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ABSTRACT 
 

Background: Due to the non-randomized nature of real-world data, prognostic factors 

need to be balanced, which is often done by propensity scores (PS). This study aimed 

to investigate whether autoencoders, which are unsupervised deep learning 

architectures, might be leveraged to compute PS. 

Methods: We selected patient-level data of 128,368 first-line treated cancer patients 

from the Flatiron Health EHR-derived de-identified database. We trained an 

autoencoder architecture to learn a lower-dimensional patient representation, which we 

used to compute PS. To compare the performance of an autoencoder-based PS with 

established methods, we performed a simulation study. We assessed the balancing and 

adjustment performance using standardized mean differences (SMD), root-mean-

square-errors (RMSE), percent bias and confidence interval (CI) coverage. To illustrate 

the application of the autoencoder-based PS, we emulated the PRONOUNCE trial by 

applying the trial’s protocol elements within an observational database setting, 

comparing two chemotherapy regimens. 

Results: All methods but the manual variable selection approach led to well-balanced 

cohorts with average SMDs <0.1. LASSO yielded on average the lowest deviation of 

resulting estimates (RMSE 0.0205) followed by the autoencoder approach (RMSE 

0.0248). Altering the hyperparameter setup in sensitivity analysis, the autoencoder 

approach led to similar results as LASSO (RMSE 0.0203 and 0.0205, respectively). In 

the case study, all methods provided a similar conclusion with point estimates clustered 

around the null (e.g. HRautoencoder 1.01 [95% CI 0.80-1.27] vs. HRPRONOUNCE 1.07 [0.83-

1.36]). 

Interpretation: Autoencoder-based PS computation was a feasible approach to control 

for confounding but did not perform better than some established approaches like 

LASSO.  

Main Text
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INTRODUCTION 

Randomized controlled trials (RCTs) are the gold standard when evaluating the effects 

of interventions on health-related outcomes. However, the digitization of healthcare 

infrastructure, such as electronic health records (EHR), and a boost in computational 

power in the past years have led to an increase in evidence generated by routinely 

collected healthcare data, often termed real-world data.1–3 

Due to the heterogeneous and non-randomized nature of these data, such analyses 

inherit the chance to lead to misleading conclusions when biases, such as confounding 

bias, are not addressed appropriately.4 Therefore, propensity score (PS) techniques are 

popular analytical approaches to balance patient characteristics in observational 

research.5 In general, PS are defined as an individual’s (i) conditional probability to be 

assigned to a particular treatment (Zi) given observed baseline covariates (Xi) with 

Pr(Zi = 1|Xi).6 By conditioning on the PS, researchers try to create positivity; that is, if a 

given combination of covariate values is observed in one cohort, it should also appear in 

the other cohort under comparison.7 Under the assumption of no unmeasured 

confounding and a correctly specified PS model, unbiased treatment effects may be 

estimated, e.g. via matching or weighting on the PS. 

There is ongoing debate about the ideal strategy to correctly specify the PS8,9 and in the 

majority of cases logistic regression models are fitted using a set of a-priori investigator-

defined covariates.10 This approach is straightforward but may be error prone when 

interaction terms or higher-order relationships are not appropriately modeled.11 

Moreover, as healthcare databases are getting increasingly complemented by more 

dimensions like genomics, selecting the correct set of covariates on a manual basis 

becomes infeasible and automatable data-adaptive methods are warranted. 

With the ability to handle high-dimensional datasets in a non-linear and automatable 

fashion, deep learning models are highly attractive approaches to solve these 

problems.12 We aimed to investigate if autoencoders, which are unsupervised deep 

learning encoder-decoder architectures that learn a latent non-linear lower-dimensional 
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covariate representation, might be leveraged as a data-adaptive alternative to compute 

PS for comparative effectiveness research.  

The objective of this study is twofold. First, we compare the performance of covariate 

balancing and confounding bias reduction with the autoencoder-based PS as compared 

to established adjustment strategies in a simulation framework among cancer patients 

with a first line (1L) systemic anti-cancer treatment. In the second part of this study, we 

will emulate the 2015 published PRONOUNCE trial13 by applying the trial’s major 

protocol elements to the observational database setting of this study in order to illustrate 

the application of the autoencoder-based PS to a real comparative effectiveness use 

case. 

METHODS 

Data sources and study population 

For this retrospective real-world data study, we used the nationwide Flatiron Health 

EHR-derived de-identified database which includes data from over 280 cancer clinics 

including more than 2.2 million US cancer patients available for analysis. The de-

identified patient-level data in the EHRs include structured data (e.g. laboratory values 

and prescribed drugs) in addition to unstructured data collected via technology-enabled 

chart abstraction from physician’s notes and other unstructured documents (e.g. 

biomarker reports). In this study, we selected patients out of tumor-specific databases 

and pooled them into a single cohort. Patients were eligible to be included if they were 

diagnosed with any primary tumor and received a 1L systemic anti-cancer treatment 

(CONSORT diagram, Figure 1). 

Data curation and covariate ascertainment 

We considered covariates for modeling if they were applicable across all tumor types 

and for at least 20% of all patients (eTable 1). We imputed missing covariates or those 

with implausible values (as defined as being outside of 1.5 x the interquartile range from 

the quartiles Q1 and Q3, respectively14) using median imputation for continuous 

covariates or assigning a missing-indicator category to one-hot encoded categorical 
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variables.15,16 In addition, we derived empirical covariates of lab and vital sign tests. As 

the Flatiron Health EHR-derived de-identified database does not contain records of 

claims, procedure codes and outpatient diagnosis codes, these empirical covariates 

were derived from the frequency of clinical laboratory tests and vital sign tests (which 

corresponds to steps 1-3 of the high-dimensional propensity score algorithm17), which 

resulted in 123 additional covariates (eTable 1). All covariates were measured at or 

before the start of 1L therapy (= index date) with a maximum lookback window period of 

90 days relative to the index date (eFigure 1).18,19 

Non-linear latent variables and propensity scores computed by autoencoder 

The following section briefly illustrates the autoencoder-based PS computation 

(terminology used in this paragraph is defined in eAppendix1 and in Bi et al.20). 

Autoencoders are unsupervised neural network architectures that generally consist of 

an input layer, a lower-dimensional hidden “bottleneck” layer, and an output layer with 

the same dimensions as the input layer. Conceptually, the autoencoder-based PS 

computation can be described as follows (Figure 2). All available information about a 

patient may be defined as a high-dimensional covariate vector serving as the input 

layer. This input layer is sequentially compressed to arrive at a latent non-linear lower-

dimensional covariate representation in the hidden bottleneck layer (encoding). Given 

the lower-dimensional information of the bottleneck layer, the actual input information 

can be reconstructed (decoding); the decoded information is leveraged in autoencoders 

in order to adjust the network parameters in each iteration by computing the loss 

between the actual data and the predicted reconstruction. Due to the compression and 

the optimization of parameters of the neural network in each encoding–decoding 

iteration step, the autoencoder learns essential features describing the highest variance 

of a dataset. This way the bottleneck layer captures the true data manifold in a much 

lower-dimensional representation (embedding) that can eventually be used to specify 

the PS. 

Following the above described general setup, we developed an autoencoder 

architecture (details on architecture, hyperparameters and code can be found in 
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eAppendix1). To compute the PS based on the trained embedding, we used a logistic 

regression as the final output layer.  
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Propensity score estimation methods for comparison 

To investigate the performance of an autoencoder-based PS, we chose established 

adjustment (multivariable regression) and propensity score estimation methods (manual 

variable selection, principal component analysis [PCA] and LASSO) for comparison 

employing a simulation framework (Table 1). We additionally extended all machine 

learning models by the set of empirical covariates that were derived as described above 

(EC extended models 7-9). More details see eAppendix1. 

Simulation setup 

The overall objective was to simulate different realistic scenarios of confounding bias 

between a fictional head-to-head drug comparison and to investigate the resulting 

balancing and adjustment after 1:1 PS matching with PS computed using the 

aforementioned propensity score estimation methods (Table 1). We defined the 

outcome of interest for this simulation study as overall survival, which we computed as 

the time from index date to death due to any reason or censoring. 

The general simulation algorithm is illustrated in Figure 3A. In brief, all eligible patients 

were equally randomized to either a Drug A or a Drug B cohort to remove any 

prognostic association of the covariates to the assignment probability to one of the 

cohorts. This resulted in a hazard ratio (HR) for overall survival of 1.00 (95% confidence 

interval [CI] 0.99-1.01), which served as the true estimate in this simulation (eFigure 2). 

In a next step, we grouped patients were grouped into prognostic quartiles (Q1-Q4) 

according to their baseline hazards towards the outcome (overall survival) with patients 

in Q1 having a good prognosis (lowest hazard) to patients in Q4 having a poor 

prognosis (eFigure 3 & eTable 2). The prognostic quartiles are based on a published 

prognostic score for overall survival (eFigures 4 & 5) that was developed within a large 

pan-cancer cohort and is derived from a formula with strongly prognostic demographic, 

clinical, routine hematology, and blood chemistry parameters (eTable 3) that were 

modeled within a Cox proportional hazard framework to derive a multivariable 

prognostic risk model for overall survival.21 The resulting prognostic score was validated 

in two independent phase I and III clinical studies. To simulate baseline imbalances, we 
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exploited the correlation between prognostic score-based balance measures for 

propensity score models with bias in the treatment effect estimate using conditional re-

sampling as described in the following.22 Out of the Drug A cohort, we sampled 10,000 

patients completely at random and independent of their assignment to the prognostic 

quartiles to arrive at a homogenous sample with a constant prognosis in each 

replication step. In contrast, we sampled 10,000 patients randomized to the Drug B 

cohort with a conditional sampling probability based on their assignment to a prognostic 

quartile (e.g. scenario 1: patients in Q1 were sampled with a probability of 40%, in Q2 

with 30%, in Q3 with 20%, and in Q4 with 10%). Because quartile membership is 

associated with overall survival, the conditional sampling of the Drug B cohort (as 

compared to the random sampling of the Drug A cohort) naturally induces a spurious 

association, which is solely driven by the variables defining the quartiles. We applied 

this sampling scheme in total 27 different sampling probabilities with 100 replications 

each to simulate various scenarios of confounding bias yielding biased estimates with 

different magnitudes and directions away from the true HR of 1.00 (Figure 3B). 

We finally assessed the comparative performance of each PS computation method as 

to how much each method was able to adjust for the above described induced spurious 

association. For this purpose, we matched the resulting cohorts without replacement in 

a 1:1 ratio with a caliper width of 0.2 standard deviations of the predicted PS logit23 and 

HRs were estimated using Cox proportional hazards regression models with a robust 

variance estimator.24 Simulations of treatment effects other than a null treatment effect 

were not considered to avoid complications with the collapsibility 25 and proportional 

hazards assumption26 of HRs. 

We assessed the overall balance in the distribution of important baseline covariates 

after PS matching using standardized mean differences (SMD) with a cut-off of < 0.1 

indicating sufficient balance.27 To assess the average deviation of the resulting HRs and 

the true HR of 1.00, we computed the root-mean-square-error (RMSE) as performance 

metrics. To measure the uncertainty of the point estimates, we computed the coverage 

probability as the proportion of times the estimated 95% confidence interval included the 
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true HR of 1.00.28,29 Additionally, we estimated the absolute bias (in %) as 

|
𝐻𝑅𝑝𝑜𝑜𝑙𝑒𝑑−𝐻𝑅𝑇𝑟𝑢𝑒

𝐻𝑅𝑇𝑟𝑢𝑒
𝑥100 |for each simulation scenario.30  

Case study 

To illustrate the application of the autoencoder-based PS in comparative effectiveness 

research, we emulated the PRONOUNCE trial by applying the major protocol design 

elements of this trial within the observational Flatiron Health EHR-derived de-identified 

database. 

In brief, the PRONOUNCE trial was a randomized, open-label, phase III trial aimed at 

evaluating the comparative efficacy of carboplatin/pemetrexed followed by pemetrexed 

maintenance vs. bevacizumab/carboplatin/paclitaxel followed by  bevacizumab 

maintenance as 1L treatment among advanced nonsquamous non-small-cell lung 

cancer patients.13 In terms of overall survival, the PRONOUNCE trial did not find a 

difference in treatment efficacy for either of the combinations, which served as our 

expected outcome for the emulation of this trial.  

For the implementation of the major in-/exclusion criteria and study design elements, we 

followed the target trial emulation framework by Hernán & Robins31 and summarized the 

comparison to the original in eTable 4 and eFigure 6. Instead of a random assignment 

to either treatment strategy in a 1:1 ratio in the original trial, we applied propensity score 

matching (applying the different PS computation approaches) in a 1:1 ratio (nearest 

neighbor without replacement as main analysis)32 and SMR weighting (sensitivity 

analysis)33. We derived estimates for overall survival using Cox proportional hazards 

regression with the initiation of maintenance therapy as start of follow-up. The causal 

contrast of interest was analyzed as the counterfactual comparison of initiators of the 

two different treatment strategies as an observational equivalent of the RCT’s intent-to-

treat analysis. Further details are outlined in the supplementary methods (eAppendix1). 

RESULTS 
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The characteristics of the eligible simulation population are displayed in eTable 5. 

Results of the hyperparameter selection and evaluation are illustrated in the 

supplementary material (eFigures 7-11) and computation times for the autoencoder 

models and simulations are summarized in eFigures 12&13 and eTable 6, respectively. 

Simulation – balancing properties 

Figure 4 summarizes the average balancing performance of important baseline 

characteristics by simulation scenario. In general, most PS estimation methods led to 

sufficient balancing of important patient characteristics at baseline (SMD<0.1). In some 

scenarios, imbalances for some covariates were observed for PS computed using 

manual variable selection. Investigating SMDs by scenario indicated that those 

imbalances resulted from some of the more extreme confounded scenarios (eFigure 

14).  

Simulation – RMSE, percent bias and coverage 

The overall results across all simulated scenarios and iterations are illustrated in Table 

2. Estimates without any adjustment resulted on average in high RMSEs (0.1205) and 

bias (10.4% bias) and low coverage (16.41%). When covariates were manually chosen 

(models 2 & 3), the PS method led on average to a lower RMSE (0.0670 vs 0.0790), 

bias (5.73% vs 6.75%) and a higher coverage (32.81% vs. 27.67%) as compared to 

choosing the same covariates for direct outcome regression, respectively. Point 

estimates were observed to scatter broadly around the null for both methods (eFigure 

15). Comparisons between model standard errors and empirical standard errors 

indicated a less reliable variance estimation for models 1-3 (eTable 7). The PCA PS 

estimation method led to a noticeable improvement in adjustment performance as 

compared to selecting covariates manually with a RMSE of 0.0293 and 0.0329 for PCA 

and PCA EC, respectively. Employing an autoencoder-based estimation of the PS led to 

further improvements in RMSEs of 0.0248 and 0.0265, bias of 2.00% and 2.15% and 

coverage of 87.70% and 85.19% for autoencoder and autoencoder EC respectively. 

The best adjustment performance was observed with both LASSO approaches with 

around 1.7% bias and nearly 94% coverage.  
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We observed the same pattern when we compared the point estimates by simulated 

scenarios (Figure 5). As expected, unadjusted estimates ranged from approximately 

0.8 to over 1.2. Both LASSO approaches followed by the autoencoder approaches 

demonstrated the best adjustment performance in most of the cases. In particular, we 

observed that the LASSO EC model had the best confidence interval coverage to 

include the true HR in at least 95% of the times in 14 out of the 27 simulated scenarios 

(Figure 5 and eTables 8-10). When the % bias was compared by simulated scenario, 

the results were consistent with less than 2% (LASSO and LASSO EC) and 3% 

(autoencoder and autoencoder EC) bias in almost all of the scenarios (Figure 6 and 

eTable 9). 

Sensitivity analyses 

When we changed the autoencoder architecture from three hidden layers to one in 

sensitivity analysis I, the performance of the autoencoder-based models slightly 

improved (eTable 11). The overall performance remained nearly the same when the 

main architecture was altered to having a 128-dimensional bottleneck layer size in 

sensitivity analysis II (eTable 12). Combining the architecture alterations from sensitivity 

analysis I and II, results of the autoencoder approach were comparable to the ones of 

the LASSO approaches with an average RMSE of 0.0203 (eTable 13). When taking all 

possible PCs, instead of those describing 80% of the cumulative variance explained, the 

performance according to RMSE and bias decreased while the coverage improved 

(eTable 14). Increasing the number of replications to 500 did not noticeably change the 

results of the main analysis, indicating that 100 replications per scenario were sufficient 

(eTable 15). 

Case study 

There were 781 patients eligible for the case study (eFigure 16). The results are 

summarized in Figure 7. All analyses suggested a null association with the unadjusted 

point estimate being slightly below the null. All adjusted models ranged between point 

estimates of 1.00 to 1.09 with the autoencoder analysis being slightly closer to the null 

(HRautoencoder 1.01 [95% CI 0.80-1.27] vs. HRPRONOUNCE 1.07 [0.83-1.36]) as compared to 
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the autoencoder EC model (HR 1.09 [95% CI 0.87-1.37]). SMR weighting led to very 

similar estimates with the exception of the LASSO approaches having much wider 

confidence intervals (eFigure 17). 

DISCUSSION 

In this RWD study, we developed a novel automated autoencoder-based approach and 

compared it with established approaches. Using a comprehensive simulation 

framework, we observed that in terms of confounding control, the autoencoder-based 

approach led to reasonable results, but did not perform substantially better than some of 

the established approaches such as LASSO. In an empirical case study emulating the 

PRONOUNCE trial using observational data, the autoencoder-based results were 

consistent with the conclusion of the original trial. 

Propensity scores are frequently used analytical tools (eFigure 18) since they enable 

researchers to collapse many dimensions of confounding covariates into a single 

dimension while still maintaining sufficient precision. The advantage of deep learning-

based PS is the ability to easily handle large amounts of data involving complex 

associations between covariates. An earlier study from 2008 investigated different 

techniques in PS estimation with various non-linear and non-additive associations on 10 

binary/continuous covariates and concluded that even a rather simple neural network 

outperformed recursive partitioning algorithms in terms of providing the least 

numerically biased estimates.34 This may suggest that the appropriate modeling of 

potentially non-linear covariate structures may be of relevant importance for 

confounding control. Especially analyses in EHR data may benefit from autoencoder-

based PS as these usually capture routine care laboratory measurements and vital sign 

parameters which have been shown to be of paramount prognostic value.21,35 This may 

explain why in this study the autoencoder-based PS performed better than the PCA 

approaches since, in case of no non-linearity, both methods should in principle lead to 

similar results.36 However, given that continuous covariates are still usually rather rare in 

healthcare databases, we may have underestimated the abilities of the autoencoder-

based approach in this study and further studies are warranted once multimodal data 
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elements, such as medical images and sequencing data, complement contemporary 

databases.37  

Application and use cases 

The autoencoder-based PS can be generally used in any type of comparative 

effectiveness study where sufficient confounder balancing between two cohorts is 

required. In the here presented comparative effectiveness case study, it was possible to 

derive the same qualitative conclusion as in the PRONOUNCE trial by applying 

autoencoder-based PS. Although the primary objective in the case study was to test the 

use of autoencoder-based PS in a real comparative effectiveness research setup, the 

equal results of all methods may be explained with the fact that confounding bias was 

not as strong in this particular research question as compared to some of the more 

extreme scenarios in the simulation. This seems plausible given that due to the variety 

of possible treatments and sometimes lacking evidence for the most effective 

combination, the selective channeling of patients with higher risk (as often observed 

with prescription drugs like COX-2 inhibitors vs. non-selective NSAIDs) may not be 

apparent. This may underline an attractive feature of the autoencoder-based PS, which 

could be used as an automated and data-adaptive sensitivity analysis in comparative 

effectiveness studies with unknown extent of confounding bias. 

Especially in the era of precision medicine, in which treatment decisions for specific 

subpopulations of patients are based on distinct molecular characteristics, comparative 

effectiveness research might play an increasingly important role in addressing 

challenges e.g. in the area of early clinical development of new therapeutics. Here, 

designs such as external control arms are interesting approaches which could benefit 

by advanced analytics like deep learning-based PS. A recent proof-of-concept study 

assessed how well external controls could have approximated the actual standard-of-

care controls in nine lung cancer trials.38 The authors reported that the comparison of 

estimates between RCTs and external controls resulted in a Pearson correlation 

coefficient of 0.86. This is an encouraging example suggesting that external control 

arms come with a sufficient validity and can play an important role in facilitating real-

world data to support early clinical development and regulatory submissions.3,39  
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Strengths and limitations 

Due to the nature of routinely collected health records, there is missing data. In this 

study, we employed median imputation and assigning a missing-indicator category to 

one-hot encoded categorical variables because this or similar approaches were 

suggested to have good performance in studies with large datasets where multiple 

imputation would be computationally very expensive and generally not 

operationalizable.16,40 This approach is also supported by various recent prediction 

models trained on EHR data which reported outstanding performance.15,41  

In addition, data-adaptive approaches always inherit the risk of including covariates that 

may be collider covariates (M-bias), instrumental covariates (Z-bias), or causal 

intermediates. Colliders are covariates that open a causal path from exposure to 

outcome.42 Including such covariates in the PS computation may induce a spurious 

association where in fact there is none. As besides directed acyclic graphs there is no 

formal way to test for colliders, it may be difficult to exclude such variables prior to PS 

computation. However, Schneeweiss found that under realistic scenarios a collider-

induced bias was negligible and outweighed by the adjustment effect for other 

covariates.43 Instrumental variables (IV) are covariates that are only associated with the 

exposure but not with the outcome. IVs are frequently used to control for unmeasured 

confounding44 but also introduce bias (Z-bias) when conditioning on them. Especially in 

oncology, calendar period effects are strong predictors for therapy decisions once new 

breakthrough treatments are approved.45 Although there is a theoretical chance to have 

unintentionally included IVs, Meyers et al. showed that only in the presence of strong 

unmeasured confounding does Z-bias have effects worth mentioning.46 While expert 

knowledge plays an important role in avoiding covariates that could mediate the 

association between exposure and outcome47, the risk of adjusting for causal 

intermediates can also be mitigated with appropriate study designs such as an active 

comparator, new user design as applied in this study.4,43  

A unique strength of this study is the novelty approach to learn patient representations 

for PS computation in a data-adaptive manner, which we found to have a reasonable 

performance and which may serve as a promising tool for the future once more data 
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elements complement contemporary databases. Applying comprehensive sensitivity 

analyses, we found the methodology to be robust as all setups and scenarios resulted 

in a similar conclusion. The observation that the autoencoder architecture with less 

hidden layers and a larger bottleneck layer led to results closer to LASSO gave some 

concern that this may have been the consequence of overfitting of the main model. 

Nevertheless, differences were marginal and did not change the main conclusion while 

the hyperparameter setup of the main model was found to be a reasonable trade-off 

between compactness of the resulting embedding and sufficient reconstruction 

performance and generalizability. 

It is further important to credit that the autoencoder approach is a pure unsupervised 

method, which means that the confounding control in this study has been solely 

achieved without optimizing the network towards the probability of patients receiving the 

treatment, which needs to be acknowledged when comparing to supervised approaches 

like LASSO. Hence, potential deep-learning architectural extensions would be of utmost 

interest, e.g. by jointly modeling targets and inputs using end-to-end learning 

architectures.  

A limitation of this simulation is that due to the non-collapsibility of HRs, only a null 

treatment effect could be simulated which may in future research be addressed by 

estimating risk-differences and more sophisticated simulation techniques such as 

plasmode simulations.48,49 In addition, variance estimation seemed to be less reliable for 

models 1-3 (eTable 7), limiting the ability to make final conclusions about their true CI 

coverage. 

For this study, it was possible to use a large underlying population to train and 

empirically examine the comparative performance of the proposed autoencoder 

approach. This real-world database provided comprehensive oncology-specific data, 

which underwent a rigorous data quality assurance process prior to release.  

Finally, it is important to acknowledge that this study primarily focused on the analytical 

aspects to reduce confounding. Carefully chosen analysis always needs to go along 

with a causal study design to avoid serious biases such as reverse causality and 
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immortal time bias, which are known as sources for much larger bias than conventional 

confounding.43,50  

Conclusion 

In summary, we developed an autoencoder-based PS computation that our assessment 

found to be a feasible approach to reduce confounding bias, although not with a 

substantially stronger performance than some of the established approaches such as 

LASSO. As a promising tool for the future, it may be considered alongside with 

established approaches in non-randomized comparisons in comparative effectiveness 

research.  
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FIGURES 

Figure 1. Consort diagram illustrating selection of eligible patients for simulation. 

Figure 2. Conceptual architecture of patient representation learning and autoencoder-

based propensity score computation.  

Figure 3. (A) Sampling algorithm for simulation and (B) overview of magnitude of induced 

confounding bias by simulation scenario (CI = Confidence interval, HR = Hazard ratio, Q 

= Quartile, ROPRO = Real world prognostic score) 

Figure 4. Baseline covariate balance by propensity score computation method and 

simulation scenario. Average standardized mean differences (SMDs) are displayed for 

each of the 27 scenarios per baseline characteristic (ALP = Alkaline phosphatase, ALT = 

Alanine aminotransferase, AST = Aspartate aminotransferase, BMI = Body mass index, 

EC = Empirical covariates, ECOG = Eastern Cooperative Oncology Group (ECOG) 

Performance Status, LASSO = Least absolute shrinkage and selection operator, LDH = 

Lactate dehydrogenase, NLR = Neutrophil-to-lymphocyte ratio, PC(A) = Principal 

component (analysis),  

Figure 5. Average hazard ratios (HRs) for each of the 27 simulated scenarios and 

paneled PS estimation method. Asterisk (*) indicates that the confidence interval 

coverage for the respective scenario included the true HR in at least 95% of the times. 

The red dashed line indicates the true HR that is intended to be recovered by the 

propensity score adjustment (EC = Empirical covariates, HR = Hazard ratio, LASSO = 

Least absolute shrinkage and selection operator, PCA = Principal component analysis) 

Figure 6. Comparison of average absolute % bias by simulation scenario for each 

propensity score (PS) estimation method (EC = Empirical covariates, LASSO = Least 

absolute shrinkage and selection operator, PCA = Principal component analysis). 

Figure 7. Forest plot illustrating hazard ratio (HRs) and 95% CIs for overall survival by 

propensity score (PS) estimation method (CI = Confidence interval, EC = Empirical 
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covariates, HR = Hazard ratio, LASSO = Least absolute shrinkage and selection operator, 

PCA = Principal component analysis). 
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Table 1. Models and adjustment strategies compared in simulation framework. 

Model Adjustment strategya 
Data-adaptive covariate 
selection / transformation 

Covariates adjusted for or potential covariates to choose from 

1 Unadjusted - 
- 
 

2 
Multivariable Regression 
(direct outcome model) 

No 
Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time 
from initial cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis 
 
 3 Manual variable selection No 
Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time 
from initial cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis 

4 LASSO Selection 
All generally available covariates. Algorithm picks covariates according to 
shrinkage/regularization 

5 PCA Transformation 
All generally available covariates.  Algorithm computes linear transformation of all 
covariates in a dataset to principal components (PCs) of which the top n PCs, 
explaining 80% variance, were chosen 

6 Autoencoder Transformation 
All generally available covariates.  Algorithm computes lower-dimensional 
representation of j dimensions based on non-linear data operations into latent-space 
variables 

7 LASSO EC Transformation Model 4 + 123 empirical covariatesc 

8 PCA EC Selection Model 5 + 123 empirical covariatesc 

9 Autoencoder EC Transformation Model 6 + 123 empirical covariatesc 

Abbreviations: 1L = first-line systemic cancer treatment, EC = Empirical covariates,  LASSO = Least absolute shrinkage and selection operator, PC(A) = 
Principal component (analysis) 
 

a In model 2 the estimate is directly computed from a multivariable regression while models 3-9 are based on propensity score matching 

b Total of 318 demographic, clinical, cancer-/disease-specific covariates (see eTable 1) 
c Total of 123 empirical frequency covariates derived, corresponds to step 1-3 of the high dimensional propensity score algorithm (see eTable 1) 
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Table 2. Summary of adjustment performance across all scenarios. 

Method RMSE Bias (%) CI coverage (%) 

Unadjusted 0.1205 10.4 16.41 
Multivariable regression 0.0790 6.75 27.67 
Manual variable selection 0.0670 5.73 32.81 
LASSO 0.0205 1.65 93.74 
PCA 0.0293 2.39 79.59 
Autoencoder 0.0248 2.00 87.70 
LASSO EC  0.0210 1.69 93.52 
PCA EC  0.0329 2.71 74.00 
Autoencoder EC 0.0265 2.15 85.19 
Abbreviations: CI = Confidence interval, EC = Empirical covariates, LASSO = Least absolute shrinkage and 
selection operator, PC(A) = Principal component (analysis), RMSE = Root mean squared error 
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N	=	199,225	patients	in	total

N	=	1,250	patient(s)	excluded	with	>1	record	because	of	multiple	(second,	third,	...)	tumors

N	=	197,975	patients	remaining

N	=	46,009	patients	excluded	with	no	recorded	first	line	therapy

N	=	151,966		patients	remaining

N	=	2,357	(duplicate)	patients	excluded	with	multiple	sub-lines	within	the	first	line

N	=	149,609		patients	remaining

N	=	21,235	patients	without	activity	in	90	days	after	latest	diagnosis	date

N	=	128,374	patients	remaining

N	=	6	patients	with	missing/implausible	follow-up

N	=	128,368	patients	eligible	for	simulation
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