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Table S1: Composition of the A4 polycyclic aromatic hydrocarbon standard mixture. Structure,

concentration, molecular formula and exact mass are given.

# Structure Name, sum formula, exact mass | Concentration [mg/I]
1 Naphthalene 7.65
128.062600
2 Biphenyl 1.95
Ci2H1o
154.078250
3 . Acenapthene 7.96
OO Ci2H1o
154.078250
4 . Fluorene 9.21
Q O CizHio
166.078250
5 Phenanthrene 8.57
O‘O C14H10
178.078250
6 Anthracene 8.08
CusH1o
178.078250
7 O Fluoranthene 7.72
O. CisH1o
O 202.078250
8 “ Pyrene 9.22
CisH1o
OO 202.078250
9 O Benz[alanthracene 1.26
C18H12
OO‘ 228.093900
10 OO Chrysene 1.65
w C13H12
O‘ 228.093900
11 O Benzo[e]pyrene 1.77
(I CaoH1z
9¢ 252.093900
12 O Perylene 1.48
CaoH12
J 252.093900
13 Coronene 1.43
&“‘ CaH12
99 300.093900
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Table S2: Composition of the M3 polycyclic aromatic hydrocarbon standard mixture. Structure,

concentration, molecular formula and exact mass are given.

Structure Name, sum formula, exact mass | Concentration [mg/I]
1 Naphthalene 4.95
CioHs
128.062600
2 i Acenaphtylene 4.38
CioHs
152.062600
3 O Biphenyl 0.77
Ci2H1o
O 154.078250
4 Acenapthene 4.89
Ci2H1o
154.078250
5 . Fluorene 5.53
D [
166.078250
6 Phenanthrene 4.76
O C14H10
O‘ 178.078250
7 Anthracene 1.30
(L e
178.078250
8 O Fluoranthene 1.70
O. Ci6H10
O 202.078250
9 Pyrene 2.37
Ci6H10
OO 202.078250
10 2-Phenylnaphthalene 0.76
Ci6H12
OO 204.093900
11 O Benz[a]anthracene 1.69
C18H12
OO‘ 228.093900
12 Chrysene 1.64
C18H12
O‘ 228.093900
13 Benzo[c]phenanthrene 0.78
(3,4-Benzophenanthrene)
’ CisHio
O‘ 228.093900
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14 O Benzo[b]fluoranthene 0.60
O CaoH12
CI 252.093900
15 Benzo[k]fluoranthene 0.86
T (e
O 252.093900
16 OO Benzo[a]pyrene 0.78
CooH12
O‘O 252.093900
17 O Benzo[e]pyrene 0.81
CooH12
O‘ 252.093900
18 O Perylene 0.43
CaoH12
Q“O 252.093900
19 OO OO 2,2'-Binaphthyl 0.77
CaoH14
254.109550
20 Indeno[1,2,3,c,d]pyrene 0.41
" Cx2H12
'Oc 276.093900
21 Benzo[g, h,ilperylene 0.42
soolCT
O 276.093900
22 O Dibenz[a,h]anthracene 0.43
CO | e
O 278.109550
23 O Picene 0.33
Cx2Hia
O‘ 278.109550
24 O Dibenz[a,c]anthracene 0.74
(1,2,3,4-Dibenzanthracene)
soodll
O 278.109550
25 “ Coronene 0.44
C24H12
O’O" 300.093900
26 0 Methyl eicosanoate 0.70
CHg(CHz)17CHs~ ~OCH; | CHs3(CH,)1sCOOCH;
326.318480
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Figure S1: Photographic image of the atmospheric pressure single photon laser ionization (APSPLI)
setup using a fluorine excimer laser (157 nm). The Nd:YAG solid state laser operated at the 4%

harmonic (266 nm) for APLI is also depicted.
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Figure S2: Atmospheric pressure single-photon laser ionization (APSPLI) of Indeno[1,2,3,c,d]pyrene
subjected to the source by gas chromatography coupling. Aside from the characteristic oxidation
ionization artifact [M+0]**, doubly charged species [M+0]%** can particularly be found for species with

high aromaticity (high DBE).
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Figure S3: Effect of deploying an oxygen-, a water-filter, and both filter types for purification of the
nebulizer gas supply to the relative occurrence of the oxidized ionization artifact [M+0]** compared to

the molecular radical cation [M]**.
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near sample introduction middle of the ion source near MS entrance

Figure S4: Visualizing the variation of the laser beam position (diameter ~7 mm). Schematic cut through
the ionization chamber with evolved gas analysis (EGA) exhaust at the left and mass spectrometric
inlet at the right. Laser beam position a) near the sample (EGA) introduction, b) in the middle of the

ion source, and c) close to the mass spectrometry entrance.
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Figure S5: Selected compounds of the PAH standard mixture ionized by APSPLI at different positions
in the ion source. The intensity of the radical cations (depicted at the ordinate) strongly depends on

the ionization location.
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Figure S6: Compound class distribution of the light crude oil introduced by GC and ionized by APSPLI.
The classes are divided into the respective radical cation (odd-electron configuration) and protonated
species (even-electron configuration). Primarily radical cations could be found with a factor of 60-180

higher abundances compared to the protonated species.
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Figure S7: Double bond equivalent (DBE) distribution for the CH-, CHO-, CHS- and CHSO-class. The
pattern between the CHO- and CH- as well as between CHS- and CHSO-class significantly differ

indicating a rather low contribution of oxidized ionization artifacts.
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Figure S8: Gas chromatography atmospheric pressure single photon laser ionization (GC-APSPLI) at
157 nm of a light crude oil (CPC Blend, Kazakhstan). a) CH,-based Kendrick mass defect plot color-
coded according to the attributed compound class and size coded according to the summed
abundance, and b) mass spectrometric enlargement to the nominal mass 360 with attributed

elemental compositions.
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