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ABSTRACT  26 

Multimorbidity, the simultaneous presence of multiple chronic conditions, is an increasing global 27 

health problem and research into its determinants is of high priority. We used baseline untargeted 28 

plasma metabolomics profiling covering >1,000 metabolites as a comprehensive read out of human 29 

physiology to characterise pathways associated with and across 27 incident non-communicable 30 

diseases (NCDs) assessed using electronic health record hospitalisation and cancer registry data from 31 

over 11,000 participants (219,415 person-years). We identified 420 metabolites shared between at 32 

least 2 NCDs, representing 65.5% of all 640 significant metabolite-disease associations. We integrated 33 

baseline data on over 50 diverse clinical risk factors and characteristics to identify actionable shared 34 

pathways represented by those metabolites. Our study highlights liver and kidney function, lipid and 35 

glucose metabolism, low-grade inflammation, surrogates of gut microbial diversity, and specific 36 

health-related behaviours as antecedents of common NCD multimorbidity with potential for early 37 

prevention. We integrated results into an open-access webserver 38 

(https://omicscience.org/apps/mwasdisease/) to facilitate future research and meta-analyses. 39 
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INTRODUCTION 41 

Deep molecular profiling of human blood has the potential to identify novel pathways to disease, 42 

improve risk prediction and to enable stratified prevention and management1. Prospective studies 43 

have shown the promise of deep phenotypic profiling for precision medicine2,3 but these were very 44 

small scale and focused on single diseases4,5. Many pathways are shared across different diseases and 45 

one in four patients now presents with two or more chronic conditions at the same time, referred to 46 

as multimorbidity6,7. The incidence of non-communicable disease (NCD) multimorbidity is increasing 47 

not only in high-income8,9 but also in middle and low-income countries7,10, which poses major 48 

challenges for health care systems globally.  49 

The co-occurrence of conditions, such as type 2 diabetes (T2D) and cardiovascular diseases, is common 50 

and previous work has shown a high degree of interconnectivity with other diseases 11. The lack of 51 

horizontal integration between specialities delivering care for patients with co-existing diseases 52 

means that multimorbidity is more likely to be seen as a random assortment of individual conditions. 53 

There is now a call by public health authorities and policy makers for a shift to recognising 54 

multimorbidity as an accumulation of largely predictable clusters of disease in the same person12. 55 

However, the knowledge about shared aetiologies of less obviously related diseases is sparse. 56 

Molecular profiling has the potential to simultaneously and systematically identify pathways across 57 

many different incident diseases assessed objectively and at scale. Research into the determinants of 58 

NCD multimorbidity is a high priority12, but, to our knowledge, investigations of in-depth molecular 59 

profiles in large prospective cohorts with comprehensive, long-term clinical follow-up have not been 60 

previously undertaken. Detailed information on modifiable factors that underlie and drive shared risk, 61 

which is required to establish actionable insights for prevention and management of multimorbidity13, 62 

is also lacking. 63 

The human blood metabolome provides a comprehensive read out of human physiology obtained 64 

through untargeted assessment of hundreds of small circulating molecules, which reflect influences 65 

and interactions of genetics, lifestyle, environment, medical treatment, and microbial activity14. We 66 

investigated associations between baseline levels of 1,014 metabolites assessed through untargeted 67 

profiling of plasma samples and the onset of 27 NCDs, all-cause mortality, and NCD multimorbidity 68 

(Extended Data Figure 1). Clinical outcomes were assessed using electronic health record 69 

hospitalisation and cancer registry data in over 11,000 participants (219,415 person-years of follow-70 

up) of the European Prospective Investigation of Cancer (EPIC)-Norfolk study15.  71 

We systematically analysed and established a comprehensive catalogue of risk factor–metabolite–72 

disease associations to address unanswered questions related to the shared aetiology and drivers of 73 
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multiple chronic conditions and multimorbidity. We sought to characterise 1) pathways at baseline 74 

shared across multiple incident conditions, to identify those that predispose individuals to 75 

multimorbidity; 2) which of the identified metabolite-disease associations are driven by modifiable 76 

clinical and other risk factors, to identify targets of interventions; and 3) metabolites most strongly 77 

associated with the onset of NCD multimorbidity. We share our results through an open-access 78 

webserver (https://omicscience.org/apps/mwasdisease/) to maximise the use of this resource 79 

considerably augmenting existing efforts16. 80 

RESULTS 81 

We used data from the EPIC-Norfolk cohort, which includes 25,639 middle-aged participants from the 82 

general population of Norfolk in Eastern England15. A quasi-random subsample of 11,966 participants 83 

(mean age of 60 years [s.d.: 9 years], 53.7% females) was selected for metabolomic profiling using the 84 

Metabolon HD4 platform and detailed characteristics of participants and metabolites can be found in 85 

Supplemental Tables 1-3. 86 

Small molecule profiles of incident diseases 87 

Plasma levels of 458 metabolites were significantly associated with at least one incident disease or all-88 

cause mortality representing 1,226 associations in total (trait-wise Bonferroni cut-off for significance 89 

accounting for the number of metabolites: p<4.95x10-5; Extended Data Fig. 2). All-cause mortality was 90 

associated with the majority of those metabolites (n=268) followed by incident T2D (n=214), chronic 91 

obstructive pulmonary disease (COPD) (n=142), coronary heart disease (CHD) (n=127), heart failure 92 

(n=110), renal disease (n=110), peripheral arterial disease (PAD) (n=95), lung cancer (n=43), liver 93 

disease (n=39), atrial fibrillation (AF) (n=27), abdominal aortic aneurysms (AAA) (n=21), and asthma 94 

(n=16). We observed only few associations with incident colon cancer (n=5), cataract (n=5), cerebral 95 

stroke (n=2), stomach cancer (n=1), and Parkinson’s disease (n=1). The five most significant 96 

associations for each of the incident diseases as well as all-cause mortality are shown in Extended Data 97 

Figure 3. The number of metabolites associated with each disease outcome was partly explained by 98 

the number of cases for each disease and hence the power to detect an association (Extended Data 99 

Fig. 4). Specifically, incident T2D, COPD, PAD, and lung cancer were associated with more metabolites 100 

than expected based on the overall relationship between the number of cases and the number of 101 

associated metabolites in the present study (Extended Data Fig. 4). The opposite was the case for 102 

incident cerebral stroke, eye diseases or skin cancers, among others. 103 

We observed highly correlated effect sizes (r>0.9 for most analyses) while testing for an effect of 104 

delayed diagnosis of patients in various sensitivity analysis, including logistic regression models and 105 
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exclusion of participants with any event up to five years after baseline examinations (Extended Data 106 

Fig. 5). This, however, might not exclude the possibility that effect estimates obtained in the present 107 

study could underestimate the effect for conditions usually defined in primary care settings, such as 108 

fractures or cataracts. 109 

We identified 54 metabolite–outcome associations with suggestive evidence (p<0.001) for differing 110 

effect sizes between men and women (Extended Data Fig. 6) of which seven passed the more 111 

stringent Bonferroni-corrected threshold, including larger effect sizes in women for orotidine, 112 

erythornate, and three unknown compounds with incident CHD. We provide sex-specific effect 113 

estimates along with p-values for sex-interaction effects for all metabolite–outcome associations in a 114 

webserver published along with this study (https://omicscience.org/apps/mwasdisease/).  115 

Two-thirds of associated metabolites are shared among diseases 116 

A total of 420 (65.6%) metabolites were associated with at least two different diseases or all-cause 117 

mortality (p<0.001 see Methods, Fig. 1) and 220 (34.6%) metabolites were specifically associated with 118 

one disease only (Fig. 2). We observed high connectivity among cardiometabolic and respiratory 119 

diseases including CHD, heart failure, T2D, cerebral stroke, PAD, renal and liver diseases, COPD, and 120 

lung cancer across different biochemical classes of metabolites (Fig. 2). Plasma levels of the non-121 

classical carbohydrate N-acetylneuraminate were positively associated with 14, partly unrelated, 122 

diseases, including incident stomach, oesophageal, and lung cancer as well as major cardiovascular 123 

events and metabolic diseases (Fig. 2). Highly pleiotropic metabolites, i.e. those associated with 124 

multiple diseases, showed wide biochemical and biological diversity (Fig. 2), and included N-acetylated 125 

amino acids (e.g. N-acetylphenylalanine), surrogate markers of smoking (e.g. cotinine), modified 126 

nucleotides (e.g. pseudouridine), glycerophsopholipids (e.g. 1-palmitoyl-2-oleoyl-GPC), catabolites of 127 

vitamin C (e.g. threonate), products of microbial metabolism (e.g. indolepropionate), sulphated 128 

steroids (e.g. epiandrosterone sulfate), haem degradation products (e.g. bilirubin (E,E)), proteinogenic 129 

amino acids (e.g. serine), and several compounds of yet unknown identity (e.g. X-11429).  130 

We identified some metabolites with shared associations among seemingly unrelated diseases. 131 

Plasma levels of the unknown compound X-11305 were inversely associated with the risk of colon 132 

cancer, heart failure, PAD, COPD, and mortality. In another example, plasma levels of maltose were 133 

positively associated with stomach cancer, T2D, heart failure, CHD, PAD, venous thrombosis, COPD, 134 

and mortality. 135 

The vast majority (93%) of metabolites associated with multiple outcomes showed consistent effect 136 

directions across all significantly associated diseases, i.e. being either positively or inversely associated 137 
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with all diseases. Exceptions included N-acetylmethionine which was inversely associated with 138 

incident T2D and liver diseases but positively with incident AAA, heart failure, PAD, renal diseases, 139 

COPD, and mortality; and the unknown compound X – 23997 which was inversely associated with 140 

prostate cancer but positively with Parkinson’s disease.  141 

In-depth exploration of these and other examples, along with additional results, is possible via our 142 

webserver (https://omicscience.org/apps/mwasdisease/). 143 

Integration of diverse traits at baseline identifies actionable antecedents 144 

To put the identified small molecule profiles into context and identify actionable antecedents, i.e. 145 

possible targets for intervention or management, we quantified the explained variance for each 146 

metabolite using information on more than 50 diverse participant baseline characteristics. Prevalent 147 

conditions, anthropometric and lifestyle markers, as well as comprehensive clinical chemistry markers 148 

(Extended Data Fig. 7A) were included in the analysis. Almost every measured metabolite (972 out of 149 

1,014) was significantly associated (p<4.93x10-5) with at least one trait in cross-sectional analyses 150 

(Extended Data Fig. 7B).  151 

To identify dependencies among specific risk factors, metabolites and diseases of interest, we utilised 152 

a formal mediation analysis framework. To match triplets among risk factors, metabolites and 153 

outcomes, we ran Cox models for 21 baseline characteristics that were selected based on clinical utility 154 

and to minimize redundancy (Extended Data Fig. 8). Out of 6,364 possible paths (significant and 155 

directionally consistent triangles between risk factor–metabolite–disease, Methods), 1,084 (17.0%) 156 

had a significant indirect effect (p<7.8x10-6) indicating a relationship between a risk factor and a 157 

metabolite with respect to a specific disease. We thereby identified common antecedents, i.e. 158 

exposures associated with multiple metabolites and outcomes, such as obesity (waist-to-hip ratio or 159 

BMI), inflammation (fibrinogen), measures of liver (liver enzyme levels) and kidney function (uric acid 160 

and creatinine), blood lipids, systolic blood pressure, smoking behaviour, and glucose homeostasis 161 

(Fig. 3A). The median proportion mediated was 15.7% (IQR: 11.0% - 26.6%; Extended Data Fig. 9 and 162 

Supplemental Table 4) and effects largely mediated by metabolites appeared to be exposure specific, 163 

e.g. N-formylmethionine was estimated to mediate 47.3% of the effect of uric acid or creatinine on 164 

renal disease, CHD, and mortality on average (Fig. 3B). We identified a few metabolites possibly 165 

mediating the associations of multiple exposures (n≥10) on multiple outcomes (n≥5), including X - 166 

12117 (Fig. 3C), C-glycosyltryptophan, N-acetylneuraminate, N-acetylglucoseamine, mannose, 1-167 

palmitoyl-2-oleoyl-GPE (16:0/18:1), and X – 11429, representing antecedents such as kidney function, 168 

inflammation as well as glucose and lipid metabolism.  169 
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We note that for some exposures metabolite associations superseded exposure associations as 170 

indicated by complete attenuation of risk factor associations or a proportion of mediated effect larger 171 

than 100%, e.g. metabolites such as C-glycosyltryptophan or pseudouridine might be better markers 172 

to judge the risk associated with kidney function decline on all-cause mortality. Further, X - 12117 173 

almost completely mediated the increased risk associated with BMI on all-cause mortality 174 

(Supplemental Table  4). 175 

To validate the effect of identified antecedents, we included those (i.e. body mass index, waist-to-hip 176 

ratio, smoking behaviour, serum uric acid concentrations, total triglycerides, HDL-cholesterol, random 177 

glucose, serum alkaline phosphatase concentrations, serum vitamin C concentrations, systolic blood 178 

pressure, and plasma fibrinogen concentrations) as additional covariates to the initial Cox regression 179 

models. Consequently, the number of associated metabolites more than halved (361 compared to 640 180 

with p<0.001, Supplemental Table 5) and the proportion of uniquely associated metabolites increased 181 

to 56.2% (203 out of 361).  182 

Metabolites specifically associated with diseases 183 

A total of 79 metabolites (Supplemental Table 6) showed evidence of being uniquely  associated with 184 

incident T2D (n=36), all-cause mortality (n=21), COPD (n=10), CHD (n=10), or liver disease (n=2). The 185 

metabolite with the strongest association was gamma-glutamylglycine, for which one standard 186 

deviation (SD) increase in plasma levels was associated with a 37% lower risk for incident T2D (hazard 187 

ratio [HR] per SD increase in metabolite levels: 0.63; 95%-CI: 0.58 – 0.68; p<1.6x10-28). Formation of 188 

gamma-glutamyl amino acids is facilitated at the plasma membrane by gamma-glutamyl 189 

transpeptidase activity and contributes to amino acid influx and formation of the essential antioxidant 190 

glutathione17. Our cross-disease comparison revealed two distinct subgroups of gamma-glutamyl 191 

peptides. In addition to gamma-glutamylglycine, gamma-glutamylthreonine and gamma-192 

glutamyltyrosine were uniquely associated with incident T2D (Supplemental Table 5) whereas 193 

gamma-glutamylglutamine or gamma-glutamylisoleucine were associated with multiple phenotypes, 194 

including incident T2D, and have been previously suggested as markers of liver injury18. Such 195 

systematic investigations can pinpoint disease-characterizing perturbations in amino acid flux. 196 

Other examples of uniquely associated metabolites included plasma levels of 7-methylxanthine (HR 197 

for COPD:  1.24 [1.14; 1.34], p<1.9x10-8), 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) (HR for CHD: 1.12 198 

[1.07; 1.17], p<6.6x10-7), and 2-palmitoleoylglycerol (16:1) (HR for liver disease: 1.28 [1.14; 1.43], 199 

p<2.0x10-5). 200 

From multiple outcome associations to NCD multimorbidity 201 
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We identified 1,858 (32.6%) participants who developed multiple chronic conditions during follow-up 202 

and Figure 4 displays a detailed composition of disease counts. 203 

Plasma levels of 30 metabolites were significantly associated (p<4.93x10-5) with the risk of NCD 204 

multimorbidity (defined as developing ≥2 chronic conditions during follow-up) (Fig. 4, 5 and 205 

Supplemental Table 7). Odds ratios ranged between 1.29 (cotinine; 95%-CI: 1.16 – 1.42) and 0.82 206 

(beta-cryptoxanthin, 95%-CI: 0.77 – 0.87) per one SD increase in metabolites levels and were 207 

comparable to those from other baseline characteristics such as C-reactive protein [1.28 (1.20; 1.37)] 208 

or the waist-to-hip ratio [1.27 (1.15; 1.40)] (Supplemental Table 8). The majority of metabolites that 209 

were associated with NCD multimorbidity were also associated with multiple chronic conditions in 210 

disease-wise Cox models (Pearson correlation coefficient: 0.41, p<2.2x10-16). 211 

To identify common traditional clinical measures that are antecedents of NCD multimorbity, we first 212 

clustered the 30 multimorbidity-associated metabolites to account for their correlated structure and 213 

derived nine different clusters (Extended Data Fig. 10). From each of the clusters we chose the 214 

metabolite with the largest effect size as a representative. Some antecedents were immediately 215 

apparent, including smoking behaviour via cotinine, lipoprotein metabolism via 1-stearoyl-2-meadoyl-216 

GPC, kidney function via C-glycosyltryptophan, and vitamin C metabolism via cysteine sulfinic acid, all 217 

indicated by a large amount (>10%) of variance explained in metabolite levels through those risk 218 

factors (Fig. 6). Plasma levels of N-acetylphenylalanine were again best explained by surrogate 219 

markers of kidney function but seem to reflect body composition as well, given that waist-to-hip ratio 220 

explained 5.7% of its variance. Further, haem degradation which is tightly linked to sufficient iron 221 

supply might be the most likely explanation for the pattern seen with bilirubin (Z,Z).  222 

We identified other potential novel antecedents of NCD multimorbidity, such as plasma levels of 3-223 

phenylpropionate and indolepropionate, since variation in plasma levels of these metabolites were 224 

only partly explained by traditional clinical measures. 225 

Possible biochemical pathways related to the onset of NCD multimorbidity  226 

Metabolomics profiling allows for comprehensive characterisation of pathways shared among 227 

multiple diseases and contributing to NCD multimorbidity in conjunction with established risk factors. 228 

Prominent associations for N-acetylated amino acids, in particular N-acetylalanine, were consistently 229 

present in all analyses performed and variance in plasma levels was best explained by estimated 230 

baseline glomerular filtration rate (inversely associated). Expression of aminoacylase 1, the most 231 

abundant aminoacylase that catabolises N-acetylated amino acids, is highest in the cytosol of tubular 232 

cells of the kidneys19. Impaired kidney function over and above a reduced glomerular filtration rate, 233 
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indicated by altered aminoacylase activity, is likely to be a major disease driver, emphasizing the 234 

importance of kidney function and management of kidney disease for the prevention of NCD 235 

multimorbidity. Associations with N-acetylated amino acids were not limited to major cardiovascular 236 

events - for which chronic kidney disease is a known independent risk factor20 - but also included lung 237 

cancer, COPD, T2D, and liver disease. 238 

Inflammation or so-called inflammaeging21 has been suggested to be an important risk factor for 239 

diverse diseases and we observed a related molecular signatures among the metabolites associated 240 

with multiple outcomes. N-acetylneuraminate and N-acetylglucosamine are part of the glycocalyx 241 

surrounding the apical membrane of epithelial cells contributing to vascular integrity by regulating 242 

permeability22. Shedding in response to inflammatory stimuli23 of the glycocalyx leads to higher 243 

concentrations of its components, like N-acetylneuraminate, in the circulation. A functional role of N-244 

acetylneuraminate during myocardial infarction has been suggested and pharmacological suppression 245 

of the producing enzyme neuramidase-1 using influenza medication was shown to preserve 246 

cardiomyocytes from injury during infarction24. It remains to be established whether N-247 

acetylneuraminate has a functional role in mediating the effect of low-grade inflammation on the risk 248 

of chronic conditions such as cardiovascular and pulmonary diseases, including lung cancer and T2D.  249 

Our results highlight putative novel antecedents of NCD multimorbidity, including 3-phenylpropionate 250 

(hydrocinnamic acid) and indolepropionate, plasma level of which were only weakly explained by 251 

established risk factors. Both metabolites have previously been linked to greater diversity of the gut 252 

microbiome as measured by the Shannon index25. Circulating levels in blood might therefore act as an 253 

indirect readout for the relative abundance of species such as Clostridium in the gut26. Cross-sectional 254 

studies have shown a variety of associations between the abundance of microbial species in the gut 255 

and several prevalent chronic conditions27,28. The microbial-derived metabolite trimethylamine-N-256 

oxide29 has been shown to be a candidate mediator for the adverse effect of red meat consumption 257 

on CVD risk and was associated with an increased risk of heart failure and mortality in our study. 258 

However, high red meat consumption explained only little (0.2%) in the variance of trimethylamine-259 

N-oxide plasma levels compared with markers of kidney function (3.2%). 260 

The aetiology of gut dysbiosis remains to be established, but a diet poor in fibre has been suggested 261 

to contribute to overgrowth of harmful species, such as Clostridium or Bacteroides, diminishing overall 262 

diversity and production of microbial metabolites beneficial for the host, such as short-chain fatty 263 

acids30. The ability to characterise individual disease trajectories in-depth using microbial profiling 264 

along with other high-resolution ‘omics’ data has been demonstrated in a small pioneering study of 265 

around 100 individuals at high risk for metabolic diseases2,4. Here we show that plasma levels of 266 
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surrogates of microbial diversity are inversely associated with several common severe incident NCDs, 267 

including T2D, renal diseases, heart failure, CHD, asthma, COPD, lung cancer, and all-cause mortality 268 

as well as multimorbidity using objectively ascertained outcomes from a long-term prospective 269 

population-based study. We cannot, however, exclude that other factors related to diet not 270 

investigated in the present study, such as a healthier lifestyle, might have contributed to our 271 

observations.  272 

DISCUSSION 273 

Multimorbidity is becoming the rule rather than the exception in clinical practice and identification of 274 

shared disease mechanisms and modifiable drivers is high priority31. Through systematic, data-driven 275 

integration of the metabolome and phenome with near-complete follow-up using externally derived 276 

electronic health record data for 27 major diseases and all-cause mortality, we identify common and 277 

possibly actionable antecedents related to the onset of multiple NCDs and multimorbidity. In-depth 278 

molecular profiling together with detailed baseline characterisation of participants highlights 279 

mediating pathways through characterisation of triangles of clinical risk factor-metabolite-disease 280 

links.  281 

We identified obesity, smoking, impaired glucose homeostasis, low-grade inflammation, lipoprotein 282 

metabolism, liver and kidney function as common actionable antecedents of NCD multimorbidity, i.e. 283 

there are already established treatment or prevention strategies to attenuate the associated disease 284 

risk. These common risk factors account for the majority of premature deaths worldwide32, and our 285 

results now highlight their central role for the potential prevention and management of 286 

multimorbidity in health care systems, together with previous studies33,34.  287 

Patients at greatest risk for multimorbidity are those with a pre-existing chronic condition. Effective 288 

prevention strategies focused on multimorbidity need to be anchored within primary care and 289 

secondary prevention efforts35. Our data-driven approach suggests that a focus on monitoring of 290 

kidney and liver function and glycaemic control, together with weight loss and smoking cessation 291 

support, are essential for the prevention and management of multimorbidity among middle aged and 292 

older individuals with chronic conditions.  293 

The diverse nature of the antecedents identified in the current study, including the gut microbiome, 294 

calls for the consideration of a broad and novel range of risk factors in the care of patients with chronic 295 

conditions who are at risk of multimorbidity, which may go beyond the single-disease focus of 296 

specialist care36. Linkage of the molecular patterns or antecedents that we have identified with the 297 

incidence of specific subtypes of multimorbidity37, i.e. clusters of more frequently co-occurring 298 
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diseases, can help to inform successful prevention and intervention strategies managed in general 299 

practice. Further, integration of molecular pathways shared across multiple diseases, as identified in 300 

the present study, can guide identification of subtypes of multimorbidity by investigating how those 301 

molecules or pathways associate with or even determine co-occurrence of seemingly unrelated 302 

diseases, for instance guided by comorbidity networks38,39, in independent studies.     303 

We found sparse evidence for discordant directions of associations of specific metabolites across 304 

different diseases, which suggests that intervening on identified shared pathways has potential to 305 

convey benefit in a consistent way and to not increase the risk of developing other conditions. 306 

Our systematic comparison across NCDs allowed us to untangle associations among closely related 307 

molecules, such as a liver-function independent association between certain gamma-glutamyl amino 308 

acids and incident T2D. To our knowledge, we provide the most comprehensive catalogue of risk 309 

factor–metabolite associations reported to date, which helped us to contextualise our findings and 310 

can inform future metabolomics studies. Our data-driven and hypothesis-free approach allowed us to 311 

challenge current concepts of the most important host factors explaining variation in plasma levels of 312 

microbial metabolites, for instance estimated glomerular filtration explained more variance in plasma 313 

levels of trimethylamine-N-oxide compared with high meat intake. Our mediation approach to 314 

triangulate risk factors, metabolites, and diseases does not prove causality and strong correlations 315 

among metabolites and risk factors make it almost impossible to pinpoint the true underlying relation 316 

from observational data and complementary methods, for instance incorporating genetic techniques, 317 

might help to identify key mechanisms.  318 

We have generated an easily accessible web application to enable the interrogation of these results 319 

in an interactive way and have provided an intuitive graphical representation of the results. The web 320 

application allows the identification of factors explaining the variance of specific plasma metabolites 321 

of interest and the query of individual disease summary statistics for future meta-analyses and power 322 

calculations, specifically for some of the less common outcomes. It also enables comparison with 323 

diseases not studied for the purpose of this analysis, and may help other investigators to prioritise 324 

metabolomics approaches, for example lipidomics, for in-depth investigation of specific diseases in 325 

new studies.  326 

To our knowledge, this is the first study integrating comprehensive metabolomic and phenotypic 327 

profiling with detailed assessment of multiple incident diseases at the same time. Our study 328 

distinguishes by having near-complete follow-up of 219,415 person-years, which maximises power 329 

and minimises selection bias. Application of Cox models was an appropriate for most of the 330 
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investigated metabolite – endpoint associations but we cannot completely rule out the possibility that 331 

some relationships might be better modelled with other statistical strategies. Despite being the largest 332 

study of its kind to date and having long-term follow-up, we were unable to provide coverage of rare 333 

and infectious diseases as well as the less severe spectrum of the diseases included, which would be 334 

better covered by inclusion of primary care data. Large-scale biobank studies with hundreds of 335 

thousands of participants linked with electronic health records from primary care, such as UK Biobank, 336 

could provide such opportunities in the future, especially if they cover not only metabolomics as a 337 

comprehensive snapshot of human physiology, but other ‘omics’ data (e.g. proteomics40) that provide 338 

distinct and complementary information to extend the findings from the present study. 339 
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FIGURE LEGENDS 450 

Figure 1 Connectivity between incident diseases established based on associated metabolites. The 451 

outer ring illustrates the number of metabolites associated with each individual disease - each disease 452 

fragment is split to represent associations with at least one other disease (coloured) or associations 453 

specific to that disease (grey). Lines across the circle connecting two outcomes illustrate the number 454 

of metabolites associated with both outcomes, where line width is proportional to the number of 455 

metabolites. Outer ring fragments in white indicate there were no associations with this disease and 456 

are proportional to half the size of at least one associated metabolite. Metabolite-disease associations 457 

are based on Cox proportional hazard models with age as the underlying time scale adjusting for sex. 458 

A p-value <0.001 was considered significant accounting for 28 diseases tested for each metabolite. 459 

Graphs were grouped and coloured according to biochemical entities, e.g., the graph Amino acid 460 

contains only metabolite associations originating from amino acid related compounds. Numbers in 461 

brackets indicate: number of uniquely associated metabolites and total number of associated 462 

metabolites. AAA = abdominal aortic aneurysms; PAD = peripheral atrial disease; COPD = chronic 463 

obstructive pulmonary disease 464 

Figure 2 Brick plot showing the ranking of metabolites based on the number of associated incident 465 

endpoints. Metabolite-disease associations are based on Cox proportional hazard models with age as 466 

the underlying time scale adjusting for sex. A p-value <0.001 was considered significant accounting for 467 

28 diseases tested for each metabolite. The x-axis displays the rank of each metabolite according to 468 

the number of associated metabolites, counting inverse associations as negative numbers to ease 469 

representation of the results. The y-axis counts the number of associated metabolites, whereby 470 

positive numbers indicate positive associations and negative numbers indicate inverse associations. 471 

Colours of each box indicate the associated endpoint. Selected metabolites with multiple associated 472 

endpoints have been annotated. *Metabolites were annotated based on in-silico prediction. An 473 

interactive version of this figure is available on our webserver 474 

(https://omicscience.org/apps/mwasdisease/). 475 

Figure 3 Summary of mediation analysis. A) Bar chart showing for each exposure the number of 476 

putative mediating metabolites (coloured bar indicating composition of metabolite species) and 477 

number of associated incident outcomes (shaded bar). Only exposures with at least one associated 478 

incident outcome are listed and have been sorted by the number of outcomes. B) For each metabolite 479 

the number of source exposures is plotted against the median proportion mediated by the metabolite. 480 

Dot sizes indicate the number of associated outcomes for which the metabolite mediated at least 481 

https://omicscience.org/apps/mwasdisease/
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some percent of the effect of an exposure. C) Detailed listing for the effect estimated to be significantly 482 

mediated by X-12117 from the exposures on the left on the risk for a disease listed on the right. 483 

Figure 4 Percentage of each disease acquired during follow-up. Counts are normalized to the total 484 

number of diseases each participant developed. Only participants without any of these diseases at 485 

baseline were included (N=5,699). COPD = Chronic obstructive pulmonary disease 486 

Figure 5 Metabolites associated with multimorbidity. Odds ratios and 95%-confidence intervals (Cis) 487 

from logistic regression analysis with plasma metabolites as the exposure and a binary NCD 488 

multimorbidity variable (onset of two or more diseases during follow-up) as the outcome adjusting for 489 

age and sex. Metabolites were ordered by association strength and direction (from left to right). 490 

Colouring indicates association direction (red – positively; blue – inversely) and statistical significance 491 

correcting for multiple testing (darker colours, p<4.93x10-5). The size of the dots indicates the number 492 

of associated diseases in disease-specific Cox models. *Metabolites were annotated based on in-silico 493 

prediction. 494 

Figure 6 Variance explained in plasma levels of selected metabolites associated with multimorbidity. 495 

Amount of variance explained by risk factors and other continuous traits on selected metabolites 496 

which are representative of metabolites associated with incident NCD multimorbidity (see main text). 497 

Solid colours indicate positive associations with metabolite levels whereas shading indicates inverse 498 

associations. The column on the far right indicates the maximum amount of variance for any 499 

metabolite by each risk factor. [1] 1,5-anhydroglucitol (1,5-AG); [2] X - 14662; [3] creatinine; [4] 2-500 

hydroxyhippurate (salicylurate); [5] X - 21364; [6] X - 23291; [7] X - 12063; [8] cotinine; [9] o-cresol 501 

sulfate; [10] X - 24293; [11] 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4)*; [12] 1-(1-enyl-502 

palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)*; [13] cholesterol; [14] palmitoyl-linoleoyl-glycerol 503 

(16:0/18:2) *; [15] 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)*; [16] 1-(1-enyl-stearoyl)-2-oleoyl-504 

GPC (P-18:0/18:1); [17] atenolol; [18] glycerol; [19] glucose; [20] N-acetylmethionine; [21] cysteine-505 

glutathione disulfide; [22] retinol (Vitamin A); [23] choline phosphate; [24] serine; [25] N-506 

acetylneuraminate; [26] citrate; [27] gamma-glutamylglutamine; [28] threonate; [29] 507 

perfluorooctanesulfonic acid (PFOS); [30] bilirubin (Z,Z); [31] betaine; [32] urate; [33] thyroxine; 508 

*Metabolites were annotated based on in-silico prediction. 509 

  510 
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METHODS  511 

Study Cohort 512 

The EPIC-Norfolk study is a cohort of 25,639 middle-aged individuals from the general population of 513 

Norfolk in Eastern England15, which is a component of the European Prospective Investigation into 514 

Cancer and Nutrition (EPIC). The EPIC-Norfolk study was approved by the Norfolk Research Ethics 515 

Committee (ref. 05/Q0101/191) and all participants gave their written consent before entering the 516 

study. 517 

All participants were flagged for mortality at the UK Office of National Statistics, and vital status was 518 

ascertained for the entire cohort. Death certificates were coded by trained nosologists according to 519 

the International Classification of Diseases (ICD), 10th revision. Hospitalisation data were obtained 520 

using National Health Service numbers through linkage with the East Norfolk Health Authority 521 

(ENCORE) database, which contains information on all hospital contacts throughout England and 522 

Wales. Participants were identified as having experienced an event if the corresponding ICD-10 code 523 

was registered on the death certificate (as the underlying cause of death or as a contributing factor), 524 

or as the cause of hospitalisation (Supplemental Table 2). Since the long-term follow-up of EPIC-525 

Norfolk comprised the ICD-9 and ICD-10 coding system, codes were consolidated. The current study 526 

is based on follow-up to 31st March 2016. Information on lifestyle factors and medical history was 527 

obtained from questionnaires as has been reported previously15. Supplemental Table 2 summarises 528 

the methods for all characteristics investigated in the present study. 529 

Metabolite Measurements 530 

We used non-fasted plasma samples stored in liquid nitrogen since baseline in 1993-97 from a total 531 

of 11,966 men and women from the EPIC-Norfolk prospective cohort to perform untargeted 532 

metabolomic measurements using the Discovery HD4® platform (Metabolon, Inc., Durham, USA). 533 

Measurements were undertaken in two sub-cohorts of 5,989 and 5,977 participants, respectively, 534 

quasi-randomly selected from the full cohort following the exclusion of a type 2 diabetes case-cohort. 535 

We note that comparing effect estimates from Cox models from the sample used in the present study 536 

and the type 2 diabetes cohort were strongly correlated (Pearson’s r=0.85). In total, 1,015 metabolites 537 

were measured in both sub-cohorts, of which 1,014 were included in statistical analyses as they were 538 

present in at least 10 cases for at least one of the outcomes under investigation. Those metabolites 539 

cover a broad spectrum of chemical entities, including lipids, amino acids or nucleotides, that is, 540 

products of human metabolism but also substances of exogenous origin like drugs or markers of 541 



18 
 

nutrition and lifestyle. Due to this broad coverage and the hypothesis-free nature of the approach 542 

several metabolites are of yet unknown identity and referred to by an X followed by a unique number.  543 

Plasma samples were prepared using the automated MicroLab STAR® system from Hamilton 544 

Company. Several recovery standards were added prior to the first step in the extraction process for 545 

QC purposes. Plasma proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 546 

Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was divided into five 547 

fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive 548 

ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode 549 

ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved 550 

for backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The 551 

sample extracts were stored overnight under nitrogen before preparation for analysis.   552 

Several types of controls were analysed in concert with the experimental samples: a pool of well-553 

characterized human plasma served as a technical replicate throughout the data set; extracted water 554 

samples served as process blanks; and a cocktail of QC standards that were carefully chosen not to 555 

interfere with the measurement of endogenous compounds were spiked into every analysed sample, 556 

allowed instrument performance monitoring and aided chromatographic alignment. Instrument 557 

variability was determined by calculating the median relative standard deviation (RSD) for the 558 

standards that were added to each sample prior to injection into the mass spectrometers. Overall 559 

process variability as determined by calculating the median RSD for all endogenous metabolites (i.e., 560 

non-instrument standards) present in 100% of the pooled matrix samples was 10%. Experimental 561 

samples were randomized across the platform run with QC samples spaced evenly among the 562 

injections. 563 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a 564 

Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated 565 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 566 

resolution. The sample extract was dried then reconstituted in solvents compatible to each of the four 567 

methods. Each reconstitution solvent contained a series of standards at fixed concentrations to ensure 568 

injection and chromatographic consistency. One aliquot was analysed using acidic positive ion 569 

conditions, chromatographically optimized for more hydrophilic compounds. In this method, the 570 

extract was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using 571 

water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). 572 

Another aliquot was also analysed using acidic positive ion conditions; however, it was 573 

chromatographically optimized for more hydrophobic compounds. In this method, the extract was 574 
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gradient eluted from the same afore mentioned C18 column using methanol, acetonitrile, water, 575 

0.05% PFPA and 0.01% FA and was operated at an overall higher organic content. Another aliquot was 576 

analysed using basic negative ion optimized conditions using a separate dedicated C18 column. The 577 

basic extracts were gradient eluted from the column using methanol and water, however with 6.5mM 578 

Ammonium Bicarbonate at pH 8. The fourth aliquot was analysed via negative ionization following 579 

elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting 580 

of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated 581 

between MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted 582 

between methods but covered 70-1000 m/z.  583 

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and software. 584 

Compounds were identified by comparison to library entries of purified standards or recurrent 585 

unknown entities. Metabolon maintains a library based on authenticated standards that contains the 586 

retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS 587 

spectral data) on all molecules present in the library. Furthermore, biochemical identifications are 588 

based on three criteria: retention index within a narrow RI window of the proposed identification, 589 

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores between 590 

the experimental data and authentic standards. The MS/MS scores are based on a comparison of the 591 

ions present in the experimental spectrum to the ions present in the library spectrum. While there 592 

may be similarities between these molecules based on one of these factors, the use of all three data 593 

points can be utilized to distinguish and differentiate biochemicals. More than 3300 commercially 594 

available purified standard compounds have been acquired for analysis on all platforms for 595 

determination of their analytical characteristics. Additional mass spectral entries have been created 596 

for structurally unnamed biochemicals, which have been identified by virtue of their recurrent nature 597 

(both chromatographic and mass spectral). These compounds have the potential to be identified by 598 

future acquisition of a matching purified standard or by classical structural analysis. Library matches 599 

for each compound were checked for each sample and corrected if necessary. All named compounds 600 

fulfil tier 1 or tier 2 (indicated by a star) criteria according to the metabolomics reporting standards 601 

outlined in Sumner et al. 41. 602 

Peaks were quantified using area-under-the-curve. We performed runday normalization to correct 603 

variation resulting from instrument inter-day tuning differences. Essentially, each compound was 604 

corrected in run-day blocks by registering the medians to equal one (1.00) and normalizing each data 605 

point proportionately. 606 
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Prior to statistical analyses, metabolite levels were transformed using the natural logarithm and values 607 

at the tail of the distribution, defined by mean ± 5*SD, were replaced by the respective lower/upper 608 

bound. Metabolite measures were then rescaled to a mean of zero and standard deviation of one. 609 

Processing steps were performed for each of the two batches separately. To achieve comparable 610 

estimates, all continuous cross-sectional traits at baseline (Supplemental Table 2) were processed in 611 

the same way as the metabolome data except for log-transformation for most of the traits.  612 

Statistical Analyses 613 

Cox proportional hazard models and multiple testing correction 614 

We first used Cox proportional hazards models to estimate hazard ratios for the association of 615 

metabolite levels (log-transformed and standardized) with each incident disease, with age as the 616 

underlying time scale adjusting for sex unless otherwise noted. In case of prostate (males), 617 

endometrial, ovarian, and breast cancer (females) only participants of that specific sex were included 618 

in the analyses. Cox models were constructed separately for each sub-cohort and the associations 619 

were meta-analysed using the R package metafor. Participants who reported diseases at baseline or 620 

who had incident cancer within the first six months of follow-up were excluded from the analyses for 621 

that specific disease. All participants who reported a previous diagnosis of cancer at baseline were 622 

excluded from all cancer analyses. A modifying effect of sex was tested by inclusion of an interaction 623 

term in the Cox models. For each metabolite – endpoint model separately, we excluded participants 624 

with missing values in any of the two variables. 625 

We applied a two-stage approach to define first shared and subsequently disease specific associations. 626 

To increase power to detect shared associations with rare outcomes, such as stomach cancer, we 627 

applied a threshold of p<0.001 (accounting for 28 outcomes per metabolite). We report significant 628 

associations for each outcome based on a stringent Bonferroni threshold accounting for the number 629 

of metabolites tested (p<0.05/1,014) and declared a metabolite to be specifically associated with a 630 

disease, if the association passed the more stringent threshold (p<0.05/1,014) and was not associated 631 

with any other outcome at a liberal level of significance (p<0.001).  632 

We used logistic regression models to test for possible misspecifications of time-to-event data. To test 633 

whether participants already diseased but yet undiagnosed at baseline might have influenced effect 634 

estimates we 1) rerun all Cox models while subsequently excluding participants experiencing any 635 

event within the first five years in one-year steps and 2) excluding all participants who have died within 636 

the first five years of follow-up (n=469).  637 

Linear regression analysis and variance decomposition for baseline characteristics 638 
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We assessed the relevance of clinical risk factors and traits measured at baseline in two ways: 1) we 639 

used linear regression models to test for an association between traits as exposure and metabolite 640 

levels as outcome adjusting for age, sex, fasting time and, time of blood sampling, and 2) obtaining 641 

the variance in metabolite levels explained by each trait using variance partitioning as implemented 642 

in the R package variancePartition.  643 

Extended Cox proportional hazard models and mediation analyses 644 

We evaluated the effects of confounders in longitudinal analyses using two different approaches. 645 

Firstly, following the establishment of metabolite – disease onset and risk factor – metabolite 646 

associations, we performed formal mediation analysis assuming a linear dependency among risk 647 

factor – metabolite – diseases onset to test for a possible role of metabolites in mediating the 648 

association between risk factors and diseases42. We used Cox models to identify significant risk factor 649 

– disease onset associations in our data (p<0.01) and tested only those triangles with consistent 650 

association directions along the putative path (n=6,364). We computed the proportion of effect 651 

mediated from the risk factor through the metabolite (indirect effect of the risk factor) as the quotient 652 

between the indirect and total effect of the risk factor on the disease. An indirect effect with a p-653 

value<8.8x10-6 was considered significant to account for the number of tests. The proposed 654 

relationship might not hold true for every tested association and in particular mediation analysis is not 655 

suited to distinguish mediation from confounding. However, by using this approach we were able to 656 

link and quantify the effects of risk factors on the presented metabolite – disease onset associations. 657 

None of the presented significant findings imply causality but from an aetiological perspective such 658 

analysis can provide hints on putative disease pathways which would otherwise been missed using a 659 

resolute prediction framework. We then used a set of most common exposures as additional 660 

covariates in multivariable adjusted Cox models to test for the persistence of associations, including 661 

body mass index, waist-to-hip ratio, smoking behaviour, serum uric acid concentrations, total 662 

triglycerides, HDL-cholesterol, random glucose, serum alkaline phosphatase concentrations, serum 663 

vitamin C concentrations, systolic blood pressure, and plasma fibrinogen concentrations. Due to 664 

missing availability of confounder data for some individuals the total number of included individuals 665 

included in this analysis dropped to a maximum of 9,427.    666 

Logistic regression models for multimorbidity 667 

We defined NCD multimorbidity as developing two or more ICD-10-coded diseases during follow-up 668 

and logistic regression models were used to test for an association between metabolite levels and this 669 

binary outcome. To avoid confounding by diseases present at baseline we excluded all participants 670 
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reporting at least one of the diseases under investigation at baseline, leaving 5699 participants to be 671 

included in these analyses. Models were adjusted for age and sex. 672 

We used hierarchical clustering analysis (with complete linkage) to group metabolites based on 673 

absolute Pearson correlations as measure of similarity. The number of clusters was determined using 674 

silhouette coefficients. 675 

Figures were created using the basic plot functions of R as well as the R package circlize. All statistical 676 

analyses were done using R version 3.5.1 (R Foundation for statistical computing, Vienna, Austria).  677 
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