Supplementary material for

Cannabidiol converts $NF_{K}B$ into a tumor-suppressor in glioblastoma with defined antioxidative properties.

Marie N. M. Volmar, Jiying Cheng, Haitham Alenezi, Sven Richter, Alisha Haug, Zonera Hassan, Maria Goldberg, Yuping Li, Mengzhuo Hou, Christel Herold-Mende, Cecile L. Maire, Katrin Lamszus, Charlotte Flüh, Janka Held-Feindt, Gaetano Gargiulo, Geoffrey J. Topping, Franz Schilling, Dieter Saur, Günter Schneider, Michael Synowitz, Joel A. Schick, Roland E. Kälin¹, Rainer Glass^{1,*}

Overview on Supplementary material:

- Supplementary Figures
 - Supplementary Figure 1. Endocannabinoid- and phytocannabinoid-sensitivity of brain tumor cells.
 - Supplementary Figure 2. Pharmacogenomics reveal a central role for NF $_{\kappa}B$ and selenoproteins in CBD-induced hGSC cell-death.
 - Supplementary Figure 3. Cell-death in CBD-treated hGSC is executed by apoptosis or non-apoptotic pathways.
 - Supplementary Figure 4. CBD-induced shifts in hGSC-metabolic cues are required for cell-death execution.
 - Supplementary Figure 5. CBD-sensitivity of hGSC is not predicted by established markers for GBM-subsets or phytovanilloid signaling.
 - Supplementary Figure 6. Low ROS-levels are restricted to CBD-sensitive hGSC, while genetic alterations of NF_KB-pathway components are shallow and nondiscriminatory.
 - Supplementary Figure 7. CBD-mediated therapeutic effects in immunocompetent models and calibration for flow cytometry.

• Supplementary Tables

- Supplementary Table 1, Genes identified in pharmacogenomics screen
- Supplementary Table 2. Characterization of primary cell-cultures from human GBM biopsies
- Supplementary Table 3. Biopsies for short-term cultures of high-grade astrocytoma

• Materials and Methods

- Cell culture (human GBM or tmBTCs)
- Genetic characterization of hGSC
- Transgenic mouse models (including list of all transgenic mouse strains)
- Genetic manipulation of cells (including list of vectors)
- CRISPR/Cas9 screen
- Transcriptomics and quantitative PCR (including list of primers)
- Cell based assays: In vitro cytotoxicity, viability and proliferation assays
- Transcription factor binding array and reporter-gene assays
- In vivo models including MRI screening
- Immunofluorescence and Western blotting (including lists of primary / secondary antibodies)
- Flow cytometry
- Statistical analysis (including lists of software for data analysis)

Supplementary Figure 1. Endocannabinoid- and phytocannabinoid-sensitivity of brain tumor cells. (A) Mouse transgenic glioma with different combinations of genetic driver mutations were established: Transgenic glioma harbored *Tp53* point-mutations or ablation of *Tp53*, *Cdkn2a*, *Pten* or *Nf1* (indicated by "-"), overexpression of PDGFRB (P) or mutant EGFR (vIII); cytotoxicity (fold-change) of transgenic glioma cells induced by neural precursor cell (NPC) released factors (NPC-conditioned medium containing endocannabinoids) was quantified; wild-type (WT) NPCs were used as controls. (B) Human, primary, stem-like glioblastoma cells (hGSC; named NCH684) were exposed to vehicle (0.01% DMSO) or stimulated with a range of non-psychotropic phytocannabinoids: Cannabigerol (CBG), Cannabidivarin (CBDV), Cannabichromene (CBC), Tetrahydrocannabivarinic Acid (THCVA), Cannabidiolic Acid (CBDA), Cannabigevarin (CBGV), Cannabidivarinic Acid (CBDVA) Cannabigerolic Acid (CBGA) or Cannabidiol (CBD) and cytotoxicity was quantified. (C) Human, primary, stem-like glioblastoma cells (hGSC; named NCH644) were exposed to vehicle (0.01% DMSO) or stimulated with a range of non-psychotropic phytocannabinoids (as in B) and cytotoxicity was quantified. Dots (in A - C) represent data from independent experiments; statistical significance in (A and D) was investigated by One-Way ANOVA with Bonferroni's pair-wise comparison test (in A) or One-Way ANOVA with Tukey's post-hoc test in B and C (p<0.005**; p<0.001***).

Supplementary Figure 2. Pharmacogenomics reveal a central role for NF_KB and selenoproteins in CBD-induced hGSC cell-death. (A) Knockouts (induced with a genomewide CRISPR knockout-library in CBD-sensitive, CAS9-expressing Tp53^{R172H}, PDGFB tmBTCs) that were more than 10,000-fold enriched (as compared to vehicle-treated controls) in cells surviving CBD-application were identified (see supplemental table-1) and investigated by an algorithm for biological network reconstruction through text-mining (ChiliBot); permutations of pairwise searches suggested a role for three genes (*Emap-II*, *Hnrnp and Ikbkb*, identified by the pharmacogenomics-screen) in canonical (TNF α mediated) NF_KB -signaling; integration of TNF α and the NF_KB -subunit ReIA together with the three identified genes in a gene-list query revealed the network-connections shown in (A). (B) The CRISPR-screen identified selenocysteine insertion sequence-binding protein 2-like (Secisbp2l) as a genetic ablation converting CBD-sensitive into CBD-insensitive tmBTCs (see supplemental table-2); Secisbp21 is part of the selenoprotein synthesis pathway in mice (participates in the selenocysteine-insertion pathway, as determined by interrogation of the STRING database). (C) The preponderant selenocysteine binding protein in humans is encoded by SECISBP2, but ablation of this gene (by CRIPR/Cas9-mediated knockout) is detrimental for cancer cellviability, while loss of SECISBP2L is non-abrasive (numerical values reaching -0.5 or lower show cells do not tolerate a knockout, while positive values indicate tolerance, as observed DepMap database for CRISPR/Cas9 knockout studies); altogether, this can explain why SECISBP2L (but not SECISBP2) was found in our screen: SECISBP2L-knockouts are tolerable, but are predicted to have consequences for the synthesis of selenoproteins. (D) Q-PCR confirmed CBD-mediated downregulation of PKC₄ (as compared to other genes of the NF_KB -pathway). (E) Role of PKC ζ in the canonical NF_KB pathway: Inflammatory cytokines $(TNF\alpha)$ initiate nuclear accumulation of RELA and simultaneous RELA-phosphorylation (on Ser311) by PKC², which is required for transactivation. Dots in (D) represent data from independent experiments; statistical significance (D) was investigated by One-Way-ANOVA plus Tukey post-hoc testing (***p<0.001).

Supplementary Figure 3. Cell-death in CBD-treated hGSC is executed by apoptosis or non-apoptotic pathways. (A) CBD-induced cell-death in human stem-like glioblastoma cells (hGSC) named GBM10, GBM20 or GBM29 was quantified in a cytotoxicity assay over a concentration range; cytotoxicity is shown as fold-change versus vehicle control (0.01% DMSO); robust hGSC-death (more than 2fold change) was obtained with \geq 8 μ M CBD. (B) Effects of short CBD-pulses were investigated by counting hGSC under control conditions (grey bars) or after CBD application (10 µM CBD for 6 h; CBD-sensitive cells: red-bars; CBDinsensitive cells: blue-bars), 48 h after stimulation (control or CBD) viable cells were quantified; note that pulsed CBD application strongly attenuated the number of viable CBD-sensitive hGSC (but spared CBD-insensitive cells). (C) Biopsies from high-grade astrocytomas were maintained for very short time in vitro (tumors 139, 142 and 143 for three passages, tumor 140 for 4 passages and tumors 138 or 141 for 6 respectively 7 passages), CBD (or vehicle; controls) was applied as described and cytotoxicity was quantified (n=3 measurements); statistically significant induction of GBM-death by a factor of 2 or more (corresponding to a strong reduction in overall GBM cell viability, as shown in B) is indicated (#). (D) To determine if CBD-induced hGSC-death is executed via apoptosis we co-applied the pan-Caspase inhibitor Q-VD-Oph together with CBD and determined cytotoxicity as compared to negative (vehicle or Q-VD-Oph alone) and positive controls (CBD alone). CBD-mediated cell-death was corroborated in all CBD-sensitive hGSC; note that Q-VD-Oph efficiently blocked cell-death in a subset of p53 wild-type hGSC. (E) CBD-sensitive hGSC were exposed to CBD or vehicle (control; Ctrl), stained with an antibody specific for cleaved Poly-ADP-ribose-Polymerase (PARP) and inspected by flow cytometry; fractions of cells immunopositive for cleaved PARP were quantified, controls were arbitrarily defined as "1" and CBD-stimulated samples are shown as fold change relative to controls. (F) CBD-sensitive hGSC were stimulated with CBD or vehicle (control), stained with an antibody for p62 / sequestosome-1 (SQSTM) and fractions of cells immunopositive were quantified FACS, controls were arbitrarily defined as "1" and CBD-stimulated samples are shown as fold change relative to controls. (G) CBD-sensitive hGSC were incubated with vehicle (control), the ER-stress inducer Eevarestatin-I (Eev-I; at a non-toxic concentration), CBD and combined CBD+Eey-I; note that Eey-I and CBD cooperatively induce hGSC cell-death (as determined by quantification of cytotoxicity). Statistical significance was investigated by One-Way ANOVA with Bonferroni's pair-wise comparison test (NS = not significant, * p<0.05; **p<0.005; ***p<0.001).

Supplementary Figure 4. CBD-induced shifts in hGSC-metabolic cues are required for cell-death execution. (A) Viability of CBD-sensitive human or mouse GBM cells was reduced by PKCZ-inhibition (in a dose-dependent manner). (B) Expression levels of key molecules for glucose uptake (SLC2A1, SLC2A3, HK1 and HK2) were determined by guantitative PCR under control conditions (arbitrarily set as "1", shown as dotted line) and after CBD-stimulation (foldchange from controls). (C) Mitochondrial-superoxide (SOX); (D) mitochondrial-mass, and membrane-potential (MMP) were determined in a range of CBD-sensitive and -insensitive hGSC with or without CBD-application. The CBD-insensitive hGSC did not undergo any CBDinduced changes in mitochondrial physiology while CBD-sensitive tumor cells showed a profound increase in mitochondrial-SOX, -mass and -MMP (as compared to vehicle controls). (E) The glutamate dehydrogenase inhibitor EGCG largely abrogated CBD-induced hGSCdeath. (F) Proposed model for glutamate dehydrogenase (GDH) and RELA in a feed-forward cycle for CBD-induced hGSC-cytotoxicity: CBD-attenuated glucose-uptake (A) necessitates metabolic adaption (B and C) through GDH (D), which is well established to promote nuclear localization of RELA under low glucose conditions (thereby spurring on nuclear accumulation of RELA lacking phosphorylation on Ser311). Statistical significance was investigated by One-Way-ANOVA with Bonferroni's pair-wise comparison test (NS = not significant, * p<0.05; **p<0.005; ***p<0.001).

D Ε ATRX PTEN MDM2 FGFR2 MDM4 PIK3R1 RB1 NF1 CDKN2B CDKN2A PDGFRA PIK3CG PIK3CA TP53 EGFR No alterations Missense Mutation (putative driver) Amplification GBM10 BT172 _ NCH684 Gain Line8 BT112 _ _ _ _ Line11 _ _ _ _ Genetic Alteration _ _ _ _ _ Line7 Missense Mutation (unknown significance) _ _ Line10 Deep Deletion Truncating Mutation (unknown significance) GBM20 GBM29 _ _ _ _ _ _ _ NCH644 BT423 NCH441 _ _ _ Line6 Shallow Deletion Ξ Ξ _ -NCH588J ____ GBM13 ____ Line9 --

Supplementary Figure 5. CBD-sensitivity of hGSC is not predicted by established markers for GBM-subsets or phytovanilloid signaling. (A) Human primary hGSC were grouped according to GBM-subtypes (color-coded as proneural, classical or mesenchymal; "mixed" comprises GBM previously designated as "neural"; N.D., not determined as exhibited in Supplemental Table-1), treated as described in Figure-1a (maintained under control conditions or treated with CBD); after 48 h cytotoxicity was quantified: Controls (bars with white pattern) were arbitrarily set as "1" and fold-change of CBD-induced cytotoxicity (as compared to controls) is indicated; note that CBD-sensitivity has no stringent relation with GBM-subtypes. (B) CBD-induced cell-death was previously related to activation or inhibition of different receptors or the transcription factor ID1; expression levels for these molecules were determined by qPCR (see list of symbols for each gene; log2 expression levels are presented; ND = not detected) and related to the cytotoxicity observed after CBD-application (symbols for CBD-sensitive hGSC in red, CBD-insensitive hGSC in blue); note that there is no correlation of expression-levels with CBD-sensitivity. (C) Copy number alterations (as determined by SNP-arrays) for genes listed in (B) or for known driver-mutations of human GBM (D) were inspected in CBD-sensitive (red) or CBD-insensitive hGSC (blue); note that there are no copynumber alterations that are specifically enriched in CBD-sensitive / insensitive hGSC; visualized by OncoPrint from cBioPortal with the symbols specified in (E).

GBM20

GBM29

NCH588J

Line11

CBD-sensitive GBM

NCH64

0

GBM13 NCH421K

CBD-insensitive GBM

T

Line2

Supplementary Figure 6. Low ROS-levels are restricted to CBD-sensitive hGSC, while genetic alterations of $NF_{K}B$ -pathway components are shallow and non-discriminatory.

(A) A set of 22 genes representing the core of the canonical NF-KB pathway were investigated for copy-number alterations present in hGSC cells used in this study (data for 21 genes are shown, the gene *CYLD* was never altered and is therefore absent from the list), data were visualized by OncoPrint, symbols (Genetic Alteration) indicate presence / absence of mutations; note that there were no genetic alterations specifically enriched in CBD-sensitive / insensitive hGSC (interrogation of the TCGA-database for GBM confirmed that point-mutations for these genes were extremely rare: Missense mutations of unknown significance occurred only in a total of 10 samples, out of 257 samples; no sample contained more than one mutation). (B) Flow cytometry was used to determine soluble equivalent of fluorescein (MESF) for H2DCFDA (providing a quantitative assessment for reactive oxygen species; ROS) in a panel of CBD-sensitive or -insensitive hGSC before and after CBD-application.

Supplementary Figure 7. CBD-mediated therapeutic effects in immunocompetent models and calibration for flow cytometry. (A) CBD-mediated therapeutic effects were tested in two orthotopic, transgenic models corresponding to tmBTC characterized in vitro as CBD-sensitive or -insensitive; in a first step we induced GBM in transgenic mouse lines (cdkn2a-knockout mice or animals containing cre-inducible alleles for the Tp53 gain of function mutation R172H) by infusion (into the subventricular zone) of a vector inducing the expression of PDGFB and cre-recombinase; subsequently, randomly selected mice were inspected for GBM growth; when tumor-take was confirmed pharmacological treatment (CBD or vehicle) was performed and overall survival (until a pre-defined humane endpoint) was monitored (summarized in a schematic); note that CBD-treatment (red-lines) of established tumors prolonged survival (as compared to controls; blue lines) specifically in gliomas that were identified as CBD-sensitive in vitro (p53^{R172H}, PDGFB). (B) Bead calibration used for FACSinstrument settings to determine equivalents of soluble fluorescein (for 2',7'dichlorodihydrofluorescein diacetate, H2DCFDA, measurement). (C) Cultivated hGSC cells were investigated for H2DCFDA-generated fluorescence by flow cytometry: The analysis was restricted to single, viable cells with sound fluorescence signals (as compared to negative controls; FMO) for oxidized H2DCFDA. (D) hGSC were excised from mouse brains, separated into single-cell suspensions, immunostained for human MHC (HLA, visualized with Alexa-647) and incubated with H2DCFDA, cells were investigated for fluorescent (oxidized) H2DCFDA and for Alexa-647 (immunofluorescence) by flow cytometry: The analysis was restricted to single, viable cells with sound fluorescence signals (as compared to negative controls; FMO) for Alexa-647 and with reliable detection for H2DCFDA (as compared to negative controls; FMO).

MATERIALS AND METHODS

Cell culture

Biopsies from human primary and recurrent hGSC were obtained from planned resections (approval was obtained from the ethics committee of Charité university clinics, license numbers EA112/2001, EA3/023/06 and EA2/101/08 and from the university clinics Kiel, license number D-408-14 and D-562-15; for primary cell cultures obtained from high-grade astrocytomas referenced in supplemental table-3) and cultured under neurosphere conditions at 37°C in a humidified atmosphere of 5% CO2; in cell-culture media previously established to maintain stem-like properties (see Supplemental table-1 for specification and references): DMEM/F12 containing B27 cell-culture supplement and EGF, FGF (both at 10 ng/ml; GBM10, GBM13, GBM14, GBM20, GBM29, BT112, BT172, BT423) or in NeuroCult basal medium containing NeuroCult proliferation supplement and EGF, FGF (both at 10 ng/ml; for Line2, Line6, Line7, Line8, Line9, Line10, Line11, NCH441, NCH421K, NCH588J, NCH592B, NCH644, NCH684). Cells were passaged 3 times per week using a seeding density of 0,3-0,5x 10⁶ cells/10ml. Tumorigenic capacity of hGSC cells was determined after orthotopic implantation. Mycoplasma were regularly tested and affected cells were discarded. Drugs were applied at concentrations indicated in the text and were diluted into DMSO (final concentration of DMSO was 0.01%); consequently we used 0.01% DMSO as vehicle solution. Biopsies from high-grade astrocytomas were freed from blood vessels, connective tissue and meninges as far as possible, dissociated mechanically in Dulbecco's modified Eagle's medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) plus 0.05% DNase plus 0.03% trypsin, cultured in DMEM supplemented with 10% fetal bovine serum (FBS; Thermo Fisher Scientific), 1% penicillinstreptomycin (10,000 U/ml; Thermo Fisher Scientific), and 2 mM additional L-glutamine (Thermo Fisher Scientific), and subcultivated every 2-4 weeks by trypsinization. Purity of the high-grade astrocytoma cells was ascertained by immunostaining with cell type specific markers, and by the absence of contamination with mycoplasms. Tumors were diagnosed and classified according to WHO criteria by a pathologist.

ARRIVE guidelines were followed for all animal experiments. Permissions for animal experimentation were obtained from the local authorities (Regierung von Oberbayern) and all precuders were performed in accordance with local rules and regulations. Brains from C57/BL6 wild-type and transgenic mice were harvested at postnatal day 30 (P30), the subventricular zone (SVZ) was dissected, dissociated (using trypsin and collagenase), washed with DMEM-10% FCS and transferred into NPC culture medium (DMEM/F12 containing B27 supplement, EGF and FGF both at 10 ng/ml. Once neurosphere-formation was observed spheroids were triturated and expanded (until sphere size reached $200 - 250 \mu m$). Neural stem and precursor cell capacity was verified by self-renewal capacity and by established multi-lineage differentiation paradigms (clonal plating, growth factor withdrawal and adherent cultivation on ornithinelaminin coated surface followed by immunofluorescence staining for neuronal and glial markers; see antibody-list) confirming that cultivated cells were bona fide NPCs. NPCs from transgenic mice were stably transfected or virally transduced with vectors for the expression of cre-recombinase, different proto-oncogenes (see vector-list) or both. Genetic manipulations were controlled by the expression of vector derived reporters (GFP or RFP), by PCR and/or Western-blotting.

Genetic characterization of hGSC

Genomic DNA (gDNA) and total RNA were isolated in parallel from samples (with sample-IDs indicated in supplemental table-1); DNA libraries were prepared using the TruSeq Custom Amplicon Low Input kit (Illumina, Inc.). Using the Illumina Design Studio (with hg19 as a refernce; targeted amplicon size of 250 bp) we generated an amplicon-based enrichment panel (TruSeq Custom Amplicon Low Input). With this approach we enriched for genes often exhibiting point-mutation in hGSC(27) (see table "amplicons", below). Sequencing was performed on the Illumina MiSeq sequencing system (Illumina Inc.; 2 x 250 bp paired-end). The resulting reads were quality controlled and mapped against the human reference genome (hg19). For all samples, sequence variations of the amplified regions of interest in comparison to the human reference sequence were identified and filtered based on reliability. Additionally, genome-wide copy number variation (CNV) profiles were analyzed from gDNA using the CytoScan assay in combination with a one-color based labeling and hybridization protocol. Signals on the CytoScan HD microarrays were detected using the Affymetrix GeneChip 3000 Scanner. Raw data were quality controlled and analyzed for copy number variations using the Affymet-rix ChAS software.

Gene Symbol	Official Gene Name	Gene ID	Chromosome
ATRXI	Apicoplast-associated thioredoxin family protein	546	Х
EGFR	Epidermal growth factor receptor	1956	7
IDH1	isocitrate dehydrogenase (NADP(+)) 1	3417	2
NF1	neurofibromin 1	4763	17
PDGFRA	platelet derived growth factor receptor alpha	5156	4
PIK3CA	phosphatidylinositol-4,5-bisphosphate 3- kinase catalytic subunit alpha	5290	3
PIK3CG	phosphatidylinositol-4,5-bisphosphate 3- kinase catalytic subunit gamma	5294	7
PIK3R1	phosphoinositide-3-kinase regulatory subunit 1	5295	5
PTEN	phosphatase and tensin homolog	5728	10

Table: Amplicons analyzed in hGSC

RB1	RB transcriptional corepressor 1	5925	13
TP53	tumor protein p53	7157	17

Transgenic mouse models

Transgenic mouse glioma models were obtained from mouse strains with germ-line or conditional knockouts for tumor suppressors deleted in hGSC(27), which were (partly) combined with conditional models for the deletion of *Rela* (p65)(48). All transgenic mouse strains were bred and raised at the animal facilities of the University Clinics Munich and the clinics of the Technical University Munich according to German law on animal welfare and approved by the "Regierung von Oberbayern" in Munich, Germany.

Strain	Source	Identifier	Reference
Ai9 ^(RCL-tdT)	JaxLab	007909	Nat Neurosci. 2010, 13 (1):
			133-40
Cdkn2A ^{-/-}	NCI Frederick	Ink4A/Arf null	Cell. 1996, 5;85(1): 27-37
		(B6)	
<i>Tp53</i> ^{LSL.R172H}	JaxLab	034620	Cell. 2004, 119(6): 847-
			60
<i>Тр53</i> ^{КО}	JaxLab	002101	Curr Biol. 1994, 4(1):1-7
Tp53 ^{LoxP}	JaxLab	008462	Genes Dev. 2000, 14(8):
			994-1004

Transgenic mouse strains

Rela ^{tm1Rsch}		MGI ID:	J Clin Invest. 2007;
		3713697	117(6):1490-501
PTEN flox	JaxLab	006440	Genesis. 2002, 32(2):
			148-9
mT/mG, dual RFP /	JaxLab	007676	Genesis. 2007, 45 (9):
GFP reporter			593-605.
Nf1 ^{flox}	JaxLab	017640	Cell. 2011, 146(2):209-
			21

The genes encoding *Tp53* and *Nf1* are located on the same chromosome and linked *Tp53* and *Nf1d*ouble-transgenic mice were obtained (through crossing over events in meiosis) after several generations of breeding. Human GSC cells were orthotopically implanted into B6.129S6-Rag2^{tm1Fwa}N12 (immunodeficient Rag2-KO) mice (purchased from Taconic).

Plasmid transfection into mammalian cells

Cells were seeded into serum- and antibiotics-free medium, 3µg of plasmid was mixed with OptiMem and Plus-reagent, then lipofectamine was added (all from Thermo Fisher Scientific), the mixture was incubated and subsequently applied to the plated cells. After 24 h cells were plated into selection medium (for stable transfection); selective agents were omitted during experiments.

ORF-Sources for gene-expression constructs					
ORF	Species	Provider	Identifier	Reference	

<i>TP53</i>	Human	Addgene	#69003	Nucleic Acids Res. 2014, 42(12): 7666-80
TP53	Mouse	Addgene	#12139	J Cell Physiol. 1998, 177(2): 364-76
TP53V133A	Human	Addgene	#16435	Science. 1990, 249(4971):912- 5
TP53R175H	Mouse	Addgene	#14854	Cell. 2004, 119(6):847-60
TP53R175H	Human	Addgene	#16436	Science. 1990, 249(4971):912- 5
TP53R248W	Human	Addgene	#16437	Science. 1990, 249(4971):912- 5
TP53R249S	Human	Addgene	#16438	Science. 1990, 249(4971):912- 5
TP53R273H	Human	Addgene	#16439	Science. 1990, 249(4971):912- 5
EGFR	Human	Addgene	#44185	Biochemistry. 2008, 47(39): 10314-23
EGFRvIII	Human	Addgene	#20737	Neuro Oncol. 2009, 11(1):9-21
PDGFB	Human	Malatesta, P.		Int J Cancer, 124 (2009) 2251- 2259

ORFs for the expression of wild-type or mutant forms of *RelA* (mouse) were generated as synthetic gene (with NM_009045.5 as a template) and expressed in pcDNA3.1.

Expression vectors

Name	Туре	Provider	Identifier	Reference (non-commercial
			/ Cat.Nr.	providers)
pBABE-	RV	Addgene	#1764	Nucleic Acids Res. 1990,
puro				18(12): 3587-96.
pLenti6/V5-	LV	Thermo	#V49610	
DEST		Fisher		
		Scientific		
	LV	Takara	#632187	
pLVxIRES-				
ZsGreen1				
pcDNA3.1	Stable	Thermo	# V79020	
	mammal.	Fisher		
	express.	Scientific		
pIRES2-EGF	Stable	Novo	# V11106	
	mammal.	ProLab		
	express.			
pNFkB-DD-	Mammal.	Takara	#631080	
ZsGreen1	reporter			

Pantropic virus production and transduction

Lentiviruses were generated using the Mission third generation lentiviral packaging system (Merck). HEK293T were plated co-transfected with packaging mix and transfer vector containing the gene of interest, 24 h later cells obtained fresh medium; lentiviral particles were harvested on day 2 and 3 post-transfection, filtered, aliquoted and stored at -80°C until

use. For in vivo applications VSV-G coated virus-particles were sedimented (concentrated) by ultra-centrifugation (200,000 g) and virus titers of $5x \ 10^9$ cfu (or higher) were obtained

CRISPR/Cas9 screen

Mouse glioma cells were infected with the genome-wide gRNA lentiviral library(49) (Addgene #50947) at an MOI of 0.3. Three days after infection, 3.5×10^6 BFP-positive cells were sorted and cultured for an additional 4 days. Then, transduced cells were split into two fractions of equal cell-number and treated with CBD or with vehicle (0.01% DMSO; controls) for 16 h. Then media were exchanged (to fresh medium without DMSO or CBD) and surviving cells were expanded for 6 days (separately in each experimental group). Genomic DNA was extracted and used for PCR templates. gRNA was amplified (Hot start PCR) using 15 ng of the whole-genome lentiviral plasmid library per reaction. The PCR products were purified with Agencourt AMPure XP beads in a PCR-product-to-bead ratio of 1:0.7. The purified libraries were quantified and sequenced on Illumina HiSeq2500 by 50-bp single-end sequencing (for the entire libraries gRNA sequences were extracted by removing constant regions from each read and these were used to count quantify and assign the number of reads of each gRNA in the library using Encore software(50).

Transcriptomics

Total RNA was isolated from cell-pellets using the RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions including on-column DNase digestion; RNA concentration was determined (NanoDrop ND-1000 spectral photometer; Peqlab). High-quality total RNA samples (A260/A280 ratio ≥ 1.9 ; A260/A230 ratio ≥ 2.0) were used for subsequent steps of RNA quality control (2100 Bioanalyzer with RNA 6000 Nano and Pico LabChip Kits; Agilent Technologies) and samples with RIN values ≥ 9 were used for library preparation (TruSeq Stranded mRNA HT technology). Then, all samples were again quality controlled (DNA 1000 LabChip Kits on the 2100 Bioanalyzer; Agilent Technologies). These samples showed a clear

and pure band at approximately 260 nt, DNA concentration was determined and the sequencing library was quantified (Qubit ds DNA HS Assay Kit ; Invitrogen). Sequencing of the library was performed at a final concentration of 1.8 pM and with a 1% PhiX v3 control library spikein (Illumina) on the NextSeq500 sequencing system (Illumina). For cluster generation and sequencing of all samples, a high output single-end 75 cycles (1x75Bp SE) run was performed (NextSeq500). Sequencing was operated under the control of the NextSeq Control Software (NCS).

Quantitative PCR

RNA extraction and quality controls were performed as described above (transcriptomics). The High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) was used for reverse transcription of total RNA into single stranded cDNA with the aid of random hexamer primers according to the manufacturer's instructions. The cDNA samples were analyzed in triplicates; TaqMan Gene Expression Master Mix (Thermo Fisher Scientific) and the TaqMan assays indicated in table "PCR probes" were used for real-time PCR amplification. The amplifications were run in 384-well format on a ViiA7[™] instrument (Thermo Fisher Scientific).

PCR probes

Gene symbol	TaqMan assay ID	Gene symbol	TaqMan assay ID
Ikbkg	Mm00494927_m1	Prkcz	Mm00776345_g1
Nfkbib	Mm00456853_m1	Prkcq	Mm00435802_mH
Nfkbia	Mm00477800_g1	Prkcd	Mm00440884_g1
Ikk1	Mm00432529_m1	Prkcb	Mm00435749_m1
RelA	Mm00501346_m1	Gapdh	Mm999999915_g1
Nfkb2	Mm00479807_m1	ActB	Mm01205647_g1
Nfkb1	Mm00476379_m1	IKBKG	Mm00494927_m1
TRPA1	Hs00175798_m1	TRPV4	Hs01099348_m1
TRPV1	Hs00218912_m1	TRPM8	Hs01066596_m1
CNR2	Hs00361490_m1	ACTB	Hs01060665_g1
PPARG	Hs01115513_m1	SLC2A1	Hs00892681_m1
GAPDH	Hs02758991_g1	SLC2A3	Hs00359840_m1
ID1	Hs00357821_g1	HK1	Hs00175976_m1
GPR55	Hs00995276_m1	НК2	Hs00606086_m1
TRPV2	Hs00901648_m1	TRPV3	Hs00376854_m1

In vitro cytotoxicity assay

Cytotoxicity was detected using the CytoTox-FluorTM cytotoxicity assay from Promega. In 96 well-plates, 3×10^3 in 50µl (5 replicates per condition) were treated for 24 hours with 50µl of vehicle/drug in NPC medium without phenol red. 40µl of cells and diluted bis-AAF-R110 substrate (1:1 ratio) incubated for 2 hours before measuring fluorescence intensity in a InfiniteF200 fluorescence plate reader (Tecan; 485nm Ex / 520nm Em); blanks were subtracted from all wells and the fluorescence read-out for untreated cells (vehicle control) was normalized to 1. Read-outs from treated cells were normalized to those of untreated cells and fold change of relative cytotoxicity calculated for each well. Outliers were detected and omitted, if any, using the Grubbs test. Graphs were generated using the GraphPad Prism software version 5.01.

In vitro viability and proliferation assays

The CellTiter Non-radioactive Cell Proliferation Assay (Promega) was used according to manufacturer's instructions. Cells were seeded and treated as in the cytotoxicity assay. After 48 hours of incubation at 37°C in a humidified atmosphere, each well incubated with 15µl of dye solution for 4 h at 37°C; 100µl of solubilization/stop solution was added to each well and incubated 1 hour at 37°C. The absorbance was then recorded using an absorbance plate reader set at 570nm (SoftmaxPro software). Blanks were subtracted from all wells and fold change to vehicle control was calculated. The CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega) was used according to manufacturer's instructions. Cells were seeded and treated as in the MTT assay. After 72 h at 37°C. To stop the reaction, 25µl of 10% SDS solution was added to each well and incubated 1 hour at 37°C. The absorbance was then recorded using an absorbance plate reader set at 490nm using the SoftmaxPro software. Blank was subtracted from all wells and fold change to vehicle control was calculated to each well and incubated 1 hour at 37°C. The absorbance was then recorded using an absorbance plate reader set at 490nm using the SoftmaxPro software. Blank was subtracted from all wells and fold change to vehicle control was calculated.

Transcription factor binding array

Transcription factor binding to cognate gene-promoter sequences was quantified with the ER Stress (UPR) TF Activation Profiling Plate array (Signosis; according to instructions), simultaneously indicating the DNA-binding activity of XBP-1, ATF4, ATF6, GADD153/CHOP, CBF/NFY, SREBP1, YY1, ERR, ATF3, AP-1, FOXO1, IRF, p53, NF κ B and NRF2/ARE; hGSC cells were inspected over a time-course after vehicle-treatment (control) or after stimulation with 10 μ M CBD; reproducible data were obtained after 20 h of treatment / control and fold-changes in DNA-binding of all TFs was calculated.

Reporter-gene assay

Patient-derived Glioblastoma cells were transfected with a reporter-construct encoding for the ProteoTunerTM Shield System N (Signosis; using lipofectamine, see above). Here, a destabilized form of GFP is expressed under a synthetic *RELA*-promoter (4x *PLAU*-promoter); in the presence of a cell-permeable compounds (Shield1) GFP is stabilized and accumulates inside the cell. This allows for active and controllable degradation of GFP and low background levels in reporter gene assays. Stable transfectants were used in all experiments. Green fluorescence was examined by fluorescence microscopy or flow cytometry; technical controls included addition of excessive Shield-1, which produced strong GFP conditions in all cells (serving as a positive control for hGSC cells without TNF α -inducible reporter-gene activity).

In vivo models

Animal experiments were carried out in compliance with the German law on animal welfare, and all animal protocols were approved by the "Regierung von Oberbayern" in Munich, Germany. Mice were housed in standardized cages in the Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University (LMU) Munich, received chow ad libitum and were kept under a circadian rhythm with 12 h light and dark cycles in environmentally enriched conditions (max. 4 mice / cage).

To evaluate the capacity of the generated mouse gliomas to induce tumors *in vivo*, adult male and female mice (equal ratio; bred at the facility) were randomized, anesthetized and immobilized in flat-skull position in a stereotactic head holder. 0,1x 10⁶ cells/1 µl/mouse were inoculated using a 30-gauge Hamilton syringe approximately 1,5mm posterior and 1,5 mm lateral to the bregma. After operation, the skin was sutured, and mice placed back in their cage for recovery. The animals were inspected twice a day until humane end-point (when neurological symptoms occur that are firmly associated with end-stage disease). They were then anesthetized, perfused with PFA and their brain collected. Brains were placed in 30% sucrose for dehydration and cryopreserved in tissueTek O.C.T solution. Tumorigenesis was evaluated by hematoxylin-eosin staining, MR imaging and/or immunohistochemical staining.

For the induction of tumorigenicity in transgenic models concentrated virus particles were injected into the SVZ of young (P30) mice at the following stereotactic coordinates (using the bregma as a landmark): Antero-posterior +0.6 mm, medio-lateral 1.2 mm, dorso-ventral 1.2 mm. A volume of 0.5 μ l concentrated virus-particles was infused (at a rate of 0.05 μ l/ min) using an automated pump system. For in vivo CBD-application (drugs were applied in a fixed time-schedule) and Kaplan-Meier read-out immunodeficient mice were inoculated with hGSC or transgenic mice were infused with retroviral vectors (VSV-G pseudotyped) for the expression of proto-oncogenes. Tumorigenicity was determined by histological inspection of random samples from these cohorts of mice. After establishing tumor-growth mice were i.p. injected (every other day, for 21 days) with CBD (15mg/kg) or vehicle (5% Tween80, 5% ethanol in 0.9% saline).

MRI screening

For the MRI screening, mice were anesthetized with inhalation of isoflurane 2% (v/v) in an oxygen flow rate of 2 L/min. Imaging was performed on a 7 T small animal MR scanner (Agilent Discovery MR901 magnet and gradient system, Bruker AVANCE III HD electronics). A 72 mm dual-tuned 1H/13C birdcage resonator was used for radiofrequency transmission in combination with a two-channel fixed-housing mouse-brain surface-receiver array (Rapid Biomedical, Germany). T2-weighted images were acquired with a fast spin echo / rapid imaging with relaxation enhancement (RARE) sequence, with slice thickness 1 mm, field of view 20x20 cm, acquisition matrix 192x192, repetition time 2500 ms, effective echo time 40 ms, and fat-suppression enabled.

Immunofluorescence

Permeabilized cells were washed 3 times in 1x PBS. The primary antibodies incubated overnight at 4°C, washed 3 times with 1 x PBS and incubated in the dark for 2 hours at room temperature with a mixture of fluorescently labeled secondary antibody and Hoechst 33342 for nuclear counter-staining. Controls included e.g. omission of secondary antibody to exclude unspecific immunofluorescence-detection; quantification was performed using ImageJ providing data on fold-changes in time-course and pharmacological experiments: Nuclei (stained with DAPI) and RelA-immunofluorescence were visualized in separate channels, negative controls were used to define a detection-threshold for RelA and corrected total nuclear fluorescence (defined as the integrated density of fluorescence-staining of the nuclear region after background-subtraction) was obtained for each nucleus. Thereby we defined a first imagemask containing information on the size and position of all nuclei. Then we obtained a second mask containing results on specific RelA-staining. Both image-masks were overlayed and information on immunofluorescence for RelA (or phospho-RelA) in nuclear regions was automatically quantified.

Primary antibodies

Antibody	Provider	Cat-Nr.	RRID
Rabbit anti NG2	Millipore	AB5320	AB_11213678
Mouse anti- Polysialic-	Millipore	MAB 5324	AB_11210572
Acid- NCAM 60			
Goat anti Doublecortin	SantaCruz	sc-271390	AB_10610966
Mouse anti Tuj1	Sigma	T8578	AB_1841228
Mouse anti NeuN	Abcam	ab104224	AB_10711040
Rabbit anti GFAP	Abcam	ab7260	AB_305808
Mouse anti-S100ß	Sigma-Aldrich	S2532	AB_477499
Mouse anti-CNpase	Abcam	ab6319	AB_2082593
Rabbit anti Myelin	Abcam	ab40390	AB_1141521
Basic Protein			
Rabbit anti-Sox 2	Abcam	ab97959	AB_2341193
Goat anti-Sox 2	R&D Systems	AF2018	AB_355110
Rabbit anti-NFκB p65	BioLegend	622601	AB_315955
Antibody			
Rabbit anti-Phospho-	Thermo Fisher	PA5-37720	AB_2554400
NF-□B p65 (Ser311)			
Mouse anti-HLA-	Biolegend	311414	AB_493135
A,B,C Alexa Fluor-647			
Mouse anti-PARP1	eBioscience	48-6668-42	AB_2574097
(cleaved Asp214) -			
eFluor 450,			

Mouse anti-	Novus	Nbp2-23490af647	Not available
p62/SQSTM1	Biologicals		
Alexa Fluor-647			
Rabbit anti-	EMD-Millipore	17-10400	Not available
phospho-MLKL			
(Ser358)			
Antibody Set			
rabbit anti-NFKB	Thermofisher	PA5-37720	AB_2554328
phospo p65	Scientific		
Mouse-anti	GeneTex	GTX70220	AB_372637
nuclear Matrix	International		
Protein p84			
(clone 5E10)			
rabbit anti-NFKB	Biolegend	622602	AB_315956
p65			

Secondary antibodies and conjugated fluorophores

Antibody	Provider	Cat-Nr.	RRID
Biotynilated	Jackson	715-065-151	AB_2340785
donkey anti mouse	Immuno		
	Research		
Alexa 488 donkey	Jackson	711-545-152	AB_2313584
anti rabbit	Immuno		
	Research		
Alexa Fluor 594	Jackson	711-585-152	AB_2340621
donkey anti rabbit	Immuno		
	Research		
Alexa Fluor 594	Jackson	712-585-150	AB_2340688
donkey anti rat	Immuno		
	Research		
Alexa Fluor 594	Jackson	715-585-151	AB_2340855
donkey anti mouse	Immuno		
	Research		
Alexa 488 donkey	Jackson	705-545-147	AB_2336933
anti goat	Immuno		
	Research		

Alexa 647 donkey	Jackson	712-605-153	AB_2340694
anti rat	Immuno		
	Research		
Alexa 647 donkey	Jackson	705-605-003	AB_2340436
anti goat	Immuno		
	Research		
Alexa Fluor 488	Jackson	016-540-084	AB_2337249
conj. Streptavidin	Immuno		
	Research		
HRP conj. anti-	Bio Rad	170-5046	AB_11125757
mouse			
HRP conj. anti-	Bio Rad	170-5047	AB_11125753
rabbit			

Western blotting

SDS-PAGE was performed to assess nuclear localization and phosphorylation of NFKB. Nuclear/cytoplasm separation was performed using an NE-PER kit (#78833, Thermofisher Scientific). Protein concentration was determined using a Bradford protein assay kit (#500-0202, Quick Start Bradford Protein Assay Kit 2, Bio-Rad). Samples (30 µg of protein per lane) were denatured in Lämmli buffer (#1610737, Biorad), loaded onto 10% acrylamide gels (A3699; Merck) and proteins separated by SDS-PAGE at 150 V for 80 min. Separated proteins were transferred to a polyvinylidene fluoride (PVDF) membrane (BioRad) at 400mA for 70 min. Non-specific antibody sites were blocked with 5% milk powder for 60 min at room temperature. Membranes were probed with primary and (after extensive washing) secondary

antibodies (see tables). For protein size estimation, the precision plus protein WesternC standard was used in combination with Streptactin conjugate (1:3000; #1610376 and #1610381, Biorad). Blots were developed with Supersignal West Pico Plus Chemoluminescent substrate kit (#34578, Thermofisher Scientific) and images were recorded on a Hamamatsu ORCA-ER imager using the Wasabi Image software (Hamamatsu Photonics).

Flow cytometry

10⁶ cells were exposed to different experimental paradigms, centrifuged, and washed once with 1xPBS; cells were stained with fluorescently labeled surface antibody in FACS buffer (PBS with 0.5% BSA and 2mM EDTA; 1µg antibody/ 10⁶ cells/ 100µl FACS buffer) for 30 minutes on ice in the dark; washed twice with FACS buffer, and transferred to FACS tubes for acquisition in a LSR Fortessa (Becton Dickinson). For detection of intracellular antigens cells were fixed for 20 minutes at RT, permeabilized, washed and incubated with staining solution (as above). Cells were always kept on ice, in the dark until flow cytometric acquisition. To quantify the relative amount of fluorescence molecules that corresponds to the acquired median fluorescence intensity (MFI), rainbow calibration particles (RCP) where acquired the same day and using the same laser settings as the samples. Exported fcs files were analyzed in FCS express5 (De Novo Software) for MFI and molecules of equivalent fluorescence (MEFL) using a standard curve with pre-defined RCP MEFL concentrations. The normalized median fluorescence intensity (nMFI) was also calculated by dividing the MFI by the number of events (MFI/number of events).

For *ex vivo* imaging of hGSC ROS levels immune-deficient mice bearing patient-derived hGSC xenografts were sacrificed and brains collected. The tumor was dissected, tumor biopsy cut into 10mg pieces, and mashed through a cell strainer. The cell suspension was stained with human HLA A, B, C-AlexaFluor647 and 20µM H2DCFDA in 1x PBS for 30 minutes at 37°C and analyzed by flow cytometry as outlined above.

Reagents for flow cytometry

Reagent	Provider	Cat-Nr.				
CellRox Deep Red reagent	Molecular probes	C10422				
Fixable viability dye eFluor-506	eBioscience	65-0866-14				
HCS nucler mask Deep Red stain	Molecular probes	H10294				
H2-DCFDA	Molecular probes	D399				
Hoechst 3342	Molecular probes	H3570				
Fluorometric Intracellular Ros Kit	Merck Milllipore	MAK-142-IKT				
LYNX Rapid RPE-Cy7 antibody conjugation	BioRad	LNK111PECY7				
LYNX Rapid antibody conjugation kit	BioRad	LNK021RPE				
MitoSox Red	Molecular probes	M36008				
MitoLite-blue FX490	AAT Bioquest	ABD-22674				
MitoSpy green	BioLegend	424805				
Propidium iodide	Merck Milllipore	P4864				
Rainbow calibration particle	BioLegend	422903				
ROSstar550	Li-Cor	926-20000				

Statistical analysis

Data-distribution was presented by mean-values and standard deviation of the mean; numbers of independent experiments or individual animals was indicated in the figures, legends or in the manuscript text. Student's *t*, one-way/ two-way ANOVA with Tukey post-hoc test or ANOVA with Bonferroni correction were used as indicated; in survival experiments, Kaplan–Meier curves were used and Log-rank (Mantel-Cox) test was applied to determine statistical significance; primary endpoint was development of neurological symptoms clearly indicative of hGSC. P values are indicated as *p<0.05, **p<0.005, and ***p<0.0005 in all results. All statistical analyses were conducted using Graph Pad Prism 5.

Software	Provider / citation	Application					
Axiovision Rel 4.8	Zeiss	Image acquisition					
bcl2Fastq 2.15.04	Illumina	Sequencing data analysis					
BD coherent connection	BD Biosciences	Flow cytometry					
BD FacsDiva	BD Biosciences	Flow cytometry					
https://www.cbioportal.org/	Cancer Discov. 2012, 2(5):401-4.	Data mining					
	Sci Signal. 2013, 6(269):pl1.						

Table: Software for data analysis

http://www.chilibot.net/	BMC Bioinformatics. 2004,	Data mining				
	5:147					
CLC Genomics Workbench	Qiagen	Sequencing data				
9.5.3		analysis				
CLC Sequence Viewer 8	Qiagen	Visualization / design				
		of genetic code				
http://designstudio.illumina.com/	Illumina	Visualization / design				
		of genetic code				
FCS Express 5	DeNovo Software	Flow cytometry				
FlowJo	FlowJo	Flow cytometry				
http://gliovis.bioinfo.cnio.es/	Neuro Oncol. 2017,	Data mining				
	19(1):139-141.					
Graph Pad Prism 5	GraphPad Software	Statistics				
https://imagej.net/Fiji	Nature Methods. 2012, 9:	Image processing				
	676–682					
SoftMax Pro	Molecular Devices	Microplate reader				
Tecan i-Control	Tecan	Microplate reader				
ViiA7 [™] software	ThermoFischer	Analysis of qPCR				
		data				

Supplementary Table 1, Genes identified in pharmacogenomics screen

Gene- symbol	Protein-name and related information
Aimp1	Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (EMAP-II protein; EMAP-II facilitates TNF-R1 apoptotic signalling in endothelial cells and induces TRADD mobilization. Apoptosis. 2006;11(12):2137-45)
lkbkb	Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKB protein; Nuclear factor-κB in Glioblastoma: Insights Into Regulators and Targeted Therapy Neuro Oncol. 2016 ;18(3):329-39)
Secisbp2I	Selenocysteine insertion sequence-binding protein 2-like (can substitute SECISBP2; The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay, Nucleic Acids Res. 2017; 45(7): 4094–4107)
Hnrnph	Heterogeneous nuclear ribonucleoprotein H (EMBO J. 2011;30(19):4084-97. Splicing Factor hnRNPH Drives an Oncogenic Splicing Switch in Gliomas)
Gm4952	Glycine N-acyltransferase-like protein; mitochondrial acyltransferase which transfers the acyl group to the N-terminus of glycine (no specific records in PubMed; related records: New insights into the catalytic mechanism of human glycine N-acyltransferase. J Biochem Mol Toxicol. 2017;31(11) doi: 10.1002/jbt.21963)
Klhl17	Kelch-like protein 17 (Actinfilin Is a Cul3 Substrate Adaptor, Linking GluR6 Kainate Receptor Subunits to the Ubiquitin-Proteasome Pathway; J Biol Chem. 2006;281(52):40164-73)
Clint1	Clathrin interactor 1 (The ENTH domain protein Clint1 is required for epidermal homeostasis in zebrafish; Development. 2009;136(15):2591-600.)
Desi1	Desumoylating isopeptidase 1 (DeSUMOylating isopeptidase: a second class of SUMO protease; EMBO Rep. 2012;13(4);339-46)

psies
bid
GBM
human
from
cultures
r cell-
primary
of
cterization
Charad
2 N
Table
olementary
Supp

Citation	Cell Death Dis. 2016 Apr 28;7:e2209.	Cancer Res. 2019 May 1;79(9):2298-2313.	Cancer Res. 2019 May 1;79(9):2298-2313.	This study	This study	Cancer Res. 2017 Feb 15;77(4):996-1007	Cancer Res. 2017 Feb 15;77(4):996-1008	Cancer Res. 2017 Feb 15;77(4):996-1009	Cancer Res. 2017 Feb 15;77(4):996-1010	Cancer Res. 2017 Feb 15;77(4):996-1011	Cancer Res. 2017 Feb 15;77(4):996-1012	Cancer Res. 2017 Feb 15;77(4):996-1013	Clinical Cancer Research, 16:2715-28, 2010.	Cell Death Differ. 2014 Jun; 21(6): 929-940	J Pathol. 2014 Sep;234(1):23-33.	J Pathol. 2014 Sep;234(1):23-33.	J Pathol. 2014 Sep;234(1):23-33.	This study	Cancer Cell. 2011 Mar 8;19(3):359-71	Clin Cancer Res. 2016 Mar 1;22(5):1185-96	This study	
Patient- gender	ш	ц	M	ш	ч	M	L.	M	Σ	ш	Z	Σ	Δ	Σ			ш		Σ	ц	Σ	
Stem-like characteristics	Yes	Yes	Yes	N.D.	N.D.	Yes	Yes	Yes	Yes	Yes	N.D.	N.D.	N.D.	N.D.								
Tumorigenic in vivo	N.D.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N.D.	N.D.	Yes	Yes	Yes	Yes	N.D.	
GBM subtype (of parental tumor)	N.A.	Proneural	Mixed	Mesenchymal	Mesenchymal	Classical	Mesenchymal	Proneural	Proneural	Proneural	Mesenchymal	Mesenchymal	Proneural	Mixed	Mixed	Mixed	Proneural	N.D.	Classical	Classical	Mesenchymal	
Treatment	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery + Radiation therapy	Surgery	Surgery	Surgery	Surgery	Surgery	Surgery	
Primary / Recurrent	Primary	Primary	Primary	Primary	Recurrent (from patient with GBM20)	Primary	Primary	Recurrent	Recurrent	Primary	Primary	Primary	Primary	Primary								
TUM/TW HOI	R172H	WT	WT	WT	WT	WT	WT	WT	MT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	
Sample-ID for genetic / genomic information I	16073_0002	16073_0001	N.D.	16073_0004	16073_0005	16073_0015	16073_0017	16073_0018	16073_0019	16073_0020	16073_0021	16073_0022	16073_0006	16073_0007	16073_0008	N.D.	16073_0010	16073_0011	N.D.	N.D.	N.D.	
Diagnosis	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	GBM	
Code	GBM10	GBM13	GBM14	GBM20	GBM29	Line2	Line6	Line7	Line8	Line9	Line10	Line11	NCH421K	NCH441	NCH588J	NCH592B	NCH644	NCH684	BT112	BT172	BT423	

Supplementary Table 3: Biopsies from high-grade astrocytomas

Code	Gender	Age	Diagnosis	Primary/ Recurrent
138	female	44	astrocytoma WHO III	primary
139	female	50	astroglial tumor cells	recurrent
140	male	54	GBM	recurrent
141	male	46	GBM	primary
142	male	68	GBM	primary
143	male	72	GBM	primary