epistasis 

pair of interest was then reanalysed in the same studies imputed using the Haplotype Reference 

Consortium (HRC) reference panel, to enable a more complete coverage of the region of interest 

in all ten cohorts. Thereafter, this imputation based on the larger HRC reference was used for 

the remainder of the manuscript.  
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3.2.3 Prioritizing candidate SNP pairs of epistasis of CAD  

After the detection of SNP pairs showing statistically significant epistatic effects on the risk for 

CAD, we prioritized candidate pairs based on the following four criteria: 

1) We retained only SNP pairs with a high replication potential (i.e., displaying statistical 

epistasis both significantly (p<4.6×10-9) and consistently (effect sizes pointing in the 

same direction) in at least eight of the ten studies in the discovery data, based on both 

imputations). 

2) LD between two target SNPs located on the same chromosome r2<0.2. 

3) Weak interaction signals detectable between SNPs that show an LD r2> 0.5 with any of 

the two interacting SNPs. 

4) The effect of the interaction term is independent (i.e., p-value in conditional models 

<7.8×10-6) of any available third variant in conditional analyses. 

3.3 Conditional analysis 

The aim of the conditional analysis was to test whether the statistical epistasis effects were 

independent from a third SNP. To this end, we tested for the independence of the interaction 

term against the SNPs located within a ±200kb window around the epistatic loci and any known 

CAD GWAS SNPs that survived the original QC procedure. This window size was chosen to 

capture all SNPs in significant LD with the pair of interest. Indeed, it has been shown that LD 

decay with physical distance and is close to 0 at 200kb34,35.  For each of these SNPs, we used 

R to compute a likelihood ratio test (LRT) between a model including the additive effect of the 

two target SNPs and the additive effect of the conditioning SNP [all coded as minor allele 

dosages) (Eq (3)] and a model including the interaction term in addition [Eq (4)].  

y~b
0 
b

1 
×snp

1 
b

2 
×snp

2  
b

3 
×snp

3 
b

c1 
×MDS

1
b

c2 
×MDS

2
...b

c10 
×MDS

10 
(3) 

y~b
0 
b

1 
×snp

1 
b

2 
×snp

2 
b

int 
×snp

1 
×snp

2 
b

3 
×snp

3 
b

c1 
×MDS

1
b

c2 
×MDS

2
...b

c10 
×MDS

10

 
(4) 

The interaction term was considered dependent on the conditioning SNP if the LRT did not 

reach a Bonferroni-corrected significance threshold defined on the total number of conditioning 

SNPs. This analysis was performed on a merged dataset of the ten CAD studies. Here, the MDS 

components of the genetic relationship matrix used as covariates were re-calculated on the 

merged dataset.  

3.4 Relative effect sizes and analyses of intermediate traits  

Genotypic effect sizes for the different rs140570886 genotypes were computed by regression 

analysis in R using the dosage genetic model. Association analysis for the continuous 
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intermediate traits Lp(a) protein levels, LPA mRNA levels and KIV repeats were also 

performed using linear regression. Lp(a) proteins levels were highly skewed and Inverse 

Normal Transformation was applied prior association. Relative effect size for the three-SNP 

haplotypes were computed via haplotype estimation followed by fitting a generalized linear 

model with the R package happassoc. More detailed descriptions of these statistical procedures 

are provided in the Supplementary methods. 

4 Results 

4.1 Discovery of SNP pairs associated with CAD risk 

We identified 56 previously known CAD risk loci from two previous GWAS20,25 

(Supplementaty Table 14). For our study, we extracted 8,068 LD-independent candidate 

variants within 500kb of the respective lead SNPs. We observed that these extended regions 

explained more phenotypic variance than the respective lead SNPs alone (Supplementary Fig 

2, Supplementary Methods). Testing for statistical interactions was carried out on all pairwise 

SNPs along a two-step scheme (described in Figure 1) on imputed genotypes from 29,755 

participants of ten European CAD case-controls studies17–22,24–26 (Figure 2). Four SNP pairs 

displayed consistent (i.e., in at least eight of ten studies) and significant (i.e, p ≤ 4.618×10-9) 

effects and thus met our criteria as candidates for epistasis (Supplementary Table 2). Among 

these four pairs, two (rs1800769×rs9458001 and rs116632378× rs3823438) did replicate in the 

UKBB.  The top SNP pair (rs1800769×rs9458001) showed the strongest effect in a dosage-

dosage model and was prioritized for further investigation (Supplementary Table 3).  

Both rs1800769 and rs9458001 map to chromosome 6, close to the LPA locus (Figure 3b), and 

are not in LD with each other (r2=0.014, D=0.535, Table 1). None of the SNPs were associated 

with CAD risk by itself in an additive model (p=0.59, odds ratio [OR]=0.99 for rs1800769[T]; 

p=0.08, OR=1.04 for rs9458001[A], Supplementary Table 2). However, the interaction term 

displayed a strong association (ORint=1.42, p=1.75×10-13 for the rs1800769[T] ×rs9458001[A] 

interaction term). In this case, as both SNP were encoded in the additive genetic model, the OR 

can be interpreted as the increase in likeliness to suffer from CAD associated with an increase 

of one unit in the product between the number of minor alleles at each of the interacting SNPs. 

The results were reproduced in the same dataset imputed with the HRC reference panel36 using 

rs1652507 (LD with rs1800769, r2=0.965, D’=0.991, Table 1) as a proxy for rs1800769 (odds 

ratio (OR)=0.98 , p=0.38 for rs1652507[C]; OR=1.03, p=0.1 for rs9458001[A], and ORint=1.36, 

p=1.07×10-11 for the rs1652507[C]×rs9458001[A] interaction term, Supplementary Table 6). 
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Thus, the results were qualitatively independent of the imputation panel. This newer and denser 

imputation with this proxy variant was used for the remainder of the manuscript.  

4.2 Replication and association with further traits  

The UKBB dataset (controls/cases n=285520/26792), used as an external replication sample 

(Figure 2), showed a consistent interaction effect of this SNP pair for CAD (ORint=1.15, 

p=5.67×10-10 for the rs1652507 [C]×rs9458001[A] interaction term with the SNPs encoded in 

the dosage model, Supplementary Table 8). Moreover, we found interaction effects in the same 

direction and with a comparable magnitude on peripheral vascular disease (controls/cases 

n=475,059/4,460, ORint=1.22, p=2.32×10-4) and aortic valve stenosis (controls/cases 

n=477,496/2,023, ORint=1.47, p=6.95×10-7) (Supplementary Table 8), conditions known to be 

affected by Lp(a) plasma levels37,38. 

Next, we analysed the influence of the interaction term rs1800769×rs9458001 on circulating 

Lp(a) levels in a German population-based study (KORA F3/F430,31 n=5,953) (Figure 2). In 

addition to the association of each SNP separately, we identified a strong interaction effect of 

both SNPs on inverse-rank normal-transformed (INT) Lp(a) levels (beta=0.58, p=8.7×10-32, 

with the SNP encoded in the dosage model, Supplementary Table 6). In the LURIC study, we 

replicated the significant statistical interaction for INT Lp(a) levels (beta=0.56, p=6.93×10-16) 

and found no other circulating factor displaying such effects (data not shown).  

Finally, we extended our investigation to LPA mRNA expression in liver tissue (Methods, 

STARNET study, n=522) (Figure 2), where LPA is transcribed into Apo(a) and further 

assembled with an LDL-like particle into Lp(a). A significant interaction between the two SNPs 

was found (p=1.4×10-8) and the effects on LPA mRNA expression correlated with the 

circulating Lp(a) levels measured in KORA F3/F4 for various genotype subgroups 

(Supplementary Table 6), suggesting that differential gene expression activity underlies a large 

component of statistical interaction related to the two SNPs.  

4.3 rs140570886-related effects at the LPA locus  

An inherent challenge in testing for epistasis of nearby SNPs, even if they are in very low LD, 

is to discriminate interacting SNPs from SNPs representing a specific haplotype. In order to 

explore the latter possibility, we assessed the interaction effect after conditioning for any known 

susceptibility SNPs for CAD (n=158, Supplementary table 4) or any available SNP in the 

flanking ±200kb region. The LPA region conditional analysis (see Methods) did not yield any 

significant results (Supplementary Table 5). However, studying GWAS lead SNPs 

(Supplementary Table 4) uncovered that rs3798220 reduced the significance of the 
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rs1652507×rs9458001 interaction term (increase from p=1.07×10-11 to p=2.08×10-5, likelihood 

ratio test).  

In follow-up analyses, we also analysed the influence of the rare variant rs140570886 at the 

LPA locus, previously shown to be univariately associated with Lp(a) levels39. This variant was 

not included in our primary analysis because its minor allele frequency was lower than our QC 

threshold (see Methods), but was pointed out to us as requiring special attention. We therefore 

specifically investigated rs140570886 in the conditional analysis and observed a drastic 

decrease in the statistical support for the rs1652507×rs9458001 interaction term (from 

P=8.95×10-14 to p=0.022, likelihood ratio test). In order to test if these two SNPs (LD between 

rs140570886 and rs3798220: r2=0.808, D’=0.899) represented independent signals, we 

performed model selection using the likelihood ratio test. Adding rs3798220 to a model already 

containing rs140570886 did not improve the fit significantly (p=0.49, likelihood ratio test). We 

therefore conclude that rs3798220 is not independent of rs140570886 and did not assess this 

SNP in further analyses.  

We next investigated the additive effect of rs140570886 on CAD risk and found a significant 

association (OR=1.98, p=1.14×10-21,  Figure 3A, Supplementary Table 10). We replicated this 

association in the UKBB dataset (OR=1.46, p=2.77×10-32) (Figure 3A). Furthermore, In the 

UKBB, we found an association in the same direction and comparable magnitude for peripheral 

arterial disease (controls/cases n=315072/29877, OR=1.43,p=7.83×10-6) and aortic valve 

stenosis (controls/cases n=315072/29877, OR=1.71,p=1.25×10-7) (Supplementary Table 10), 

both of which are manifestations of atherosclerosis in coronary arteries for which Lp(a) plasma 

levels affect risk37,38.   

 

To assess the contribution of rs140570886 genotypes to disease risk beyond the additive model, 

we next computed genotypic ORs for heterozygous [T/C] and minor allele homozygous 

genotypes [C/C] compared to the major allele homozygous reference genotype [T/T]. The 

genotypic model has the advantage that it does not make any assumption on the underlying 

genetic model. In the meta-analysis of the ten CAD studies, we observed an OR of 1.88 

(P=2.32×10-18) for the T/C heterozygous genotype (Figure 4 A, Supplementary Table 10). A 

reliable effect estimate could not be calculated for the minor allele homozygous genotype C/C, 

due to its low frequency. The result for the T/C genotype was replicated in UKBB (OR=1.46, 

p=9.97×10-32) where we observed a trend for a higher relative OR for CC-homozygous subjects, 

although this was non-significant, likely due to its low frequency (OR=1.77, p=0.09; Figure 4 

B). This increase of the genotypic OR with the number of minor alleles suggests that the 
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additive genetic model is indeed likely correct for rs140570886. Coherent with this, the 

saturated genotypic model does not provide a better fit than the additive model (p=0.12, 

likelihood ratio test). We also observed a strong association of rs140570886 with Lp(a) levels 

(beta=1.54, p=9.52×10-82). As was the case for CAD risk, analyses of genotypic models 

indicated a linear increase with the minor allele count and thus supported an additive model 

(Figure 4 C).  

 

Circulating Lp(a) levels are modulated by at least two independent mechanisms40. First, they 

are inversely correlated with the number of Kringle IV type 2 repeats (KIV-2 CNV)41,42, with 

fewer KIV-2 CNV repeats associated with more Lp(a) release from liver cells43. They account 

for about 18% of the variability in Lp(a) levels in Western Europeans44. However, individuals 

with the same number of KIV-2 CNV repeats may still differ up to 200-fold with respect to 

their Lp(a) levels41,42, suggesting transcriptional mechanisms. In the KORA cohorts, we 

observed an association of rs140570886 with the KIV-2 CNV, with heterozygous rs140570886 

carriers having fewer KIV-2 CNV repeats (beta=-5.74, p=3.55×10-26) (Supplementary Table 

10, Supplementary Methods). However, rs140570886 was in minimal LD with the reported 61 

KIV-2 CNV-representing variants and the three independent modifier variants that influence 

the relationship between KIV-2 CNV and Lp(a) cholesterol44 (data not shown). More 

importantly, the effect of rs140570886 on Lp(a) levels remained highly significant after 

adjustment for the KIV-2 CNV (beta=1.11, p=1.94×10-57) (Figure 4 C, Supplementary Table 

10). This strongly suggests that the effect of rs140570886 on Lp(a) levels is independent of the 

KIV-2 CNV and might therefore be modulated by transcriptional regulation. In accordance with 

this hypothesis, we found rs140570886 to be part of a significant expression quantitative trait 

locus (eQTL) with LPA mRNA expression levels in liver tissue, where LPA is transcribed to 

Apo(a) and further assembled into Lp(a) (GTEx V8, normalized effect size =0.98, p=1.2×10-

7).  

4.4 Interaction between rs140570886 and the rs1652507-rs9458001 pair 

Although it appeared that part of the rs1652507×rs9458001 interaction was due to tagging of a 

rs140570886-related effect, we wondered if epistasis could still be present. To investigate this 

possibility, we applied a likelihood ratio tests-based forward model selection procedure starting 

with only rs140570886 going up to a model including all main effects and interactions between 

the four SNPs, rs1652507, rs9458001, rs140570886, and rs3798220 (Supplementary Methods, 

Table 2). To increase statistical power, we here analyzed the ten CAD studies and UKBB 

jointly. We observed a significant increase in model fit when rs1652507 and rs9458001 were 
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added as predictors to the model already containing rs140570886. The addition of the 

rs1652507×rs9458001 interaction term to this second model did not improve the fit further, 

coherent with the observed drop in the significance when conditioning the model containing 

the interaction term on rs140570886. However, the model fit increased significantly and 

reached its best level when all two-way and three-way interactions were added to the model. 

The direct comparison of this two-and-three-way interaction model to the rs140570886-only 

model yielded a p-value of the same magnitude as the original p-value threshold used for the 

epistasis screening (p=6.46×10-9). Using a type-III Sum of Squares Anova to dissect this final 

model, provided further insights into the importance of the different coefficients 

(Supplementary Table 12): We observed in the two-and-three-way interactions model that the 

additive effect of rs140570886 became non-significant while the additive effect of rs1652507 

reached significance. Moreover, albeit the originally discovered rs1652507×rs9458001 

interaction term became non-significant, we observed nominally significant interactions of both 

rs1652507 and rs9458001 with rs140570886. These results suggest that the additive effect of 

rs140570886 on CAD risk might actually be caused by more complicated patterns of cis-

epistatic interactions.  

 

To better understand the genetics underlying this statistical model, we computed the relative 

OR for each of the eight possible haplotypes. It appeared that all haplotypes including the major 

T allele for rs140570886 showed similar ORs. Interestingly, we observed that the effect size 

varied profoundly across haplotypes containing the rs140570886 minor allele C, depending on 

the rs1652507 genotype (red vs. blue on Figure 5, Supplementary Table 13). Moreover, for the 

haplotype rs140570886[C] – rs1652507[T], we observed that the ORs were much lower for the 

[A] as compared to the [G] allele at rs9458001, although the standard errors were large due to 

the low frequencies of rarer haplotypes (Figure 5, Supplementary Table 13).  These two 

observations reflect the marginally significant interaction coefficients between rs140570886 

and rs1652507 and between rs140570886 and rs9458001 in the two-and-three-way interaction 

model (Supplementary Table 12). 

 

Finally, in a further attempt to distinguish epistatic interactions involving these three SNPs from 

a haplotype effect, we compared different models containing SNPs encoded in the additive 

model and either haplotypes, interactions, or both, using the Akaike Information Criterion 

(AIC) (Table 3). The model including SNPs and their interactions but no haplotypes showed 

the best AIC. This result firstly confirms that interactions between the three SNPs improves 
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model fit compared to an additive only model. Secondly, it suggests the presence of a real 

epistatic interaction between the three SNPs rather than an exclusive haplotype effect. The 

likelihood ratio test applied to nested model confirmed this interpretation. Indeed, the most 

complex model, including SNPs, haplotypes and interactions, did not provide a better fit than 

the one without the haplotypes (p=0.26, likelihood ratio test), whereas adding interactions to 

the SNPs model improved the fit significantly (p=0.0034, likelihood ratio test). Although we 

cannot exclude the involvement of other rare or non-typed variants and lack the statistical power 

necessary for these two interactions to reach the significance threshold pre-defined for the scan, 

these results demonstrate a complex genetic architecture involving non-additive and likely 

epistatic effects in the LPA region, underlying the regulation of Lp(a) expression and CAD risk.  

 

5 Discussion 

We report a two-stage testing procedure for epistatic interactions affecting CAD risk. Our 

analysis identified two SNPs at the LPA locus that individually had no effect but jointly 

displayed a strong statistical association with expression of LPA mRNA in liver, Lp(a) levels 

in serum, and with risk for CAD, peripheral arterial disease, and aortic stenosis. Further 

exploration of the locus revealed that parts of these associations were explained by tagging of 

a low-frequency variant (rs140570886), which, in parallel with our study, was found to be 

associated with Lp(a) levels39. In addition, we detected a complex pattern of interactions 

between this variant and two other SNPs in the LPA region. Together, these findings firstly 

provide evidence of epistatic interaction in a complex human disease and provide deeper 

insights into the genetic architecture of an important locus for cardiovascular risk. At the same 

time, these data highlight the challenges in confirming epistatic interactions affecting disease 

risk in humans. 

 

We focused our search for pairwise epistatic interactions on 8,068 SNPs at 56 regions that had 

been found to be associated at genome-wide significance with CAD20,25. Indeed, the selected 

window of LD-pruned SNPs contained 2-fold more information on CAD heritability than the 

respective lead SNPs. Nevertheless, we found only four potentially interacting SNP pairs, 

which highlights the challenge to identify true epistasis modulating a human trait. The top-

ranking interacting pair was located in cis at the LPA locus. Conditional analyses, aiming to 

determine the independence of the epistatic signal between rs1652507 and rs9458001 from 

other neighbouring SNPs, revealed a strong dependence on rs140570886. Thus, the seemingly 
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strongest epistatic SNP pair tagged a rare genotype with profound effects on the phenotype. 

Further investigation of this variant showed its strong association with CAD and Lp(a) protein 

levels. rs140570886 has been previously associated with cardiovascular disease (CVD) using a 

new integrative framework named FIODOR45. Our result, thus, using a well-established logistic 

regression model45, confirmed the association of rs140570886 with diseases of the 

cardiovascular system. We, moreover, replicated the association of rs140570886 with Lp(a) 

levels reported by Mack et al.39 and identified data collections that indicate an association of 

rs140570886 with CAD46. In addition, we report rs140570886 effects on Lp(a) levels to be 

independent of the KIV CNV repeats and to be a strong eQTL for LPA gene expression. Taken 

together, these findings support the hypothesis that rs140570886 mediates CAD risk through 

the Lp(a) levels via transcriptional regulation.  

 

An important methodological point highlighted by this study is the importance of the 

conditional follow-up analyses in the investigation of epistatic interactions. Indeed, an inherent 

challenge in testing for epistasis of nearby SNPs, even if they are in very low LD, is to 

discriminate truly interacting SNPs from SNPs tagging a specific haplotype47. Resolving the 

dependence structure at the epistatic locus, by conditioning the interaction effect on the 

neighbouring SNPs, allowed us to simultaneously identify a tagged rarer variant and to fine-

map the epistatic interaction at the LPA locus. 

 

The combinatorial nature of interactions has been a major hold-up in epistasis testing because 

it leads to an enormous search space and a high multiple testing correction burden15,48. Methods 

to reduce this space can be divided into two categories: data-driven and knowledge-driven 

methods49. We applied a data-driven approach in the present study, focusing on previously 

associated loci, for two reasons. First, variants already shown to be linked to the disease are 

likely to be functionally important. Second, if epistatic effects were detected among such 

variants, these effects would be more likely to affect the condition. Since regulatory variants 

might be located in the flanking region of the prioritized loci, we extended the search space to 

these regions. The discovery of four pairs of interacting SNPs using this filtering approach 

demonstrates its advantage over a hypothesis-free approach, in which these pairs would not 

have reached statistical significance due to having to correct for more tests. 

 

The findings relative to the genetic architecture of the LPA locus reported in this study carry a 

special clinical relevance for CAD risk detection and treatment. Indeed, Lp(a) concentrations 
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have been shown to be usable for CAD risk prediction. For example, the Copenhagen City 

Heart Study showed for individuals above the 95th percentiles of the Lp(a) concentration to 

have a 2.5-fold higher CAD risk compared to individuals in the lowest quartile37. Although 

Lp(a) concentration measurement and isoform determination are sufficient assays to estimate 

CAD risk encoded at the LPA locus50, polygenic risk scores might play an additional role in the 

assessment of CAD risk in the future5. Indeed, with the rapid drop of genotyping cost, 

individual genotype data are becoming a basic component of biobanks and clinical settings51. 

With this perspective, a better understanding of the genetic architecture of the LPA locus and 

the incorporation of non-additive genetic effects, such as those reported in this study, might 

enhance the predictive power of polygenic risk scores and help the development of individually-

tailored disease prevention52, which, in the future, may involve a pharmacological Lp(a) 

reduction53.  

 

While a single epistatic interaction as reported in this manuscript is very unlikely to improve 

risk prediction on its own compared to polygenic risk score based on millions of SNPs, 

numerous interactions – if identified – might do so. Indeed, several observations argue in this 

direction. First, simulations and analyses by others indicate that epistasis cannot be ruled out as 

an important factor10. Particularly, results from the UK Biobank are compatible with an upper 

bound of epistasis explaining slightly more than half as much as additive variance, and a point 

estimate of epistasis explaining a quarter of the amount of variance explained by additively 

acting loci. A further extension of epistasis scans, to testing combinations of variants from 

disease susceptibility regions against the whole genome, or even to genome-wide scans with 

different, a-priori-defined functional, information-based filters, might discover new epistatic 

interactions54, thereby, improving both our understanding of disease aetiology and possibly 

prediction models.  

 

6 Sources of Funding 

This work was supported by:  

the German Federal Ministry of Education and Research (BMBF) within the framework of 

ERA-NET on Cardiovascular Disease (Druggable-MI-genes: 01KL1802), within the scheme 

of target validation (BlockCAD: 16GW0198K), the German Centre of Cardiovascular Research 

(DZHK) Munich Heart Alliance, within the framework of the e:Med research and funding 

concept (AbCD-Net: 01ZX1706C and eAtheroSysMed: 01ZX1313B to BMM). As a Co-

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 19 

applicant for the British Heart Foundation (BHF)/German Centre of Cardiovascular Research 

(DZHK)-collaboration. Further support was received from the German Research Foundation 

(DFG) as part of the Sonderforschungsbereich SFB 1123 (B02) and the 

Sonderforschungsbereich SFB TRR 267 (B05), from the German Federal Ministry of 

Economics and Energy in its scheme of ModulMax (grant No: ZF4590201BA8) and from 

Bavarian State Ministry of Health and Care, within its framework of DigiMed Bayern (grant 

No: DMB-1805-0001). TFMA  was supported by the DIFUTURE and MultipleMS consortia. 

The KORA study was initiated and financed by the Helmholtz Zentrum München – German 

Research Center for Environmental Health, which is funded by the German Federal Ministry 

of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported 

within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, 

as part of LMUinnovativ.  

 

7 Acknowledgments 

We are grateful for the authorization to apply the data from UK Biobank (project ID: 25214). 

Data for MIGen were obtained via the database of Genotypes And Phenotypes (dbgap)27 

(project ID #49717-3).  

8 Authors Contributions 

LZ, NMS, BMM, HS, contributed to conception and design. TA, TK, AK, KLL contributed to 

acquisition and/or contributed data. S Moser, LZ, NMS analysed and interpreted the data. CPN, 

OF, MEK, CL, SC, S Mack, BJ, BS, TFMA, BJ, MM Nöthen, CW, MM, JE, S Moebus, AP, 

KS, MM-Nurasyid, CG, TM, EST, WM, AM, JLMB, FK, and LL contributed to the data 

generation and analysis. BMM, HS, TA, TFMA, contributed to data interpretation. S Moser, 

LZ, NMS, NJS, BMM, HS,TFMA, drafted the manuscript. All authors participated in revising 

it critically for important intellectual content. 

9 Conflict of Interest 

None declared. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 20 

10 Data Availability Statement: 

The data from the German Myocardial Infarction Family Studies (GerMIFS) I17, II18, III 

(KORA)19, IV20, V21, VI22 cannot be shared publicly due to ethical and confidentiality 

considerations. The data will be shared on reasonable requests addressed to the corresponding 

authors. The UK Biobank28 is a biomedical database which access can be freely requested on 

their website. Data from the Wellcome Trust Case Control Consortium (WTCCC)24,25, 

Myocardial Infarction Genetics Consortium (MIGen)25,26 , LUdwigshafen RIsk and 

Cardiovascular Health Study (LURIC)23, Cardiogenics (Dataset ID: EGAC00001000088), 

KORA F3/F430,31 and Stockholm-Tartu Reverse Network Engineering Task (STARNET)32 

studies were provided by third parties by permission. Data will be shared on request to the 

corresponding authors with permission of the third party. 

11 References 

1.  Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Abbasoglu 

Ozgoren A, Abdalla S, Abd-Allah F, Abdel Aziz MI, Abera SF, Aboyans V, Abraham 

B, Abraham JP, Abuabara KE, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, 

Achoki T, Adelekan A, Ademi Z, Adofo K, Adou AK, Adsuar JC, Ärnlov J, Agardh EE, 

Akena D, Khabouri MJ Al, Alasfoor D, Albittar M, Alegretti MA, Aleman A V., Alemu 

ZA, Alfonso-Cristancho R, Alhabib S, Ali MK, Ali R, Alla F, Lami F Al, Allebeck P, 

AlMazroa MA, Al-Shahi Salman R, Alsharif U, Alvarez E, Alviz-Guzman N, 

Amankwaa AA, Amare AT, Ameli O, Amini H, Ammar W, Anderson HR, Anderson 

BO, Antonio CAT, Anwari P, Apfel H, Argeseanu Cunningham S, Arsic Arsenijevic 

VS, Artaman A, Asad MM, Asghar RJ, Assadi R, Atkins LS, Atkinson C, Badawi A, 

Bahit MC, Bakfalouni T, Balakrishnan K, Balalla S, Banerjee A, Barber RM, Barker-

Collo SL, Barquera S, Barregard L, Barrero LH, Barrientos-Gutierrez T, Basu A, Basu 

S, Basulaiman MO, Beardsley J, Bedi N, Beghi E, Bekele T, Bell ML, Benjet C, Bennett 

DA, Bensenor IM, Benzian H, Bertozzi-Villa A, Beyene TJ, Bhala N, Bhalla A, Bhutta 

ZA, Bikbov B, Abdulhak A Bin, Biryukov S, Blore JD, Blyth FM, Bohensky MA, 

Borges G, Bose D, Boufous S, Bourne RR, Boyers LN, Brainin M, Brauer M, Brayne 

CEG, Brazinova A, Breitborde N, Brenner H, Briggs ADM, Brown JC, Brugha TS, 

Buckle GC, Bui LN, Bukhman G, Burch M, Campos Nonato IR, Carabin H, Cárdenas 

R, Carapetis J, Carpenter DO, Caso V, Castañeda-Orjuela CA, Castro RE, Catalá-López 

F, Cavalleri F, Chang JC, Charlson FC, Che X, Chen H, Chen Y, Chen JS, Chen Z, 

Chiang PPC, Chimed-Ochir O, Chowdhury R, Christensen H, Christophi CA, Chuang 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 21 

TW, Chugh SS, Cirillo M, Coates MM, Coffeng LE, Coggeshall MS, Cohen A, Colistro 

V, Colquhoun SM, Colomar M, Cooper LT, Cooper C, Coppola LM, Cortinovis M, 

Courville K, Cowie BC, Criqui MH, Crump JA, Cuevas-Nasu L, Costa Leite I Da, 

Dabhadkar KC, Dandona L, Dandona R, Dansereau E, Dargan PI, Dayama A, La Cruz-

Góngora V De, La Vega SF De, Leo D De, Degenhardt L, Pozo-Cruz B Del, Dellavalle 

RP, Deribe K, Jarlais DC Des, Dessalegn M, Veber GA De, Dharmaratne SD, Dherani 

M, Diaz-Ortega JL, Diaz-Torne C, Dicker D, Ding EL, Dokova K, Dorsey ER, Driscoll 

TR, Duan L, Duber HC, Durrani AM, Ebel BE, Edmond KM, Ellenbogen RG, Elshrek 

Y, Ermakov SP, Erskine HE, Eshrati B, Esteghamati A, Estep K, Fürst T, Fahimi S, 

Fahrion AS, Faraon EJA, Farzadfar F, Fay DFJ, Feigl AB, Feigin VL, Felicio MM, 

Fereshtehnejad SM, Fernandes JG, Ferrari AJ, Fleming TD, Foigt N, Foreman K, 

Forouzanfar MH, Fowkes FGR, Fra Paleo U, Franklin RC, Futran ND, Gaffikin L, 

Gambashidze K, Gankpé FG, García-Guerra FA, Garcia AC, Geleijnse JM, Gessner BD, 

Gibney KB, Gillum RF, Gilmour S, Ginawi IAM, Giroud M, Glaser EL, Goenka S, 

Gomez Dantes H, Gona P, Gonzalez-Medina D, Guinovart C, Gupta R, Gupta R, 

Gosselin RA, Gotay CC, Goto A, Gouda HN, Graetz N, Greenwell KF, Gugnani HC, 

Gunnell D, Gutiérrez RA, Haagsma J, Hafezi-Nejad N, Hagan H, Hagstromer M, Halasa 

YA, Hamadeh RR, Hamavid H, Hammami M, Hancock J, Hankey GJ, Hansen GM, Harb 

HL, Harewood H, Haro JM, Havmoeller R, Hay RJ, Hay SI, Hedayati MT, Heredia Pi 

IB, Heuton KR, Heydarpour P, Higashi H, Hijar M, Hoek HW, Hoffman HJ, Hornberger 

JC, Hosgood HD, Hossain M, Hotez PJ, Hoy DG, Hsairi M, Hu G, Huang JJ, Huffman 

MD, Hughes AJ, Husseini A, Huynh C, Iannarone M, Iburg KM, Idrisov BT, Ikeda N, 

Innos K, Inoue M, Islami F, Ismayilova S, Jacobsen KH, Jassal S, Jayaraman SP, Jensen 

PN, Jha V, Jiang G, Jiang Y, Jonas JB, Joseph J, Juel K, Kabagambe EK, Kan H, Karch 

A, Karimkhani C, Karthikeyan G, Kassebaum N, Kaul A, Kawakami N, Kazanjan K, 

Kazi DS, Kemp AH, Kengne AP, Keren A, Kereselidze M, Khader YS, Khalifa SEAH, 

Khan EA, Khan G, Khang YH, Kieling C, Kinfu Y, Kinge JM, Kim D, Kim S, Kivipelto 

M, Knibbs L, Knudsen AK, Kokubo Y, Kosen S, Kotagal M, Kravchenko MA, 

Krishnaswami S, Krueger H, Kuate Defo B, Kuipers EJ, Kucuk Bicer B, Kulkarni C, 

Kulkarni VS, Kumar K, Kumar RB, Kwan GF, Kyu H, Lai T, Lakshmana Balaji A, 

Lalloo R, Lallukka T, Lam H, Lan Q, Lansingh VC, Larson HJ, Larsson A, Lavados PM, 

Lawrynowicz AEB, Leasher JL, Lee JT, Leigh J, Leinsalu M, Leung R, Levitz C, Li B, 

Li Y, Li Y, Liddell C, Lim SS, Lima GMF De, Lind ML, Lipshultz SE, Liu S, Liu Y, 

Lloyd BK, Lofgren KT, Logroscino G, London SJ, Lortet-Tieulent J, Lotufo PA, Lucas 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 22 

RM, Lunevicius R, Lyons RA, Ma S, Machado VMP, MacIntyre MF, Mackay MT, 

MacLachlan JH, Magis-Rodriguez C, Mahdi AA, Majdan M, Malekzadeh R, Mangalam 

S, Mapoma CC, Marape M, Marcenes W, Margono C, Marks GB, Marzan MB, Masci 

JR, Mashal MT, Masiye F, Mason-Jones AJ, Matzopolous R, Mayosi BM, Mazorodze 

TT, McGrath JJ, McKay AC, McKee M, McLain A, Meaney PA, Mehndiratta MM, 

Mejia-Rodriguez F, Melaku YA, Meltzer M, Memish ZA, Mendoza W, Mensah GA, 

Meretoja A, Mhimbira FA, Miller TR, Mills EJ, Misganaw A, Mishra SK, Mock CN, 

Moffitt TE, Mohamed Ibrahim N, Mohammad KA, Mokdad AH, Mola GL, Monasta L, 

Monis JDLC, Montañez Hernandez JC, Montico M, Montine TJ, Mooney MD, Moore 

AR, Moradi-Lakeh M, Moran AE, Mori R, Moschandreas J, Moturi WN, Moyer ML, 

Mozaffarian D, Mueller UO, Mukaigawara M, Mullany EC, Murray J, Mustapha A, 

Naghavi P, Naheed A, Naidoo KS, Naldi L, Nand D, Nangia V, Narayan KMV, Nash D, 

Nasher J, Nejjari C, Nelson RG, Neuhouser M, Neupane SP, Newcomb PA, Newman L, 

Newton CR, Ng M, Ngalesoni FN, Nguyen G, Nguyen NTT, Nisar MI, Nolte S, Norheim 

OF, Norman RE, Norrving B, Nyakarahuka L, Odell S, O’Donnell M, Ohkubo T, Ohno 

SL, Olusanya BO, Omer SB, Opio JN, Orisakwe OE, Ortblad KF, Ortiz A, Otayza MLK, 

Pain AW, Pandian JD, Panelo CI, Panniyammakal J, Papachristou C, Paternina Caicedo 

AJ, Patten SB, Patton GC, Paul VK, Pavlin B, Pearce N, Pellegrini CA, Pereira DM, 

Peresson SC, Perez-Padilla R, Perez-Ruiz FP, Perico N, Pervaiz A, Pesudovs K, Peterson 

CB, Petzold M, Phillips BK, Phillips DE, Phillips MR, Plass D, Piel FB, Poenaru D, 

Polinder S, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Qato D, Quezada AD, 

Quistberg DA, Rabito F, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman SUR, Raju 

M, Rakovac I, Rana SM, Refaat A, Remuzzi G, Ribeiro AL, Ricci S, Riccio PM, 

Richardson L, Richardus JH, Roberts B, Roberts DA, Robinson M, Roca A, Rodriguez 

A, Rojas-Rueda D, Ronfani L, Room R, Roth GA, Rothenbacher D, Rothstein DH, 

Rowley JTF, Roy N, Ruhago GM, Rushton L, Sambandam S, Søreide K, Saeedi MY, 

Saha S, Sahathevan R, Sahraian MA, Sahle BW, Salomon JA, Salvo D, Samonte GMJ, 

Sampson U, Sanabria JR, Sandar L, Santos IS, Satpathy M, Sawhney M, Saylan M, 

Scarborough P, Schöttker B, Schmidt JC, Schneider IJC, Schumacher AE, Schwebel DC, 

Scott JG, Sepanlou SG, Servan-Mori EE, Shackelford K, Shaheen A, Shahraz S, Shakh-

Nazarova M, Shangguan S, She J, Sheikhbahaei S, Shepard DS, Shibuya K, Shinohara 

Y, Shishani K, Shiue I, Shivakoti R, Shrime MG, Sigfusdottir ID, Silberberg DH, Silva 

AP, Simard EP, Sindi S, Singh JA, Singh L, Sioson E, Skirbekk V, Sliwa K, So S, Soljak 

M, Soneji S, Soshnikov SS, Sposato LA, Sreeramareddy CT, Stanaway JD, Stathopoulou 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 23 

VK, Steenland K, Stein C, Steiner C, Stevens A, Stöckl H, Straif K, Stroumpoulis K, 

Sturua L, Sunguya BF, Swaminathan S, Swaroop M, Sykes BL, Tabb KM, Takahashi 

K, Talongwa RT, Tan F, Tanne D, Tanner M, Tavakkoli M, Ao B Te, Teixeira CM, 

Templin T, Tenkorang EY, Terkawi AS, Thomas BA, Thorne-Lyman AL, Thrift AG, 

Thurston GD, Tillmann T, Tirschwell DL, Tleyjeh IM, Tonelli M, Topouzis F, Towbin 

JA, Toyoshima H, Traebert J, Tran BX, Truelsen T, Trujillo U, Trillini M, Tsala 

Dimbuene Z, Tsilimbaris M, Tuzcu EM, Ubeda C, Uchendu US, Ukwaja KN, Undurraga 

EA, Vallely AJ, Vijver S Van De, Gool CH Van, Varakin YY, Vasankari TJ, 

Vasconcelos AMN, Vavilala MS, Venketasubramanian N, Vijayakumar L, Villalpando 

S, Violante FS, Vlassov VV, Wagner GR, Waller SG, Wang JL, Wang L, Wang XR, 

Wang Y, Warouw TS, Weichenthal S, Weiderpass E, Weintraub RG, Wenzhi W, 

Werdecker A, Wessells KRR, Westerman R, Whiteford HA, Wilkinson JD, Williams 

TN, Woldeyohannes SM, Wolfe CDA, Wolock TM, Woolf AD, Wong JQ, Wright JL, 

Wulf S, Wurtz B, Xu G, Yang YC, Yano Y, Yatsuya H, Yip P, Yonemoto N, Yoon SJ, 

Younis M, Yu C, Yun Jin K, Zaki MES, Zamakhshary MF, Zeeb H, Zhang Y, Zhao Y, 

Zheng Y, Zhu J, Zhu S, Zonies D, Zou XN, Zunt JR, Vos T, Lopez AD, Murray CJL, 

Alcalá-Cerra G, Hu H, Karam N, Sabin N, Temesgen AM. Global, regional, and national 

age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-

2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 

2015;385:117–171.  

2.  Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, 

Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with 

myocardial infarction in 52 countries (the INTERHEART study): case-control study. 

Lancet 2004;364:937–952.  

3.  Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk 

factor for coronary artery disease: The Framingham Study. Am Heart J 1990;120:963–

969.  

4.  Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide 

association studies for coronary artery disease: The challenges ahead. Cardiovasc Res 

2018;114:1241–1257.  

5.  Khera A V., Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander 

ES, Lubitz SA, Ellinor PT, Kathiresan S. Genome-wide polygenic scores for common 

diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 

2018;50:1219–1224.  

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 24 

6.  Zeng L, Talukdar HA, Koplev S, Giannarelli C, Ivert T, Gan LM, Ruusalepp A, Schadt 

EE, Kovacic JC, Lusis AJ, Michoel T, Schunkert H, Björkegren JLM. Contribution of 

Gene Regulatory Networks to Heritability of Coronary Artery Disease. J Am Coll 

Cardiol 2019;73:2946–2957.  

7.  Harst P Van der, Verweij N. Identification of 64 Novel Genetic Loci Provides an 

Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ Res 

2018;122:433–443.  

8.  Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: Genetic 

interactions create phantom heritability. Proc Natl Acad Sci 2012;109:1193–1198.  

9.  Morgan MD, Pairo-Castineira E, Rawlik K, Canela-Xandri O, Rees J, Sims D, Tenesa 

A, Jackson IJ. Genome-wide study of hair colour in UK Biobank explains most of the 

SNP heritability. Nat Commun Springer US; 2018;9:1–10.  

10.  Hivert V, Sidorenko J, Rohart F, Goddard ME, Yang J, Wray NR, Yengo L, Visscher 

PM. Estimation of non-additive genetic variance in human complex traits from a large 

sample of unrelated individuals. bioRxiv 2020;doi : 10.1101/2020.11.09.375501.  

11.  Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj 

M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, Leeuwen J Van, Dyk N 

Van, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, 

Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, Luis BJS, 

Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-

Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, 

Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, 

Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of 

cellular function. Science (80- ) 2016;353:aaf1420.  

12.  Ganguly I, Anholt RRH, Kamdar KP, Mackay TFC, Chang S, Dilda CL, Kulkarni NH, 

Rollmann SM, Fanara J-J. The genetic architecture of odor-guided behavior in 

Drosophila: epistasis and the transcriptome. Nat Genet 2003;35:180–184.  

13.  Mackay TFC. Epistasis and quantitative traits: Using model organisms to study gene-

gene interactions. Nat Rev Genet 2014;15:22–33.  

14.  Murk W, Bracken MB, DeWan AT. Confronting the missing epistasis problem: on the 

reproducibility of gene–gene interactions. Hum Genet 2015;134:837–849.  

15.  Ritchie MD, Steen K Van. The search for gene-gene interactions in genome-wide 

association studies: challenges in abundance of methods, practical considerations, and 

biological interpretation. Ann Transl Med 2018;6:157–157.  

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 25 

16.  Kam-Thong T, Azencott CA, Cayton L, Ptz B, Altmann A, Karbalai N, Smann PG, 

Schlkopf B, Mller-Myhsok B, Borgwardt KM. GLIDE: GPU-based linear regression for 

detection of epistasis. Hum Hered 2012;73:220–236.  

17.  Nilesh S, Erdmann J, Hall AS, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, 

Wichmann H, Barrett JH, Tregouet A, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien 

F, Fischer M, Blankenberg S, Balmforth A, König IR, Susanne S, Szymczak S, Tregouet 

D-A, Iles M, Pahlke F, Pollard H, Wolfgang L, Cambien F, Fischer M, Willem O, Stefan 

B, Balmforth AJ, Baessler A, Ball S, Strom TM, Brænne I, Gieger C, Deloukas P, Tobin 

M, Ziegler A, Thompson JR, Schunkert H. Genomewide Association Analysis of 

Coronary Artery Disease. N Engl J Med 2007;357:443–453.  

18.  Erdmann J, Großhennig A, Braund PS, König IR, Hengstenberg C, Hall AS, Linsel-

Nitschke P, Kathiresan S, Wright B, Trégouët DA, Cambien F, Bruse P, Aherrahrou Z, 

Wagner AK, Stark K, Schwartz SM, Salomaa V, Elosua R, Melander O, Voight BF, 

O’Donnell CJ, Peltonen L, Siscovick DS, Altshuler D, Merlini PA, Peyvandi F, 

Bernardinelli L, Ardissino D, Schillert A, Blankenberg S, Zeller T, Wild P, Schwarz D, 

Tiret L, Perret C, Schreiber S, Mokhtari NE El, Schäfer A, März W, Renner W, Bugert 

P, Klüter H, Schrezenmeir J, Rubin D, Ball SG, Balmforth AJ, Wichmann HE, Meitinger 

T, Fischer M, Meisinger C, Baumert J, Peters A, Ouwehand WH, Deloukas P, Thompson 

JR, Ziegler A, Samani NJ, Schunkert H. New susceptibility locus for coronary artery 

disease on chromosome 3q22.3. Nat Genet 2009;41:280–282.  

19.  Erdmann J, Willenborg C, Nahrstaedt J, Preuss M, König IR, Baumert J, Linsel-Nitschke 

P, Gieger C, Tennstedt S, Belcredi P, Aherrahrou Z, Klopp N, Loley C, Stark K, 

Hengstenberg C, Bruse P, Freyer J, Wagner AK, Medack A, Lieb W, Großhennig A, 

Sager HB, Reinhardt A, Schäfer A, Schreiber S, Mokhtari NE El, Raaz-Schrauder D, 

Illig T, Garlichs CD, Ekici AB, Reis A, Schrezenmeir J, Rubin D, Ziegler A, Wichmann 

HE, Doering A, Meisinger C, Meitinger T, Peters A, Schunkert H. Genome-wide 

association study identifies a new locus for coronary artery disease on chromosome 

10p11.23. Eur Heart J 2011;32:158–168.  

20.  Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou 

T, Nelson CP, CHopewell J, Webb TR, Zeng L, Dehghan A, Alver M, MArmasu S, Auro 

K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C, 

Gustafsson S, Huang J, Hwang SJ, Kim YK, Kleber ME, Lau KW, Lu X, Lu Y, 

Lyytikäinen LP, Mihailov E, Morrison AC, Pervjakova N, Qu L, Rose LM, Salfati E, 

Saxena R, Scholz M, Smith A V., Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 26 

W, Andrade M De, Vries PS De, Zuydam NR Van, Anand SS, Bertram L, Beutner F, 

Dedoussis G, Frossard P, Gauguier D, Goodall AH, Gottesman O, Haber M, Han BG, 

Huang J, Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, MLindgren C, 

Lokki ML, Magnusson PK, Mallick NH, Mehra N, Meitinger T, Memon FUR, Morris 

AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, Samuel M, Shah 

SH, Sinisalo J, EStirrups K, Trompet S, Wang L, Zaman KS, Ardissino D, Boerwinkle 

E, Borecki IB, Bottinger EP, Buring JE, Chambers JC, Collins R, Cupples L, Danesh J, 

Demuth I, Elosua R, Epstein SE, Esko T, Feitosa MF, Franco OH, Franzosi MG, Granger 

CB, Gu D, Gudnason V, SHall A, Hamsten A, Harris TB, LHazen S, Hengstenberg C, 

Hofman A, Ingelsson E, Iribarren C, Jukema JW, Karhunen PJ, Kim BJ, Kooner JS, 

Kullo IJ, Lehtimäki T, Loos RJF, Melander O, Metspalu A, März W, Palmer CN, Perola 

M, Quertermous T, Rader DJ, Ridker PM, Ripatti S, Roberts R, Salomaa V, Sanghera 

DK, Schwartz SM, Seedorf U, Stewart AF, Stott DJ, Thiery J, Zalloua PA, O’Donnell 

CJ, Reilly MP, Assimes TL, Thompson JR, Erdmann J, Clarke R, Watkins H, Kathiresan 

S, McPherson R, Deloukas P, Schunkert H, Samani NJ, Farrall M. A comprehensive 

1000 Genomes-based genome-wide association meta-analysis of coronary artery 

disease. Nat Genet 2015;47:1121–1130.  

21.  Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, Lange LA, Fontanillas P, Gupta 

N, Duga S, Goel A, Farrall M, Saleheen D, Ferrario P, König I, Asselta R, Merlini PA, 

Marziliano N, Notarangelo MF, Schick U, Auer P, Assimes TL, Reilly M, Wilensky R, 

Rader DJ, Kees Hovingh G, Meitinger T, Kessler T, Kastrati A, Laugwitz KL, Siscovick 

D, Rotter JI, Hazen SL, Tracy R, Cresci S, Spertus J, Jackson R, Schwartz SM, Natarajan 

P, Crosby J, Muzny D, Ballantyne C, Rich SS, O’Donnell CJ, Abecasis G, Sunyaev S, 

Nickerson DA, Buring JE, Ridker PM, Chasman DI, Austin E, Ye Z, Kullo IJ, Weeke 

PE, Shaffer CM, Bastarache LA, Denny JC, Roden DM, Palmer C, Deloukas P, Lin DY, 

Tang ZZ, Erdmann J, Schunkert H, Danesh J, Marrugat J, Elosua R, Ardissino D, 

McPherson R, Watkins H, Reiner AP, Wilson JG, Altshuler D, Gibbs RA, Lander ES, 

Boerwinkle E, Gabriel S, Kathiresan S. Inactivating mutations in NPC1L1 and protection 

from coronary heart disease. N Engl J Med 2014;371:2072–2082.  

22.  Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla I, 

Lai FY, Hopewell JC, Giannakopoulou O, Jiang T, Hamby SE, Angelantonio E Di, 

Assimes TL, Bottinger EP, Chambers JC, Clarke R, Palmer CNA, Cubbon RM, Ellinor 

P, Ermel R, Evangelou E, Franks PW, Grace C, Gu D, Hingorani AD, Howson JMM, 

Ingelsson E, Kastrati A, Kessler T, Kyriakou T, Lehtimäki T, Lu X, Lu Y, März W, 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 27 

McPherson R, Metspalu A, Pujades-Rodriguez M, Ruusalepp A, Schadt EE, Schmidt 

AF, Sweeting MJ, Zalloua PA, Alghalayini K, Keavney BD, Kooner JS, Loos RJF, Patel 

RS, Rutter MK, Tomaszewski M, Tzoulaki I, Zeggini E, Erdmann J, Dedoussis G, 

Björkegren JLM, Schunkert H, Farrall M, Danesh J, Samani NJ, Watkins H, Deloukas 

P. Association analyses based on false discovery rate implicate new loci for coronary 

artery disease. Nat Genet 2017;49:1385–1391.  

23.  Winkelmann BR, März W, Boehm BO, Zotz R, Hager J, Hellstern P, Senges J. Rationale 

and design of the LURIC study - A resource for functional genomics, pharmacogenomics 

and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001;2:19–21.  

24.  Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, 

Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, 

Barrett JC, Davison D, Easton D, Evans D, Leung HT, Marchini JL, Morris AP, Spencer 

CCA, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, 

Knight AS, Koch K, Meech E, Nutland S, Prowse C V., Stevens HE, Taylor NC, Walters 

GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan 

DP, Pembrey M, Breen G, Clair D St., Caesar S, Gordon-Smith K, Jones L, Fraser C, 

Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskvina V, 

Nikolov I, O’Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, 

McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles 

MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens 

S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo 

ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, 

Mathew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, 

Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop GM, Connell J, Dominiczak 

A, Braga Marcano CA, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, 

Newhouse SJ, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, Bruce 

IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman 

AJ, Symmons DPM, Thomson W, Worthington J, Dunger DB, Widmer B, Frayling TM, 

Freathy RM, Lango H, Perry JRB, Shields BM, Weedon MN, Hattersley AT, Hitman 

GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, Rayner NW, Timpson NJ, Zeggini 

E, Newport M, Sirugo G, Lyons E, Vannberg F, Hill AVS, Bradbury LA, Farrar C, 

Pointon JJ, Wordsworth P, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough 

SCL, Seal S, Stratton MR, Rahman N, Ban SM, Goris A, Sawcer SJ, Compston A, 

Conway D, Jallow M, Rockett KA, Bumpstead SJ, Chaney A, Downes K, Ghori MJR, 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 28 

Gwilliam R, Hunt SE, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah 

R, Whittaker P, Widden C, Withers D, Cardin NJ, Ferreira T, Pereira-Gale J, 

Hallgrimsdóttir IB, Howie BN, Spencer CCA, Su Z, Teo YY, Vukcevic D, Bentley D, 

Compston A. Genome-wide association study of 14,000 cases of seven common diseases 

and 3,000 shared controls. Nature 2007;447:661–678.  

25.  Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson 

E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier JB, Johansson 

Å, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg 

E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, 

Lundmark P, Lyytikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, 

Tikkanen E, Zuydam N Van, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, 

Altshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, 

Dimitriou M, Do R, Doney ASF, Mokhtari NE El, Eriksson P, Fischer K, Fontanillas P, 

Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, 

Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg 

C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, 

Melander O, Mihailov E, Maouche S, Morris AD, Müller-Nurasyid M, Nikus K, Peden 

JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schäfer A, Sivananthan 

M, Song C, Stewart AFR, Tan ST, Thorgeirsson G, Schoot CE Van Der, Wagner PJ, 

Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, 

Boerwinkle E, Brambilla P, Cambien F, Cupples AL, Faire U De, Dehghan A, Diemert 

P, Epstein SE, Evans A, Ferrario MM, Ferrières J, Gauguier D, Go AS, Goodall AH, 

Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, Kähönen M, Kee F, Kim HS, 

Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind 

L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, 

Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Trégouët DA, Virtamo 

J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu 

MS, Pastinen T, Syvänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, 

Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, 

Clarke R, Boehm BO, O’Donnell C, Reilly MP, März W, Collins R, Kathiresan S, 

Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CNA, Roberts R, Watkins 

H, Schunkert H, Samani NJ. Large-scale association analysis identifies new risk loci for 

coronary artery disease. Nat Genet 2013;45:25–33.  

26.  Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 29 

Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, 

Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O’Donnell 

CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Merlini 

PA, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M, Celli P, Ferrario M, Fetiveau 

R, Marziliano N, Casari G, Galli M, Ribichini F, Rossi M, Bernardi F, Zonzin P, Piazza 

A, Yee J, Friedlander Y, Marrugat J, Lucas G, Subirana I, Sala J, Ramos R, Meigs JB, 

Williams G, Nathan DM, MacRae CA, Havulinna AS, Berglund G, Hirschhorn JN, 

Asselta R, Duga S, Spreafico M, Daly MJ, Nemesh J, Korn JM, McCarroll SA, Surti A, 

Guiducci C, Gianniny L, Mirel D, Parkin M, Burtt N, Gabriel SB, Thompson JR, Braund 

PS, Wright BJ, Balmforth AJ, Ball SG, Hall AS, Linsel-Nitschke P, Lieb W, Ziegler A, 

König IR, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann 

HE, Schreiber S, Ouwehand W, Deloukas P, Scholz M, Cambien F, Cardiogenics, Li M, 

Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH, Devaney J, Burnett MS, 

Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein SE, Scheffold T, 

Berger K, Huge A, Martinelli N, Olivieri O, Corrocher R, Hólm H, Thorleifsson G, 

Thorsteinsdottir U, Stefansson K, Do R, Xie C, Siscovick D. Genome-wide association 

of early-onset myocardial infarction with single nucleotide polymorphisms and copy 

number variants. Nat Genet 2009;41:334–341.  

27.  Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, Lee M, Popova N, Sharopova 

N, Kimura M, Feolo M. NCBI’s database of genotypes and phenotypes: DbGaP. Nucleic 

Acids Res 2014;42:975–979.  

28.  Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green 

J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, 

Peakman T, Collins R. UK Biobank: An Open Access Resource for Identifying the 

Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med 

2015;12:1–10.  

29.  Heid IM, Boes E, Müller M, Kollerits B, Lamina C, Coassin S, Gieger C, Döring A, 

Klopp N, Frikke-Schmidt R, Tybjaerg-Hansen A, Brandstätter A, Luchner A, Meitinger 

T, Wichmann HE, Kronenberg F. Genome-wide association analysis of high-density 

lipoprotein cholesterol in the population-based KORA study sheds new light on 

intergenic regions. Circ Cardiovasc Genet 2008;1:10–20.  

30.  Wichmann HE, Gieger C, Illig T. KORA-gen - Resource for population genetics, 

controls and a broad spectrum of disease phenotypes. Gesundheitswesen 2005;67:S26–

S30.  

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 30 

31.  Holle R, Happich M, Löwel H, Wichmann HE. KORA - A research platform for 

population based health research. Gesundheitswesen 2005;67:S19-25.  

32.  Franzén O, Ermel R, Cohain A, Akers NK, Narzo A Di, Talukdar HA, Foroughi-Asl H, 

Giambartolomei C, Fullard JF, Sukhavasi K, Köks S, Gan LM, Giannarelli C, Kovacic 

JC, Betsholtz C, Losic B, Michoel T, Hao K, Roussos P, Skogsberg J, Ruusalepp A, 

Schadt EE, Björkegren JLM. Cardiometabolic risk loci share downstream cis- and trans-

gene regulation across tissues and diseases. Science (80- ) 2016;353:827–830.  

33.  Hansen TF, Wagner GP. Modeling genetic architecture: A multilinear theory of gene 

interaction. Theor Popul Biol 2001;59:61–86.  

34.  Pritchard JK, Przeworski M. Linkage Disequilibrium in Humans: Models and Data. Am 

J Hum Genet 2001;69:1–14.  

35.  Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common 

disease genes. Nat Genet 1999;22:139–144.  

36.  McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, 

Fuchsberger C, Danecek P, Sharp K, Luo Y, Sidore C, Kwong A, Timpson N, Koskinen 

S, Vrieze S, Scott LJ, Zhang H, Mahajan A, Veldink J, Peters U, Pato C, Duijn CM Van, 

Gillies CE, Gandin I, Mezzavilla M, Gilly A, Cocca M, Traglia M, Angius A, Barrett 

JC, Boomsma D, Branham K, Breen G, Brummett CM, Busonero F, Campbell H, Chan 

A, Chen S, Chew E, Collins FS, Corbin LJ, Smith GD, Dedoussis G, Dorr M, Farmaki 

AE, Ferrucci L, Forer L, Fraser RM, Gabriel S, Levy S, Groop L, Harrison T, Hattersley 

A, Holmen OL, Hveem K, Kretzler M, Lee JC, McGue M, Meitinger T, Melzer D, Min 

JL, Mohlke KL, Vincent JB, Nauck M, Nickerson D, Palotie A, Pato M, Pirastu N, 

McInnis M, Richards JB, Sala C, Salomaa V, Schlessinger D, Schoenherr S, Slagboom 

PE, Small K, Spector T, Stambolian D, Tuke M, Tuomilehto J, Berg LH Van Den, 

Rheenen W Van, Volker U, Wijmenga C, Toniolo D, Zeggini E, Gasparini P, Sampson 

MG, Wilson JF, Frayling T, Bakker PIW De, Swertz MA, McCarroll S, Kooperberg C, 

Dekker A, Altshuler D, Willer C, Iacono W, Ripatti S, Soranzo N, Walter K, Swaroop 

A, Cucca F, Anderson CA, Myers RM, Boehnke M, McCarthy MI, Durbin R, Abecasis 

G, Marchini J. A reference panel of 64,976 haplotypes for genotype imputation. Nat 

Genet 2016;48:1279–1283.  

37.  Kamstrup PR, Tybjærg-hansen A, Steffensen R, Nordestgaard BG. Genetically Elevated 

Lipoprotein ( a ). J Am Med Assoc 2009;301:2331–2339.  

38.  Hazarika S, Annex BH. Biomarkers and genetics in peripheral artery disease. Clin Chem 

2017;63:236–244.  

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 31 

39.  Mack S, Coassin S, Rueedi R, Yousri NA, Seppälä I, Gieger C, Schönherr S, Forer L, 

Erhart G, Marques-Vidal P, Ried JS, Waeber G, Bergmann S, Dähnhardt D, Stöckl A, 

Raitakari OT, Kähönen M, Peters A, Meitinger T, Strauch K, Kedenko L, Paulweber B, 

Lehtimäki T, Hunt SC, Vollenweider P, Lamina C, Kronenberg F. A genome-wide 

association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein 

(a) isoforms. J Lipid Res 2017;58:1834–1844.  

40.  Guan W, Cao J, Steffen BT, Post WS, Stein JH, Tattersall MC, Kaufman JD, McConnell 

JP, Hoefner DM, Warnick R, Tsai MY. Race is a key variable in assigning lipoprotein(a) 

cutoff values for coronary heart disease risk assessment: The multi-ethnic study of 

atherosclerosis. Arterioscler Thromb Vasc Biol 2015;35:996–1001.  

41.  Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of 

lipoprotein (a). J Lipid Res 2016;57:1339–1359.  

42.  Kronenberg F. Human Genetics and the Causal Role of Lipoprotein(a) for Various 

Diseases. Cardiovasc Drugs Ther 2016;30:87–100.  

43.  Brunner C, Lobentanz EM, Pethö-Schramm A, Ernst A, Kang C, Dieplinger H, Müller 

HJ, Utermann G. The number of identical kringle IV repeats in apolipoprotein(a) affects 

its processing and secretion by HepG2 cells. J Biol Chem 1996;271:32403–32410.  

44.  Zekavat SM, Ruotsalainen S, Handsaker RE, Alver M, Bloom J, Poterba T, Seed C, Ernst 

J, Chaffin M, Engreitz J, Peloso GM, Manichaikul A, Yang C, Ryan KA, Fu M, Johnson 

WC, Tsai M, Budoff M, Ramachandran VS, Cupples LA, Rotter JI, Rich SS, Post W, 

Mitchell BD, Correa A, Metspalu A, Wilson JG, Salomaa V, Kellis M, Daly MJ, Neale 

BM, McCarroll S, Surakka I, Esko T, Ganna A, Ripatti S, Kathiresan S, Natarajan P, 

Abe N, Abecasis G, Albert C, Allred NP, Almasy L, Alonso A, Ament S, Anderson P, 

Anugu P, Applebaum-Bowden D, Arking D, Arnett DK, Ashley-Koch A, Aslibekyan S, 

Assimes T, Auer P, Avramopoulos D, Barnard J, Barnes K, Barr RG, Barron-Casella E, 

Beaty T, Becker D, Becker L, Beer R, Begum F, Beitelshees A, Benjamin E, Bezerra M, 

Bielak L, Bis J, Blackwell T, Blangero J, Boerwinkle E, Borecki I, Bowler R, Brody J, 

Broeckel U, Broome J, Bunting K, Burchard E, Cardwell J, Carty C, Casaburi R, Casella 

J, Chang C, Chasman D, Chavan S, Chen BJ, Chen WM, Chen YDI, Cho M, Choi SH, 

Chuang LM, Chung M, Cornell E, Crandall C, Crapo J, Curran J, Curtis J, Custer B, 

Damcott C, Darbar D, Das S, David S, Davis C, Daya M, Andrade M De, Debaun M, 

Deka R, Demeo D, Devine S, Do R, Duan Q, Duggirala R, Durda P, Dutcher S, Eaton 

C, Ekunwe L, Ellinor P, Emery L, Farber C, Farnam L, Fingerlin T, Flickinger M, 

Fornage M, Franceschini N, Fullerton SM, Fulton L, Gabriel S, Gan W, Gao Y, Gass M, 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 32 

Gelb B, Geng X, Germer S, Gignoux C, Gladwin M, Glahn D, Gogarten S, Gong DW, 

Goring H, Gu CC, Guan Y, Guo X, Haessler J, Hall M, Harris D, Hawley N, He J, 

Heavner B, Heckbert S, Hernandez R, Herrington D, Hersh C, Hidalgo B, Hixson J, 

Hokanson J, Hong E, Hoth K, Hsiung C, Huston H, Hwu CM, Irvin MR, Jackson R, Jain 

D, Jaquish C, Jhun MA, Johnsen J, Johnson A, Johnston R, Jones K, Kang HM, Kaplan 

R, Kardia S, Kaufman L, Kelly S, Kenny E, Kessler M, Khan A, Kinney G, Konkle B, 

Kooperberg C, Kramer H, Krauter S, Lange C, Lange E, Lange L, Laurie C, Laurie C, 

Leboff M, Lee SS, Lee WJ, Lefaive J, Levine D, Levy D, Lewis J, Li Y, Lin H, Lin KH, 

Liu S, Liu Y, Loos R, Lubitz S, Lunetta K, Luo J, Mahaney M, Make B, Manson JA, 

Margolin L, Martin L, Mathai S, Mathias R, McArdle P, McDonald ML, McFarland S, 

McGarvey S, Mei H, Meyers DA, Mikulla J, Min N, Minear M, Minster RL, Montasser 

ME, Musani S, Mwasongwe S, Mychaleckyj JC, Nadkarni G, Naik R, Nekhai S, 

Nickerson D, North K, O’connell J, O’connor T, Ochs-Balcom H, Pankow J, 

Papanicolaou G, Parker M, Parsa A, Penchev S, Peralta JM, Perez M, Perry J, Peters U, 

Peyser P, Phillips L, Phillips S, Pollin T, Becker JP, Boorgula MP, Preuss M, 

Prokopenko D, Psaty B, Qasba P, Qiao D, Qin Z, Rafaels N, Raffield L, Rao DC, 

Rasmussen-Torvik L, Ratan A, Redline S, Reed R, Regan E, Reiner A, Rice K, Roden 

D, Roselli C, Ruczinski I, Russell P, Ruuska S, Sakornsakolpat P, Salimi S, Salzberg S, 

Sandow K, Sankaran V, Scheller C, Schmidt E, Schwander K, Schwartz D, Sciurba F, 

Seidman C, Sheehan V, Shetty A, Shetty A, Sheu WHH, Shoemaker MB, Silver B, 

Silverman E, Smith J, Smith J, Smith N, Smith T, Smoller S, Snively B, Sofer T, 

Sotoodehnia N, Stilp A, Streeten E, Sung YJ, Sylvia J, Szpiro A, Sztalryd C, Taliun D, 

Tang H, Taub M, Taylor K, Taylor S, Telen M, Thornton TA, Tinker L, Tirschwell D, 

Tiwari H, Tracy R, Vaidya D, Vandehaar P, Vrieze S, Walker T, Wallace R, Walts A, 

Wan E, Wang FF, Watson K, Weeks DE, Weir B, Weiss S, Weng LC, Willer C, Williams 

K, Williams LK, Wilson C, Wong Q, Xu H, Yanek L, Yang I, Yang R, Zaghloul N, 

Zhang Y, Zhao SX, Zhao W, Zheng X, Zhi D, Zhou X, Zody M, Zoellner S. Deep 

coverage whole genome sequences and plasma lipoprotein(a) in individuals of European 

and African ancestries. Nat Commun 2018;9:1–14.  

45.  Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, 

Price AL. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am 

J Hum Genet 2019;104:65–75.  

46.  Pim V der H, Niek V. Identification of 64 Novel Genetic Loci Provides an Expanded 

View on the Genetic Architecture of Coronary Artery Disease. Circ Res 2018;122:433–

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 33 

443.  

47.  Fish AE, Capra JA, Bush WS. Are Interactions between cis-Regulatory Variants 

Evidence for Biological Epistasis or Statistical Artifacts? Am J Hum Genet 2016;99:817–

830.  

48.  Gusareva ES, Steen K Van. Practical aspects of genome-wide association interaction 

analysis. Hum Genet 2014;133:1343–1358.  

49.  Sun X, Lu Q, Mukheerjee S, Crane PK, Elston R, Ritchie MD. Analysis pipeline for the 

epistasis search - statistical versus biological filtering. Front Genet 2014;5:1–7.  

50.  Kronenberg F. Prediction of cardiovascular risk by Lp(a) concentrations or genetic 

variants within the LPA gene region. Clin Res Cardiol Suppl 2019;14:5–12.  

51.  Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. 

Hum Mol Genet 2019;28:R133–R142.  

52.  Moore JH, Williams SM. Epistasis and Its Implications for Personal Genetics. Am J Hum 

Genet 2009;85:309–320.  

53.  Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, 

Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, Xia S, 

Guerriero J, Viney NJ, O’Dea L, Witztum JL. Lipoprotein(a) reduction in persons with 

cardiovascular disease. N Engl J Med 2020;382:244–255.  

54.  Bessonov K, Gusareva ES, Steen K Van. A cautionary note on the impact of protocol 

changes for genome-wide association SNP × SNP interaction studies: An example on 

ankylosing spondylitis. Hum Genet 2015;134:761–773.  

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab136/6240984 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 07 M
ay 2021



 34 

12 Figure legends 

Figure 1: Scheme of the two-stage statistical interaction scanning procedure.  

Step 1 aimed at the fast identification of potential significant interaction terms using the GLIDE 

GPU computation tool. For each pair of LD-independent SNPs in the susceptibility regions 

(N=8068 SNPs), we fitted a linear model with the additive and interaction effect of the 2 SNPs 

in each of the 10 CAD studies separately. The 10 p-values were then meta-analysed. A loose 

and arbitrary defined significance level (p < 1e-8) was applied with the assumption that if there 

exists true epistasis between two lead SNPs, loose signals should be detectable between the 

SNPs within the corresponding LD block. Step 2 aimed at validating the results of the first step 

using logistic regression model including the first ten multidimensional scaling (MDS) 

components of the genetic relationship matrix to correct for population structure. Step 2 also 

allowed the fine-mapping of candidate SNP pairs by screening for the strongest signal among 

all the SNPs within the LD blocks forwarded from step 1. In this second step, we applied a 

stringent significance threshold of 4.6×10-9 , calculated as a Bonferroni correction (0.05 ⁄ 

(nSNP_indep × (nSNP_indep - 1) / 2) = 4.6178e-9 ) on the number of LD independent SNPs resulting 

from step 1 (nSNP_indep = 4,654). 

 Figure2: Analysis workflow and datasets. 

Schematic of the analysis workflow.  

A. The epistasis scan was performed as a meta-analysis in the 10 CAD individual GWAS. 

Association of SNP1 (rs1800769) and SNP2 (rs9458001) interaction with CAD was replicated 

in the UK Biobank (UKBB). KORA F3/F4, LURIC and STARNET were used for the 

association analysis of the interacting pair with proximal phenotypes. 

B. The association of the additive effect of rs140570886 with CAD was assessed in a meta-

analysis of the 10 CAD studies and replicated in the UKBB. KORA F3/F4 and GTEx were used 

for the association analysis of with rs140570886 proximal phenotypes. C. The forward model 

selection, the dissection of the best model and the comparison with the haplotypes effect were 

conducted on a merged dataset of the 10 CAD studies and the UKBB in order to achieve higher 

power. The 3-SNP haplotypes analysis on the other hand was carried out on the meta-analysis 

of the 10 CAD studies, because the algorithm used for fitting the Generalized Linear Model 

could not converge on the merged dataset which was too big.  
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Figure 3: The common variant rs140570886, located in the LPA locus, increases CAD risk 

in a meta-analysis of ten CAD studies and replicates in the UK Biobank.  

A. Forest plot displaying the log odds ratio (OR) across 10 studies for rs140570886 as well as 

the fixed meta-analysis (N=29’755)  summary effect (shown as diamond) and the log OR in the 

replication dataset. The effect in the UK BioBank (UKBB, N=312’312) is of the same sign and 

significant, therefore fulfilling the criteria for replication. B. Manhattan plot showing the 

regional signal at the LPA locus taken from a recent genome-wide association study and 

indicating the variants in LD with rs140570886 (red), rs1800769 (blue), rs9458001 (green) and 

rs3798220 (purple). 

 

 Figure 4: Genotype specific effect of rs140570886 on CAD risk and intermediate factors. 

A. Genotypic log odds ratios (OR) (with reference to the genotype [T/T]) for the genotype 

subgroup [T/C] on CAD risk in the meta-analysis of ten CAD studies (N=29’755). The OR for 

the minor allele homozygous genotype (C/C) is not displayed because of its low sample size 

and high standard error. Error bars represents the standard error of the log OR B. Genotypic 

OR (with reference to the genotype [T/T]) for the genotype subgroup [T/C] and [C/C] on CAD 

risk in the UK Biobank dataset (N=312’312). Error bars represents the standard error of the log 

Odds Ratio. C. Relative effect size (with reference to the genotype [T/T]) for the genotype 

subgroup T/C on intermediate factors, namely inverse normal transformed Lp(a) levels (blue), 

KIV size of the dominantly expressed apo(a) isoform (purple) and the inverse normal 

transformed Lp(a) levels independent of the KIV (orange) in the KORA F3/F4 studies 

(N=5953). Relative effect size for the minor allele homozygous genotype (C/C) is not 

displayed, because not represented in the KORA studies. Error bars represent standard error of 

the effect sizes.  

 

Figure 5: Relative effect of the rs140570886- rs1652507- rs9458001 3-SNP haplotypes on 

CAD risk. Relative odds ratio (OR; with reference to the most frequent TTG haplotypes) for 

the 8 possible 3-SNP haplotypes on CAD risk. The red and blue colours represent the base at 

the rs1652507 SNP, the square and triangle shapes represent the base at the rs9458001 SNP 

and the position on the X axis represent the base at the rs140570886 SNP. Together they 

indicate one of the 8 possible 3-SNP haplotypes. The putative haplotypes were computed using 

the happasoc R package on a merged dataset of the 10 CAD studies (N=29’755). Error bars 

represent the standard error of the log OR. 
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13 Tables 

 rs3798220 rs140570886 rs1652507 rs1800769 rs9458001 

rs3798220 0.01932745 0.703204 0.05355715  0.0273448 

rs140570886 0.703204 0.01551685 0.0759549  0.0393634 

rs1652507 0.05355715 0.0759549 0.1591815 0.965 0.0177401 

rs1800769   0.965  0.014 

rs9458001 0.0273448 0.0393634 0.0177401 0.014 0.2250345 

Table 1: Linkage Disequilibrium and Minor Allele frequency. This table shows the pairwise 

r2 measure of Linkage Disequilibrium (LD) between the reported SNPs and their respective 

minor allele frequency (MAF) in bold on the diagonal. Values in Italic were computed in the 

European sub-samples of the 1000 Genomes Project using the LDmatrix tool 

(https://ldlink.nci.nih.gov/) as rs1800769 was absent from the HRC imputation panel. Other 

values were computed in each of the ten CAD studies separately and averaged. 

 

Model  Residuals

. Df 

Residua

ls 

Devianc

e  

Df Devia

nce  

P-value P-value 

LRT 

model 2 

1) CAD ~ covariates  342046 222021     NA 

2) CAD ~ rs140570886 + covariates 342045 221804 1 217.04 4×10-49 NA 

3) CAD ~ rs140570886 + rs9458005 + 

rs1652507 + covariates 

342043 221770 2 33.57 5.1×10-08 5.1×10-08 

4) CAD ~ rs140570886 + rs9458005 * 

rs1652507 +  covariates 

342042 221768 1 2.32 0.13 7.9×10-08 

5) CAD ~ rs140570886 * rs9458005 * 

rs1652507 +  covariates 

342039 221755 3 13.42 0.004 6.5×10-09 

6) CAD ~ rs140570886 * rs9458005 * 

rs1652507 +rs3798220+   

covariates 

342038 221753 1 1.93 0.16 8.2×10-09 

7) CAD ~ rs140570886 * rs9458005 * 

rs1652507 * rs3798220+   

covariates 

342031 221746 7 6.22 0.51 8.2×10-09 

Table 2: ANOVA Table reporting likelihood ratio test results for nested model in the 

model selection procedure. The table displays the result of a series of successive likelihood 

ratio test between a nested model of increasing complexity performed on the merged dataset 

including the 10 CAD studies and the UK Biobank dataset. The first and second column report 
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the Residual Deviance and degrees of freedom of from each row’s model. The “Df” and 

“Deviance” columns respectively report the difference in degrees of freedom and deviance 

between each row’s model and the model from the previous row. The “p-value” column reports 

the p-value of the likelihood ratio test between each row’s model and the previous one. The “P-

value LRT model 2” column reports the p-value of the likelihood ratio test between each model 

and the model containing only the additive effect of rs140570886 . The * operator denotes 

factor crossing: a*b is interpreted as a+b+a × b and a*b*c as a+b+c+ a × b + a × c + b × c. The 

10 multidimensional scaling components of the genetic variance and the study were included 

as covariates in every model. Tables showing the results of the same analysis with 3, 5 or 7 

MDS components are provided in the Supplementary Tables 15-17.  

 

Model Model 

name 

AIC Comparison 

M_SNPs 

Comparison 

M_interact 

no genetics M_null 222063.0 NA NA 

haplotypes M_haplo 221813.6 NA NA 

SNPs M_SNPs 221818.3 NA NA 

SNPs + interactions M_interact 221810.6 0.0034 NA 

haplotypes + SNPs +  

interactions 

M_full 221814.4 0.0268 0.262 

Table 3: Model selection using AIC and Likelihood ratio test confirms epistatic 

interactions at the LPA locus. This table displays the Akaike Information Criterion (AIC) and 

results of likelihood ratio test for nested models of increasing complexity performed on the 

merged dataset including the 10 CAD studies and the UK Biobank dataset. The “Comparison 

M_SNPs” and “Comparison M_interact” columns respectively report the p-values of the 

likelihood ratio tests with the M_SNPs and M_interact models as null model. The 10 

multidimensional scaling components of the genetic variance and were included as covariates 

in every model. NA=non-applicable. 
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