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Abstract

Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability,
developmental delay, autism spectrum disorder, and developmental motor abnormali-
ties have a documented underlying monogenic defect, primarily due to de novo vari-
ants. Still, the overall burden of de novo variants as well as novel disease genes in
NDDs await discovery. We performed parent-offspring trio exome sequencing in
231 individuals with NDDs. Phenotypes were compiled using human phenotype
ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo
variants contributing to more than 80% (n = 93/115) of all solved cases. De novo vari-
ants affected 72 different—mostly constrained—genes. In addition, we identified
putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis per-
formed in 80 initially unsolved cases revealed a definitive diagnosis in two additional
cases. Our study consolidates the contribution and genetic heterogeneity of de novo
variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for

NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene dis-

KEYWORDS

1 | INTRODUCTION

Neurodevelopmental disorders (NDDs) comprise a heterogeneous
group of conditions affecting brain development and function and can
manifest in impaired cognition, behavior, language, and motor func-
tioning. In accordance to “Diagnostic and Statistical Manual of Men-
tal Disorders, Fifth Edition? (DSM-5), NDD encompasses intellectual
developmental disorders, communication disorders, autism spectrum
disorders, attention-deficit/hyperactivity disorders, specific learning
disorders, and motor disorders.? Furthermore, patients with NDDs
often demonstrate additional, (non-) neurological comorbidities.®
While NDDs can have numerous causes such as fetal exposure
to toxicants, perinatal asphyxia and environmental contaminants,
monogenic conditions make an essential contribution to the etiol-
ogy of NDD.! The genetic etiology underlying NDD is extremely
heterogeneous extending from large chromosomal aberration to
single-nucleotide variants (SNVs) in >1000 of genes.4 Neverthe-
less, theoretical calculations indicate that over 500 novel NDD
genes remain to be discovered.® It has been widely acknowledged
in large-scale sequencing studies that variants in protein-coding
genes that have arisen de novo are enriched in individuals with
NDDs and constitute the major cause of NDDs in outbred
populations.®™** 42%-48% of individuals with a NDD are thought
to harbor a causative de novo variant in known as well as yet-undi-
scovered disease genes.13 However, the burden of de novo vari-

ants in NDD has not yet been fully illuminated.**

covery and the power of systematic reanalysis of unsolved cases.

autism, candidate gene, de novo variant, exome sequencing, intellectual disability,
neurodevelopmental disorder, reanalysis

With the aim to better elucidate the genetic spectrum of (de novo)
variants underlying rare NDDs, we describe detailed clinical and
genetic findings in 231 individuals with NDDs who underwent trio
exome sequencing in a single tertiary care genetic center.

2 | MATERIALS AND METHODS

2.1 | Study design

We retrospectively analyzed 231 individuals with NDDs in whom trio
exome sequencing was performed in our institute. The families were
recruited over a period of 3 years (August 2017 until July 2020) from
different centers for human genetics, neuropediatrics, and neurology
in Germany, Switzerland, Slovakia and Czech Republic. 177 (76.6%) of
these 231 trios have not been published previously. Individuals were
found eligible for this study if they had (1) a symptom or a constella-
tion of symptoms consistent with a NDD (in accordance with the
diagnostic criteria of “Diagnostic and Statistical Manual of Mental Dis-
orders, Fifth Edition”?) and (2) no prior genetic diagnosis. We obtained
and thoroughly reviewed clinical records of all individuals and applied
the human phenotype ontology (HPO) to systematically characterize
the individuals' phenotype.'® As previously published, individuals were
categorized to one of two categories based on their clinical presenta-
tion: (1) isolated NDD or (2) NDD plus associated conditions defined
as any additional neurological, systemic, syndromic, or other clinical
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characteristic, for example, microcephaly or neutropenia.*® Family his-
tory was collected by the referring clinician where applicable and a
family history was considered as positive when a first-degree relative
had a NDD.

All participants or their guardians gave written informed consent
for exome sequencing and the publication of relevant findings. The
study was performed in agreement with the ethical standards of the
responsible committee on human experimentation (institutional and
national) and with the Declaration of Helsinki, and was approved by

the respective local ethics committees.

2.2 | Trio exome sequencing
Exome sequencing was performed for all affected individuals and
their parents using a SureSelect Human All Exon Kit 60 Mb, V6
(Agilent, Santa Clara, California) for enrichment and a Illumina
NovaSeq6000 or lllumina HiSeq4000 system (lllumina, San Diego,
California). Reads were aligned to the UCSC human reference assem-
bly (hg19) with BWA v.0.7.8. SNVs and small insertions and deletions
were detected using SAMtools v.0.1.19.2” Copy number variations
(CNVs) were detected with ExomeDepth and Pindel.*®*? Mitochon-
drial DNA (mtDNA) variants were assessed using off-target reads as
previously described.?® Variants were analyzed in the in-house
exome variant analysis database (EVAdb) using ) a recessive filter for
homozygous and compound heterozygous variants with aminorallele
frequency (MAF, according to in-house database with over 20 000
exomes) < 1%, Il a filter for X chromosomal variants with a
MAF < 0.1% and Ill) a filter for de novo variants with a MAF < 0.01%.
IV) A phenotype-based search was conducted by performing an
OMIM full term search using the three most characteristic phenotypic
traits to establish a gene list. The filter queries variants with a
MAF < 0.1%. In addition, CNVs with a MAF < 0.01 and mtDNA vari-
ants with a MAF < 1% were assessed. Identified variants were classi-
fied according to the American College of Medical Genetics and
Genomics (ACMG) guidelines.?128

Only cases with likely pathogenic or pathogenic variants as per
ACMG (in the following designated “disease-causing”) in established
disease genes for NDDs were considered as solved and were
reflected in the overall diagnostic yield. All genes with “strong” or
“definitive” evidence for gene-disease relationship as defined by the
Clinical Genome Resource (ClinGen) were considered as established
disease genes.?* Individuals with variants in candidate genes subse-
quently established as disease genes, were also categorized as solved
and assigned to the overall yield. Individuals with (1) negative results
(i.e., no variant[s] prioritized), (2) variants of uncertain significance
(VUS) in NDDs associated genes or (3) variants in candidate genes for
NDDs (as of November 2020) were summarized as unsolved cases.
Reanalysis using updated variant annotation and newly discovered
gene disease associations was performed for all cases with negative
results older than >1 year (August 2017-September 2019).

For all established disease genes containing causative de novo var-

iants, constraint metrics (pLls and Z-scores) were extracted from

Genome Aggregation Database (gnomAD) v2.1.1 to evaluate gene
tolerance to loss-of-function or missense variants.2> As recommended
by gnomAD, we used pLl > 0.9 for loss-of-function variants and

Z-score > 3.09 for missense variants as constraint threshold values.?®

3 | RESULTS

3.1 | Demographic features and clinical findings

We performed parent-offspring trios in 231 individuals (117 females
and 114 males) with NDDs over a period of 3 years. Age range was
from 1 months to 46 years (median: 5.3 years) with 90% of individuals
falling between 0 and 18 years. Parental consanguinity was reported
in three cases. Information on the family history was available in
86/231 (37.2%) individuals. 9/86 (10.5%) cases had a positive family
history with an affected first-degree relative. A monogenic disorder
could genetically be established in a single cases with a positive family
history, a de novo PTPN11 was identified by trio analysis whereas the
autism spectrum disorder remained without a monogenic explanation
in the brother.

Clinical characteristics were captured using HPO terms
(Table 51).*> Among all 231 individuals, a total of n = 1291 HPO terms
(median pro sample: 5, [interquartile range: 4-7]) were assigned. In
summary, NDD phenotypes comprised global developmental delay
175, 75.8%), intellectual disability (n = 46, 19.9%), speech delay
28, 12.1%), motor delay (n = 26, 11.3%) and autistic behavior/
autism (n = 26, 11.3%). Common additional features included seizures
(n =70, 30.3%), dystonia (n = 59, 25.5%), muscular hypotonia (n = 42,
18.2%), microcephaly (n = 32, 13.9%), cerebral palsy (n = 24, 10.4%),
ataxia (n = 23, 10.0%), abnormal facial shape (n = 23, 10.0%), spasticity
(n = 20, 8.7%) and hearing impairment (n = 13, 5.6%). Figure 1(A) gives

a summary of the most frequent clinical features encountered in our

(n

(n

cohort. The majority of individuals had NDDs plus associated condi-
tions (n = 213/231, 92.2%), while only n = 18/231 (7.8%) individuals
had isolated NDD without any additional features. The proportion of
cases with NDDs plus associated conditions was higher in the sub-
group with autosomal recessive inheritance (n = 19/19, 100%) in com-
parison with those with de novo variants (n = 89/93, 95.7%).

3.2 | Diagnostic yield

Overall, trio exome sequencing identified disease-causing variants in
developmental disorder associated genes in 115/231 individuals
reflecting an overall yield of 49.8%. The diagnostic yield was signifi-
cantly higher in individuals with NDD plus associated conditions
(n=111/213, 52.1%) in comparison to individuals with isolated NDD
(n = 4/18, 22.2%, p = 0.0247, Fisher's exact test).?” 59/117 female
individuals (50.4%) and 56/114 male individuals (49.1%) received a
genetic diagnosis. In the group of individuals >18 years (n = 24/231,
10.4%), the overall yield was 50.0%. In the group of individuals
<18 years (n = 206/231), the overall yield was 49.5%.
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(A) Global developmental delay (HP:0001263) 175
Seizures (HP:0001250) 70
Dystonia (HP:0001332) 59
Intellectual disability (HP:0001249) 46
Muscular hypotonia (HP:0001252) 42
Microcephaly (HP:0000252) 32
Delayed speech and language development (HP:0000750) 28
Motor delay (HP:0001270) 26
Autism (HP:0000717)/Autistic behavior (HP:0000729) 26
Cerebral palsy (HP:0100021) 24
Ataxia (HP:0001251) 23
Abnormal facial shape (HP:0001999) 23
Spasticity (HP:0001257) 20
Hearing impairment (HP:0000365) 13
Epileptic encephalopathy (HP:0200134) 10
0 20 40 60 80 100 120 140 160 180 200
Number of individuals
vUs
(B) n=8 (3.5%)
variant(s) in candidate gene
n=16 (6.9%)
de novovariant
n=93 (80.9%)
(likely) pathogenic
variant(s)
) n=115 (49.8%)
negative
n=92 (39.8%)
homozygous/compound heterozygous variants
n=19 (16.5%)
heterozygous variant, inherited from affected parent
n=2 (1.7%)
hemizygous variant, inherited from unaffected mother
n=1(0.9%)
FIGURE 1 Phenotypic characterization and results of trio exome sequencing in n = 231 individuals with NDDs. (A) Distribution of the most

frequent HPO categories among individuals undergoing trio exome sequencing. (B) The pie chart illustrates the results of the trio exome
sequencing study (231 individuals, 426 parents) with an overall diagnostic yield of 49.8%. Solved cases were defined by the presence of disease-
causing variants in established NDD-associated genes. The bar chart on the right visualizes the distribution of all disease-causing variants based
on the inheritance mode with de novo variants representing the most frequent inheritance. 50.2% of all cases remained unsolved which included
cases with negative results (i.e., no variant[s] prioritized) as well as cases with VUSs and cases with variants in candidate genes. HPO, human
phenotype ontology; NDDs, neurodevelopmental disorders; VUSs, variants of uncertain significance [Colour figure can be viewed at

wileyonlinelibrary.com]

In the majority of individuals (n = 93/115, 80.9%), the molecular
diagnosis based on de novo variants in genes either associated with
autosomal dominant disorders (n = 82/115, 71.3%) or with X-linked
disorders (n = 11/115, 9.6%). In two cases, variants in genes/chromo-
somal locations linked to autosomal dominant disorders (KMT2D,
Chromosome 16¢23.2-23.3 deletion) were inherited from an affected
parent (n = 2/115, 1.7%) and in one case, a variant in a gene associ-
ated with a X-linked disorder (MECP2 duplication) was inherited from
the unaffected mother (n = 1/115, 0.9%). 19/115 individuals (16.5%)
harbored homozygous (n = 7/115, 6.1%) or compound heterozygous
(n = 12/115, 10.4%) variants in genes related to autosomal recessive
disorders. 3/7 patients with homozygous variants had a consanguine-
ous background. A disease causing CNV (deletions >500 kb, duplica-
tions >2 Mb) was found in seven individuals leading to an overall
burden of CNVs of 3.0% (n = 7/231).

116/231 individuals (50.2%) remained unsolved after trio exome
sequencing. The unsolved group subsumed individuals with negative
results (n = 92/231, 39.8%), individuals with VUS in DD/ID associated
genes (n = 8/231, 3.5%) and individuals with variants in novel or
known candidate genes for DD/ID (n = 16/231, 6.9%). These overall

results are summarized in Figure 1(B).

3.3 | Characteristics of de novo variants

40.3% (n = 93/231) of all individuals or 80.9% of all solved cases
(n = 93/115), respectively, harbored de novo variants in protein-coding
81/93, 87.1%) or X-linked

genes (n = 12/93, 12.9%). Individuals with de novo variants in autoso-

disease genes, either in autosomal (n =

mal genes (n = 81) subdivided into 43 females and 38 males. Among
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individuals with de novo variants in X-linked genes (n = 12) were four
males and eight females. We identified a variety of variant types with
missense variants being the predominant type (n = 54/93, 58.1%)
followed by frameshift variants (n = 17/93, 18.3%), nonsense variants
(n = 10/93, 10.8%), canonical splice site variants (n = 3/93, 3.2%),
indels (n = 2/93, 2.2%), intragenic deletions (<10 kb) (n = 2/93, 2.2%),
large deletions >500 kb (n = 3/93, 3.2%) and large duplications >2 Mb

(n = 2/03, 2.2%) (Figure 2(A)). Parental mosaicism was identified in
one family (individual 47), in which the frameshift variant in KMT2B
was identified as low-level mosaicism (in 1/216 reads) in the healthy
mother. We did not encounter any cases of postzygotic mosaicism in
the index patients.

A wide spectrum of diagnoses was established based on the

molecular findings. In total, 72 distinct diagnoses were made with the
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majority of them occurring only once (n = 58/72, 79.2%). The most
commonly affected gene was ZEB2 (n = 4/72, 5.6%) associated with
“Mowat-Wilson syndrome”, followed by ARID1B (n = 3/72, 4.2%),
GNAO1 (n = 3/72, 4.2%), KMT2B (n = 3/72, 4.2%) and PURA (n = 3/
72, 4.2%). Disease-causing variants in nine different X-linked genes
comprising DDX3X (n = 2), MSL3 (n = 2), SMC1A (n = 2), CDKL5 (n = 1),
HNRNPH2 (n = 1), NONO (n = 1), PDHA1 (n = 1), STAG2 (n = 1), and
ZC4H2 (n = 1) were detected. The spectrum of genes containing
disease-causing de novo variants is visualized in Figure 2(B). Except for
one variant in GNAO1 (NM_020988.3:c.625C>T, p.(Arg209Cys)), no
recurrent variants were observed. More than half of all de novo vari-
ants (n = 50/93, 53.8%) were novel at the time of data interpretation
and had not yet been published. All de novo variants were absent from
the gnomAD as well as from the Database of Genomic Variants
(DGV).2 Table 1 gives an overview of all disease-causing de novo vari-
ants identified in this study, including the associated disorder.

We systematically evaluated constraint metrics (pLIs and Z-scores)
for all genes containing (likely) pathogenic de novo variants (excluding
CNVs spanning more than one gene). We observed that the majority of
genes (n = 58/67, 86.6%) showed a pLI score > 0.9 indicating a high
intolerance toward loss-of-function variants. 46/67 (68.7%) genes had
a Z-score > 3.09 expressing a high constraint toward missense variants
(Figure 2(C), Figure 2(D)). We further evaluated those five genes
(RHOBTB2, SPTBN2, KCNT1, IMPDH2, IFIH1, SOX11) that did not show
an overall constraint toward missense as well as toward loss-of-
function variants (Z-scores <3.09 and pLls <0.9). Apart from SOX11,
whose pLl is most likely low due to the small gene size, we observed
that pathogenic variants reported in those genes are all missense vari-
ants that cluster within or around a specific domain, in line with a

region-specific high constraint (Table S2, Figure S2).

3.4 | Identification of novel candidate and disease

genes

In cases without a definite molecular diagnosis, we sought to uncover
(novel) candidate genes for NDDs. In summary, 22 different candidate
genes were prioritized in 23 individuals. In the majority of individuals
(n = 16), de novo variants in candidate genes for autosomal dominant
inherited NDDs were found. Seven individuals harbored biallelic variants
in candidate genes for autosomal recessive inherited NDDs. All nomi-
nated candidate genes were submitted to GeneMatcher. Six individuals
were subsequently published within large collaborations connected
through GeneMatcher and one individual was published as case report
following two previous case descriptions, all together establishing six
novel disease-associated genes for NDDs, namely CYFIP2, KDM3B,
IMPDH2, FITM2, RALGAPA1, and VARS.%33 Those seven individuals were
considered as solved and assigned to the overall yield (Supplemental
Figure 1A). Furthermore, we published another three individuals from this
study as single case reports proposing three novel candidate genes for
NDDs (CAMK4, POU3F2, RBL2).3*3¢ A number of the nominated candi-
date genes from this study is included in ongoing studies with manu-

scripts in process and is therefore not listed in detail.

3.5 | Systematic reanalysis of unsolved cases

We reanalyzed existing exome data from all cases with negative
results older than >1 year (August 2017-September 2019). In sum-
mary, we performed reanalysis of 80 initially negative cases using
updated variant annotation and newly discovered disease-associated
genes. We achieved a diagnosis in two additional individuals increas-
ing the overall yield from n = 113/231 (48.9%) to n = 115/231
(49.8%). Both individuals harbored variants in genes associated with
autosomal recessive disorders (SMPD4, UGDH)®”%8 that had not been
described as disease-associated genes at the time of data interpreta-
tion and were therefore not prioritized as potentially relevant variants.
Furthermore, two previously not prioritized candidate genes were
identified (Supplemental Figure 1B).

4 | DISCUSSION

In this study, we present 231 individuals with different NDDs who
underwent trio exome sequencing. We further delineate the associ-
ated genetic spectrum of NDDs and corroborate the burden of de
novo variants in NDDs.

Performing trio exome sequencing in 231 individuals with NDDs
and their parents, we achieved an overall yield of 49.8%. The diagnos-
tic yield was significantly higher in individuals with NDD plus associ-
ated conditions in comparison to individuals with isolated NDD. Our
results are in accordance with a recent meta-analysis (assessing
30 articles with data on molecular diagnostic yield of exome sequenc-
ing in individuals with NDDs) that reported a diagnostic yield of 31%
for isolated NDD and 53% for NDD plus associated conditions.*® One
possible reason for this difference in diagnostic yields might be that a
subgroup of those cases with isolated NDD has a multifactorial basis
rather than a monogenic explanation.

With regard to disease burden of CNVs in NDDs, the observed
proportion of 3% in our cohort was smaller than previous estimations
ranging from 10% to 15%.2*37 This discrepancy most likely originates
from a depletion of our cohort for cases with CNVs due to prior
genetic work up including chromosome microarray analysis in some
cases. From a phenotype perspective, the vast majority of individuals
in our study displayed additional, often predominant neurological fea-
tures such as dystonia or seizures further underlining the convergence
in the genetics of NDDs and other neurological comorbidities.t%4¢

Even though it is widely recognized that de novo variants in protein-
coding genes constitute the major genetic cause of NDDs in outbred
populations, the burden as well as the genetic spectrum de novo variantsin
NDDs have not been fully elucidated yet.** In terms of de novo variants,
we made several key observations in our study: First, the frequency of
disease-causing de novo variants of 40.3% (n = 93/231) aligns with the
prevalence of 42% recently presented in a large sequencing study of indi-
viduals with NDDs,*® emphasizing the utility of trio sequencing as a
first-line strategy, in particular in sporadic cases.***? Second, with the
identification of 72 distinct molecular diagnoses in our cohort, we repli-

cate the enormous genetic heterogeneity underlying NDDs which
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challenges diagnostic determinations based on clinical examination alone,
even in disorders actually considered as highly recognizable such as
Mowat Wilson syndrome.*®*® Those findings illustrate the advantage of
exome sequencing overatargeted panel sequencing approach and further
support exome sequencing as first-tier for the genetic testing of
unexplained NDD in clinical practice.*®** Third, we expand the list of
disease-causing variants in NDDs-associated genes with 50 previously
unreported (likely) pathogenic variants facilitating variant classification in
other cases. Last, we observed that in the majority of genes containing
de novo variants the predicted constraint metrics indicated an overall
high intolerance toward loss-of-function (pLI > 0.9) and/or missense
variants (Z-score > 3.09) or a region-specific constraint illustrating the
importance of constraint metrics for disease gene discovery and the
understanding of disease mechanism.?®

The percentage of autosomal recessive disorders in our NDD
cohort (~16%) which did not derive from a significant proportion of
cases with a consanguineous background was surprisingly high in
comparison to a previous study showing a low contribution (~4%) of
autosomal recessive disorders to NDD in patients with European
ancestry.*® The proportion of cases with syndromal NDD was higher
in the subgroup with autosomal recessive inheritance (n = 19/19,
100%) in comparison with those with de novo variants (n = 89/93,
95.7%) raising the question whether inclusion criteria were different
in our study in comparison with previously published cohorts.

As hundreds of novel causal genes for rare NDDs still await
discovery,® we also aimed to elucidate novel disease-associated genes
for NDDs leading to the prioritization of more than 20 different candi-
date genes in our cohort of 231 individuals. A number of the nomi-
nated candidate genes have already resulted in publication as novel

disease-associated genes, 282731

once more emphasizing the potential
of international data sharing and cooperation.*®*” Most important,
we illustrate that a parent-offspring trio approach is also a powerful
tool for the discovery of novel disease-associated genes as it facili-
tates the prompt identification of de novo variants and assignment of
zygosity for inherited variants.*? Given the fact that our overall diag-
nostic yield did not include individuals with findings in new candidate
genes, some of which are currently in preparation for publication, we
furthermore anticipate that the actual number of molecular diagnoses
in our cohort is going to increase.

The discovery of gene-disease and variant-disease associations is
continually growing necessitating regular reevaluation of unsolved
exomes.*®*’ |n line with previous studies demonstrating an improved

diagnostic yield by systematic reanalysis of existing data,*®>°

we
achieved a definitive diagnosis in two additional individuals (among
80 reanalyzed individuals with initial negative results). Beyond,
reanalysis in our cohort lead to the identification of two novel candi-
date genes for NDDs highlighting the potential of subsequent
reanalysis also for disease gene discovery.*51

In summary, we consolidate the contribution and genetic hetero-
geneity of de novo variants in NDDs highlighting trio exome sequenc-
ing as an excellent diagnostic tool for rare NDDs. Besides, we
illustrate the potential of a trio-approach for candidate gene discovery

and the power of systematic reanalysis of unsolved cases.
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