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Background
Tissues are built of cells which contain their genetic information on DNA strings, so-
called genes. These genes can lead to the generation of messenger RNA (mRNA) which 
transports the genetic information and induces the production of proteins. Such mRNA 
molecules and proteins are modes of expression by which a cell reflects the presence, 
kind and activity of its genes. In this paper, we consider such gene expression in terms of 
quantities of mRNA molecules.

Gene expression is stochastic. It can differ significantly between, e.g., types of cells 
or tissues, and between individuals. In that case, one refers to differential gene expres-
sion. In particular, cells can be differentially expressed between healthy and sick tissue 
samples from the same origin. Moreover, cells can differ even within a small tissue 
sample, e.g. within a tumour that consists of several mutated cell populations. Math-
ematically, we regard two populations to be different if their mRNA counts follow 
different probability distributions. If there is more than one population in a tissue, 
we call it heterogeneous. The expression of such tissues can be described by mixture 
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models. Detecting and parameterizing heterogeneities is of utmost importance for 
understanding development and disease.

The amount of mRNA molecules of a gene in a tissue sample can be assessed by 
various techniques such as microarray measurements [1, 2] or sequencing [3, 4]. Bulk 
measurements are suitable for analyses like mean comparisons but make it difficult 
to describe in-bulk heterogeneity. To infer partial information about cell populations, 
bulk deconvolution methods like CIBERSORT [5] require the availability of so-called 
signature matrices. Measurements of single cells yield the highest possible resolution. 
They are best suited for identification and description of heterogeneity in large and 
error-free datasets. In practice, however, single-cell data often comes along with high 
cost, effort and technical noise [6]. Heterogeneity can still be revealed given sufficient 
sample size and additional information such as the expression of cell cycle genes [e.g. 
7]. In our work, we consider the case of comparatively small samples without further 
prior knowledge. Instead of considering single-cell data, we analyze the cumulative 
gene expression of small pools of randomly selected cells [8]. The pool size should 
be large enough to substantially reduce measurement error and cost, and at the same 
time small enough such that heterogeneity is still identifiable. The analysis of such 
small cell pools could add additional information that is lost in single-cell measure-
ments due to the stress in which the cells find themselves once they are separated 
from their tissue.

Such new kind of data requires new analysis tools. We thus developed the algorithm 
stochprofML to infer single-cell regulatory states from small pools of cells [9]. In con-
trast to previously existing deconvolution methods, which were not tailored to small 
cell pools, it neither requires a priori knowledge about the mixing weights such as the 
csSAM [10] or DSection [11] algorithms nor about expression profiles which is required 
when using for example the qproq [12] or lsfit [13] tools. Only the CAM method [14] 
performs unsupervised deconvolution for clusters of genes, however with the aim to 
find marker genes. Several of these methods are implemented in the R package Cell-
Mix [15], but for the above reasons, they are not directly comparable. In [9], we still 
demonstrated on synthetic data how stochastic profiling led to more accurate estimates 
than competing approaches.

Recently, tools were developed with the aim to deconvolute bulk measurements 
using the available huge datasets of single-cell data or purified bulk samples such as 
AutoGeneS [16], dtangle [17] or CPM [18]. However, deconvolution without any basis 
such as purified expression datasets of subpopulations or other prior knowledge is much 
harder. Here we present the stochastic profiling algorithm that blindly deconvolves the 
joint measurements purely by applying a combinatorial mixture model.

In [9], we applied stochprofML to measurements from human breast epithelial cells 
and revealed the functional relevance of the heterogeneous expression of a particular 
gene. Fluorescence in  situ hybridization confirmed that the computationally identified 
population fractions corresponded to experimentally detected transcriptional popula-
tions. In a second study, we applied the algorithm to clonal tumor spheroids of colorectal 
cancer [19]. There, a single tumor cell was cultured, and after several rounds of replica-
tion, each resulting spheroid was imaged and sequenced. However, pool sizes differed 
between tissue samples as each spheroid contained a different number of cells ranging 
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from less than ten to nearly 200 cells. Therefore, we extended stochprofML to be able to 
handle pools of different sizes.

In this work, we present such modeling extensions alongside numerical and compu-
tational detail. We explore the performance of the algorithm in simulation studies for 
various settings, especially in the realistic case of uncertainty about the pool size. To 
expand the range of applications, we propose a test for significant differences between 
the estimated populations and inference of original pool compositions.

Implementation
The stochprofML algorithm aims at maximum likelihood estimation of the correspond-
ing model parameters. Hence, we derive the likelihood functions of the parameters and 
show details of the estimation and its implementation. The new elements of the most 
recent version of the algorithm are introduced along the line. Note that we will use a 
combinatorial mixture since this we aim for a blind convolution model that does not 
need any prior input information on the contained subpopulations or their fractions.

Notation

Suppose there are k (tissue) samples, indexed by i ∈ {1, . . . , k} . From each tissue sam-
ple  i, we collect a pool of a known number of cells. The cells are either indexed 
by  j ∈ {1, . . . , n} if the cell pool size is the same in all measurements, or, as possible in the 
latest implementation, by  ji ∈ {1, . . . , ni} in case cell pool sizes vary between measure-
ments. In the latter, more general case, the cell numbers are variable over the k cell pools 
and summarized by �n = (n1, . . . , nk) . From each sample, the gene expression of m genes 
is measured, indexed by  g ∈ {1, . . . ,m} . We assume that each cell stems from one out 
of T cell populations, indexed by h ∈ {1, . . . ,T } . If T > 1 in the set of all cells of inter-
est, the tissue is called heterogeneous. The notation is illustrated in Fig. 1. Biologically, 
the different cell populations correspond to different regulatory states or—especially in 
the context of cancer—to different (sub-)clones. For example, there might be two pop-
ulations within a considered tissue: one occupying a basal regulatory state, where the 
expression of genes is at a low level, and one from a second regulatory state, where genes 
are expressed at a higher level.

Single‑cell models of heterogeneous gene expression

As described above, there are various technologies to measure gene expression. Micro-
arrays (as considered in previous applications of stochastic profiling, see [8, 9]) measure 
relative gene expression, which is appropriately described in terms of continuous prob-
ability distributions. Sequencing experiments produce discrete molecule counts. How-
ever, if these numbers are large, or if preprocessing blurs the discrete character of the 
data, one often describes such sequencing output by continuous probability distribu-
tions as well. Conditioned on the cell population, stochprofML provides two continuous 
choices for the single-cell distribution of the expression of one gene:

Lognormal distribution

The two parameters defining a univariate lognormal distribution LN (µ, σ 2) are called 
log-mean µ ∈ R and log-standard deviation σ > 0 . These are the mean and the standard 
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deviation of the normally distributed random variable log(X) , the natural logarithm of X. 
The probability density function (PDF) of X is given by

A random variable X ∼ LN (µ, σ 2) has expectation and variance

Exponential distribution

An exponential distribution EXP(�) is defined by the rate parameter � > 0 . The PDF is 
given by

A random variable X ∼ EXP(�) has expectation and variance

In general, the lognormal distribution is an appropriate description of continuous gene 
expression [20]. With its two parameters, it is more flexible than the exponential distri-
bution. However, the lognormal distribution cannot model zero gene expression as often 
present in real-world applications. In case of zeros in the data, it could be modified by 
adding small values such as 0.0001, or one uses the exponential distribution to model 
this kind of expression. This distribution is an obvious choice to model zero and very 
low expression as its support includes zero, and with only one distribution parameter 
it avoids unnecessary model complexity. Furthermore, we will show later that the expo-
nential distribution can be convoluted in closed form.

In case of T cell populations, we describe the expression of one gene by a stochastic 
mixture model. Let (p1, . . . , pT ) with p1 + · · · + pT = 1 denote the fractions of popula-
tions in the overall set of cells. stochprofML offers the following three mixture models:

Lognormal–lognormal (LN–LN)

Each population h is represented by a lognormal distribution with population-specific 
parameter µh (different for each population h) and identical σ for all T populations. The 
single-cell expression X that originates from such a mixture of populations then follows

fLN(x|µ, σ 2) = 1√
2πσx

exp

(

− (log x − µ)2

2σ 2

)

for x > 0.

(1)

E(X) = exp

(

µ+ σ 2

2

)

and Var(X) = exp
(

2µ+ σ 2
)(

exp
(

σ 2
)

− 1
)

.

fEXP(x|�) = � exp (−�x) for x ≥ 0.

E(X) = 1

�
and Var(X) = 1

�2
.

X ∼



































LN (µ1, σ
2) with probability p1

...

LN (µh, σ
2) with probability ph

...

LN (µT , σ
2) with probability

�

1−�T−1
h=1 ph

�

.
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Relaxed lognormal–lognormal (rLN–LN)

This model is similar to the LN–LN model, but each population h is represented by a 
lognormal distribution with a different parameter set ( µh , σh ). The single-cell expres-
sion X follows

Exponential–lognormal (EXP–LN)

Here, one population is represented by an exponential distribution with parameter � , 
and all remaining T − 1 populations are modeled by lognormal distributions analogously 
to LN–LN, i.e. with population-specific parameters µh and identical σ . The single-cell 
expression X then follows

The LN–LN model is a special case of the rLN–LN model. It assumes identical σ across 
all populations. Biologically, this assumption is motivated by the fact that, for the log-
normal distribution, identical σ lead to identical coefficient of variation

even for different values of µ . In other words, the linear relationship between the mean 
expression and the standard deviation is maintained across cell populations in the LN–
LN model. The appropriateness of the different mixture models can be discussed both 
biologically and in terms of statistical model choice.

Within one set of genes under consideration, we assume that the same type of model 
(LN–LN, rLN–LN, EXP–LN) is appropriate for all genes. The parameter values, how-
ever, may differ. In case of T cell populations, we describe the single-cell gene expres-
sion X (g) for gene g by a mixture distribution with PDF

X ∼



































LN (µ1, σ
2
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...

LN (µh, σ
2
h ) with probability ph

...

LN (µT , σ
2
T ) with probability

�
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h=1 ph
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.
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LN (µ1, σ
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...

LN (µh, σ
2) with probability ph

...

LN (µT−1, σ
2) with probability pT−1

EXP(�) with probability
�

1−�T−1
h=1 ph

�

.

CV(X) =
√
Var(X)

E(X)
=

√

exp(σ 2)− 1

fT-pop

(

x(g)| θ (g),p
)

= p1f1

(

x(g)|θ(g)1

)

+ · · · + phfh

(

x(g)|θ(g)h
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+ · · · +
(

1−
T−1
∑

h=1

ph

)

fT

(

x(g)|θ(g)T
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,



Page 6 of 31Amrhein and Fuchs  BMC Bioinformatics          (2021) 22:123 

where fh with h ∈ {1, . . . ,T } represents the PDF of population h that can be either log-
normal or exponential, and θ (g) = {θ(g)1 , . . . , θ

(g)
T } are the (not necessarily disjoint) distri-

bution parameters of the T populations for gene g.

Example: Mixture of two populations—Part 1

We exemplify the two-population case. Here, the PDF of the mixture distribution for 
gene g reads

where p is the probability of the first population. The univariate distributions f (g)1  and 
f
(g)
2  depend on the chosen model:
LN–LN: f1(x

(g)|θ(g)1 ) = fLN(x
(g)|µ(g)

1 , σ 2) and f2(x
(g)|θ(g)2 ) = fLN(x

(g)|µ(g)
2 , σ 2) , i.e. 

there are four unknown parameters: p,µ(g)
1 ,µ

(g)
2  and σ 2.

rLN–LN: f1(x
(g)|θ(g)1 ) = fLN(x

(g)|µ(g)
1 , σ1

2) and f2(x
(g)|θ(g)2 ) = fLN(x

(g)|µ(g)
2 , σ2

2) i.e. 
there are five unknown parameters: p,µ(g)

1 ,µ
(g)
2 , σ1

2 and σ22.
EXP–LN: f1(x(g)|θ(g)1 ) = fLN(x

(g)|µ(g), σ 2) and f2(x(g)|θ(g)2 ) = fEXP(x
(g)|�(g)) . i.e. there 

are four unknown parameters: p,µ(g) , σ 2 and  �(g) . Note that although each lognor-
mal population has its individual σ , these σ-values remain identical across genes in all 
models.

Small‑pool models of heterogeneous gene expression

stochprofML is tailored to analyze gene expression measurements of small pools of cells, 
beyond the analysis of standard single-cell gene expression data. In other words, the 
single-cell gene expression X (g)

iji
 described above is assumed latent. Instead, we consider 

observations

for  i = 1, . . . , k , which represent the overall gene expression of the ith cell pool for 
gene g. In the first version of stochprofML, pools had to be of equal size n, i.e. for each 
measurement Y (g)

i  one had to extract the same number of cells from each tissue sample. 
This was a restrictive assumption from the experimental point of view. The recent exten-
sion of stochprofML allows each cell pool i to contain a different number ni of cells (see 
also Figs. 1 and 2).

The algorithm aims to estimate the single-cell population parameters despite the fact 
that measurements are available only in convoluted form. To that end, we derive the 
likelihood function of the parameters in the convolution model  (2), where we assume 
the gene expression of the single cells to be independent within a tissue sample. For bet-
ter readability, we suppress for now the superscript (g) and introduce it again later.

The derivation of the distribution of Yi is described in  Additional file  1. The corre-
sponding PDF fni(yi|θ ,p) of an observation yi which represents the overall gene expres-
sion from sample i (consisting of ni cells) is given by

f2-pop(x
(g)|θ (g)) = pf1(x

(g)|θ(g)1 )+ (1− p)f2(x
(g)|θ(g)2 ),

(2)Y
(g)
i =

ni
∑

ji=1

X
(g)
iji
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where ℓT = ni −
∑T−1

h=1 ℓh and pT = 1−∑T−1
h=1 ph . Here, f(ℓ1,ℓ2,...,ℓT ) describes the 

PDF of a pool of  ni cells with known composition of the single populations, i.e. it 
is known that there are  ℓ1  cells from population  1, ℓ2  cells from population  2 etc. 
( ni
ℓ1,ℓ2,...,ℓT

)

p
ℓ1
1 p

ℓ2
2 · · · pℓTT  represents the multinomial probability of obtaining exactly this 

composition (ℓ1, . . . , ℓT ) using the multinomial coefficient 
( ni
ℓ1,ℓ2,...,ℓT

)

= ni!/(ℓ1! . . . ℓT !) . 
Equation  (3) sums up over all possible compositions (ℓ1, . . . , ℓT ) with  ℓ1, . . . , ℓT ∈ N0 
and ℓ1 + · · · + ℓT = ni . Taken together, fni(yi|θ ,p) determines the PDF of yi with respect 
to each possible combination of ni cells of T populations.

Thus, the calculation of  fni(yi|θ ,p) requires knowledge of  f(ℓ1,ℓ2,...,ℓT )(yi|θ) . The deri-
vation of this PDF depends on the choice of the single-cell model (LN–LN, rLN–LN, or 
EXP–LN) that was made for Xiji .

LN–LN

is the density of a sum Yi = Xi1 + · · · + Xini of ni independent random variables with

with J1 = ℓ1, . . . , Jh = ℓ1 + ℓ2 + · · · + ℓh, . . . , JT = ℓ1 + ℓ2 + · · · + ℓT = ni . Yi  is the 
convolution of random variables Xi1, . . . ,Xini , which is here the convolution of T sub-
convolutions: a convolution of ℓ1 times LN (µ1, σ

2) , plus a convolution of ℓ2 times 
LN (µ2, σ

2) , and so on, up to a convolution of ℓT times LN (µT , σ
2).

There is no analytically explicit form for the convolution of lognormal random vari-
ables. Hence, f LN-LN

(ℓ1,...,ℓh,...,ℓT )
 is approximated using the method by [21]. That is, the distri-

bution of the sum A1 + · · · + Am of independent random variables
Ai ∼ LN (µAi , σ

2
Ai
) is approximated by the distribution of a random variable 

B ∼ LN (µB, σ
2
B) such that

According to Eq. (1), that means that µB and σB are chosen such that the following equa-
tions are fulfilled:

(3)

fni
(

yi| θ ,p) =
ni
∑

ℓ1=0

ni−ℓ1
∑

ℓ2=0

· · ·
ni−

∑T−2
h=1 ℓh

∑

ℓT−1=0

(

ni

ℓ1, ℓ2, . . . , ℓT

)

p
ℓ1
1 p

ℓ2
2 · · · pℓTT f(ℓ1,ℓ2,...,ℓT )

(

yi|θ
)

,

f(ℓ1,...,ℓh,...,ℓT )(yi|θ) = f LN-LN
(ℓ1,...,ℓh,...,ℓT )

(yi|µ1, . . . ,µh, . . . ,µT , σ
2)

Xiji ∼































LN (µ1, σ
2) if 1 ≤ ji ≤ J1

...

LN (µh, σ
2) if Jh−1 < ji ≤ Jh

...

LN (µT , σ
2) if JT−1 < ji ≤ JT = ni,

E(B) = E(A1 + · · · + Am) and Var(B) = Var(A1 + · · · + Am).

exp

(

µB + σ 2
B

2

)

= exp

(

µA1 +
σ 2
A1

2

)

+ · · · + exp

(

µAm +
σ 2
Am

2

)

=: Ŵ
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and

That is achieved by choosing

This approximation is implemented in the function d.sum.of.lognormals(). The 
overall PDF is computed through d.sum.of.mixtures.LNLN().

rLN–LN

is the PDF of a sum Yi = Xi1 + · · · + Xini of ni independent random variables with

with J1 = ℓ1, . . . , Jh = ℓ1 + ℓ2 + · · · + ℓh, . . . , JT = ℓ1 + · · · + ℓT = ni . Again, 
f rLN-LN
(ℓ1,...,ℓh,...,ℓT )

 is approximated using the method by [21], analogously to the LN–LN 
model. It is implemented in d.sum.of.mixtures.rLNLN().

EXP–LN

is the density of a sum Yi = Xi1 + · · · + Xini of ni independent random variables with

with J1 = ℓ1, . . . , Jh = ℓ1 + ℓ2 + · · · + ℓh, . . . , JT = ℓ1 + · · · + ℓT = ni . The sum of inde-
pendent exponentially distributed random variables with equal intensity parameter 
follows an Erlang distribution [22], which is a gamma distribution with integer-valued 
shape parameter that represents the number of exponentially distributed summands. 

exp
(

2µB + σ 2
B

)(

exp
(

σ 2
B

)

−1
)

=

exp
(

2µA1 + σ 2
A1

)(

exp
(

σ 2
A1

)

−1
)

+ · · · + exp
(

2µAm + σ 2
Am

)(

exp
(

σ 2
Am

)

− 1
)

=: �.

µB = log(Ŵ)− 1

2
σ 2
B and σ 2

B = log

(

�

Ŵ2
+ 1

)

.

f(ℓ1,...,ℓh,...,ℓT )(yi|θ) = f rLN-LN
(ℓ1,...,ℓh,...,ℓT )

(yi|µ1, . . . ,µh, . . . ,µT , σ
2
1 , . . . , σ

2
h , . . . , σ

2
T )

Xiji ∼































LN (µ1, σ
2
1 ) if 1 ≤ ji ≤ J1

...

LN (µh, σ
2
h ) if Jh−1 < ji ≤ Jh

...

LN (µT , σ
2
T ) if JT−1 < ji ≤ JT = ni,

f(ℓ1,ℓ2,...,ℓT )(yi|θ) = f EXP-LN(ℓ1,ℓ2,...,ℓT )
(yi|�,µ1, . . . ,µT−1, σ

2)

Xiji ∼







































LN (µ1, σ
2) if 1 ≤ ji ≤ J1

...

LN (µh, σ
2) if Jh−1 < ji ≤ Jh

...

LN (µT−1, σ
2) if JT−2 < ji ≤ JT−1

EXP(�) if JT−1 < ji ≤ JT = ni,
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Thus, the PDF for the EXP–LN mixture model is the convolution of one Erlang (or 
gamma) distribution (namely the sum of all exponentially distributed summands) 
and one lognormal distribution [namely  the  sum  of  all  lognormally  distributed  sum-
mands,  again  using  the  approximation  method by 21]. The PDF for this convolution 
is not known in analytically explicit form but expressed in terms of an integral that is 
solved numerically through the function lognormal.exp.convolution(). Its 
computation thus takes substantially longer in terms of run time than for LN–LN. 
The overall PDF of the EXP–LN model is implemented in d.sum.of.mixtures.
EXPLN().

Example: Mixture of two populations—Part 2

In this example of the two-population model, let each observation consist of the same 
number of n = 10 cells. Then Yi is a 10-fold convolution, and the PDF (3) simplifies to

where f(ℓ,10−ℓ) is the PDF of the sum Yi of ten independent random variables, that is
Yi = Xi1 + · · · + Xi10 . This PDF depends on the particular chosen model:

LN–LN

is the PDF of a sum Yi = Xi1 + · · · + Xi10 of ten independent random variables with

rLN–LN

is the PDF of a sum Yi = Xi1 + · · · + Xi10 of ten independent random variables with

EXP–LN

is the PDF of a sum Yi = Xi1 + · · · + Xi10 of ten independent random variables with

(4)f10
(

yi|θ ,p
)

=
10
∑

ℓ=0

(

10

ℓ

)

pℓ(1− p)10−ℓf(ℓ,10−ℓ)

(

yi|θ
)

,

f(ℓ,10−ℓ)(yi|θ) = f LN-LN
(ℓ,10−ℓ)(yi|µ1,µ2, σ

2)

Xij ∼
{

LN (µ1, σ
2) if 1 ≤ j ≤ ℓ

LN (µ2, σ
2) if ℓ < j ≤ 10.

f(ℓ,10−ℓ)(yi|θ) = f rLN-LN
(ℓ,10−ℓ)(yi|µ1,µ2, σ

2
1 , σ

2
2 )

Xij ∼
{

LN (µ1, σ
2
1 ) if 1 ≤ j ≤ ℓ

LN (µ2, σ
2
2 ) if ℓ < j ≤ 10.

f(ℓ,10−ℓ)(yi|θ) = f EXP-LN(ℓ,10−ℓ) (yi|�,µ, σ 2)
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Likelihood function

Overall, after re-introducing the superscript (g) for measurements of genes g = 1, . . . ,m , 
we obtain the PDF

with model-specific choice of  f(ℓ1,ℓ2,...,ℓT ) . While  n = (n1, . . . , nk) is considered 
known, we aim to infer the unknown model parameters  θ = {θ (1), . . . , θ (m),p} 
by maximum likelihood estimation. Assuming independent observa-
tions y = {y(g)i |i = 1, . . . , k; g = 1, . . . ,m} of Y (g)

i  for m genes and k tissue samples, where 
sample i contains ni cells, the likelihood function is given by

Consequently, the log-likelihood function of the model parameters reads

Example: Mixture of two populations—Part 3

Returning to the two-population example with 10-cell pools, the log-likelihood for 
k = 100 tissue samples and m = 5 genes is given by

where f10
(

y
(g)
i |θ (g),p

)

 is given by Eq. (4).

Maximum likelihood estimation

The stochprofML algorithm aims to infer the unknown model parameters using maxi-
mum likelihood estimation. As input, we expect an m× k data matrix of pooled gene 
expression, known cell numbers �n , the assumed number of populations T and the choice 
of single-cell distribution (LN–LN, rLN–LN, EXP–LN). Based on this input, the algo-
rithm aims to find parameter values of θ = {θ (1), . . . , θ (m),p} that maximize ℓ(θ |y) as 
given by Eq. (6). This section describes practical aspects of the optimization procedure.

Xij ∼
{

LN (µ, σ 2) if 1 ≤ j ≤ ℓ

EXP(�) if ℓ < j ≤ 10.

(5)

fni

(

y
(g)
i | θ (g),p

)

=

ni
∑

ℓ1=0

ni−ℓ1
∑

ℓ2=0

· · ·
ni−

∑T−2
h=1 ℓh

∑

ℓT−1=0

(

ni

ℓ1, ℓ2, . . . , ℓT

)

p
ℓ1
1 p

ℓ2
2 · · · pℓTT f(ℓ1,ℓ2,...,ℓT )

(

y
(g)
i |θ (g)

)

L(θ |y) =
m
∏

g=1

k
∏

i=1

fni

(

y
(g)
i |θ (g),p

)

.

(6)ℓ(θ |y) =
m
∑

g=1

k
∑

i=1

log
[

fni

(

y
(g)
i |θ (g),p

)]

.

ℓ(θ |y) =
5

∑

g=1

100
∑

i=1

log
[

f10

(

y
(g)
i |θ (g),p

)]

,
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Example: Mixture of two populations—Part 4

Several challenges occur during parameter estimation. We explain these on the two-
population LN–LN example: First, we aim to ensure parameter identifiability. This 
is achieved for the two-population LN–LN model by constraining the parameters 
to fulfil either  p ≤ 0.5 or µ1 > µ2 . Otherwise, the two combinations  (p,µ1,µ2, σ) 
and  (1− p,µ2,µ1, σ) would yield identical values of the likelihood function and 
could cause computational problems. For our implementation, we preferred the sec-
ond possibility, i.e. µ1 > µ2 . The alternative, i.e. requiring p ≤ 0.5 , led to switchings 
between µ1 and µ2 in case of  p ≈ 0.5 . As a second measure, we implement uncon-
strained rather than constrained optimization: Instead of estimating  (p,µ1,µ2, σ) 
under the constraints  p ∈ [0, 1] , µ1 > µ2 and σ > 0 , the parameters are transformed 
to (logit(p),µ1,µ2, log(σ )) , and an unconstrained optimization method is used. This is 
substantially faster.

The aforementioned transformations are likewise employed for all other models 
(rLN–LN and EXP–LN) and population numbers. In particular, σ and � are log-trans-
formed, and the lognormal populations are ordered according to the log-means µ(1)

h  
of the first gene in the gene list. The population probabilities are transformed to R 
such that they still sum up to one after back-transformation. For details, see  Addi-
tional file 3.

The log-likelihood function is multimodal. Thus, a single application of some gra-
dient-based optimization method does not suffice to find a global maximum. Instead, 
two approaches are combined which are alternately executed: First, a grid search is 
performed, where the log-likelihood function is computed at many randomly drawn 
parameter values. In the second step, the (computationally more costly) Nelder-Mead 
algorithm [23] is repeatedly executed at few points. This way, high likelihood regions 
can be identified with low computational cost. A next grid search again explores the 
regions around the obtained local maxima, followed by another Nelder-Mead optimi-
zation. Here, the starting values are randomly drawn from the high-likelihood regions 
found before. This combination of grid search and local optimization is carried out 
three times. The whole procedure is repeated five times by default, with the aim to 
find an overall optimal parameter combination, but this number can be changed 
using the loops parameter of the function stochprof.loop(). If until.con-
vergence is set to TRUE, the loops will be exited as soon as the obtained improve-
ment in the likelihood during the last round is less than 5× 10−5.

If a dataset contains gene expressions for m genes, and if we assume T populations, 
there are at minimum T (m+ 1) parameters which one seeks to estimate depending on 
the model framework. This is computationally difficult, because the number of modes of 
the log-likelihood function increases with the number of parameters. The performance 
of the numerical optimization crucially depends on the quality of the starting values, and 
a large number of restarts is required. When analyzing a large gene cluster, it is advan-
tageous to start by considering small clusters and use the derived estimates as initial 
guesses for larger clusters. This is implemented in the function stochprof.loop() 
(parameter subgroups and demonstrated in analyze.toycluster()).

Approximate marginal 95% confidence intervals for the parameter estimates are 
obtained as follows: We numerically compute the Hessian matrix of the negative 
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log-likelihood function on the unrestricted parameter space and evaluate it at the 
(transformed) maximum likelihood estimator. Denote by di the ith diagonal element 
of the inverse of this matrix. Then the confidence bounds for the ith transformed 
parameter θi are

We obtain respective marginal confidence intervals for the original true parameters by 
back-transformation of the above bounds. This approximation is especially appropri-
ate in the two-population example for the parameters p and σ when conditioning on µ1 
and µ2 . In this case, in practice, the profile likelihood is seemingly unimodal.

Run times for maximum likelihood estimation differ substantially between two- and 
three-population models, and also between LN–LN, rLN–LN and EXP–LN. The latter 
is due to the integral convolution of an exponential and an Erlang distribution in EXP–
LN as described above. Table 1 displays run times using the R function microbench-
mark() on simulated data.

Example: Mixture of three populations

Figure 3 shows estimation results for an LN–LN model with three populations, based 
on synthetic 10-cell data. (Synthetic data generation is described later in this text.) 1000 
10-cell datasets each with k = 1000 observations were generated using underlying popu-
lation parameters p1 = 0.1 , p2 = 0.4 , µ1 = 1.5 , µ2 = −0.4 , µ3 = −2.5 and σ = 0.2.

Model choice

By increasing the number  T of populations, we can describe the observed data more 
precisely, but this comes at the cost of potential overfitting. For example, a three-popula-
tion LN–LN model may lead to a larger likelihood at the maximum likelihood estimator 
than a two-population LN–LN model on the same dataset. However, the difference may 
be small, and the additional third population may not lead to a gain of knowledge. For 
example, the estimated population probability  p̂3 may be tiny, or the log-means of the 
second and third population, µ̂2 and µ̂3 might hardly be distinguishable from each other.

θ̂i ± 1.96
√

di.

Table 1 Run times for maximum likelihood estimation for LN–LN, rLN–LN and EXP–LN models with 
T = 2 and T = 3 populations

The study was performed on simulated data using the R function microbenchmark(). Reported numbers are run times in 
seconds across five repetitions: median (min - max)

T LN–LN rLN–LN EXP–LN

2 13.00 (12.55–18.99) 27.06 (17.04–34.76) 16,762.22 
(10,764.77–
21,576.25)

3 96.76 (47.07–130.92) 162.59 (86.84–346.98) 148,785.38 
(100,248.84–
184,789.46)
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To objectively find a trade-off between necessary complexity and sufficient interpret-
ability, we employ the Bayesian information criterion [BIC, 24]:

where θ̂ is the maximum likelihood estimate of the respective model, dim(θ̂) the number 
of parameters and k  the size of the dataset. From the statistics perspective, the model 
with smallest BIC is considered most appropriate among all considered models.

In practice, it is required to estimate all models of interest separately with the stoch-
profML algorithm, e.g. the LN–LN model with one, two and three populations, and/or 
the respective rLN–LN and EXP–LN models. The BIC values are returned by the func-
tion stochprof.loop().

Results and discussion
This section illustrates the usage of the stochprofML package for simulation and param-
eter estimation. Afterwards we demonstrate the performance of the estimation depend-
ing on pool sizes, true parameter values and in case of uncertainty about pool sizes. We 
investigate what we can learn from the parameter estimates about the heterogeneous 
populations and about sample compositions. These investigations shed light on the algo-
rithm’s performance from a statistical point of view and complement the experimental 
validation we performed in [9]. All scripts used in these studies can be found in our open 
GitHub repository https ://githu b.com/fuchs lab/Stoch astic _Profi ling_in_R.

Usage of stochprofML

There are two ways to use the stochprofML package: (1) Two interactive functions sto-
chasticProfilingData() and stochasticProfilingML() provide low-level 
access to synthetic data generation and maximum likelihood parameter estimation with-
out requiring advanced programming knowledge. They guide the user through enter-
ing the relevant input parameters: Working as question-answer functions, they ask for 
prompting the data (or file name), the number of cells per sample, the number of genes 
etc. An example of the use of the interactive functions can be found in Additional file 5. 
(2) The direct usage of the package’s R functions allows more flexibility and is illustrated 
in the following.

Synthetic data generation

We first generate a dataset of k = 1000 sample observations, where each sample consists 
of n = 10 cells. We choose a single-cell model with two populations, both of lognormal 
type, i.e. we use the LN–LN model. Let us assume that the overall population of interest 
is a mixture of 62% of population 1 and 38% of population 2, i.e. p1 = 0.62 . As popula-
tion parameters we choose µ1 = 0.47 , µ2 = −0.87 and σ = 0.03 . Synthetic gene expres-
sion data for one gene is generated as follows: 

BIC(θ̂) = −2ℓ(θ̂)+ log k dim(θ̂),

https://github.com/fuchslab/Stochastic_Profiling_in_R
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Figure 4 shows a histogram of the simulated data as well as the theoretical PDF of the 
10-cell mixture. The following code produces this figure: 

Parameter estimation

Next, we show how the parameters used above can be back-inferred from the generated 

dataset using maximum likelihood estimation. 
When the fitting is done, pressing <enter> causes R to show plots of the estimation 

process, see Fig. 5, and displays the results in the following form. 
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 Hence, the marginal confidence intervals cover the true parameter values.

Simulation study on optimal pool size

Stochastic profiling, i.e. the analysis of small-pool gene expression measurements, is a 
compromise between the analysis of single cells and the consideration of large bulks: 
Single-cell information is most immediate, but a fixed number  k of samples will only 
cover k cells. In pools of cells, on the other hand, information is convoluted, but k pools 
of size n cover n times as much material. An obvious question is the optimal pool size n. 
The answer is not available in analytically closed form. We hence study this question 
empirically.

For this simulation study, first, we generate synthetic data for different pool sizes with 
identical parameter values and settings. Then, we re-infer the model parameters using 
the stochprofML algorithm. This is repeated 1000 times for each choice of pool size, 
enabling us to study the algorithm’s performance by simple summary statistics of the 
replicates.

The fixed settings are as follows: We use the two-population LN–LN model to gen-
erate data for one gene with p1 = 0.2 , µ1 = 2 , µ2 = 0 and σ = 0.2 . For each pool size 
we simulate k = 50 observations. The pool sizes are chosen in nine different ways: In 
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seven cases, pool sizes are identical for each sample, namely n ∈ {1, 2, 5, 10, 15, 20, 50} . In 
two additional cases, pool sizes are mixed, i.e. each of the k samples within one dataset 
represents a pool of different size ni ∈ {1, 2, 5, 10} or ni ∈ {10, 15, 20, 50} . Figure 6 sum-
marizes the point estimates of the 1000 datasets for each of the nine pool size settings. It 
seems that (for this particular choice of model parameter values) parameter estimation 
works reliably for pool sizes up to ten cells, with smaller variance from single-cells to 
5-cells. This applies also for the mixture of pool sizes for the small cell numbers. For cell 
numbers larger than ten, the range of estimated values becomes considerably larger, but 
without obvious bias, which also applies to the mixture of the larger pool sizes. Addi-
tional file  6 shows repetitions of this study for different choices of population param-
eters. The results there confirm the observations made here.

Figure 6 suggests n = 5 or varying small pool sizes as ideal choices since its estimates 
show smaller variance than the other pool sizes. This simulation study, however, has 
been performed in an idealized in silico setting: We did not include any measurement 
noise. In practice, however, it is well known that single-cells suffer more from such 
noise than samples with many cells. The ideal choice of pool size may hence be larger in 
practice.

Simulation study on impact of parameter values

The underlying data-generating model obviously influences the ability of the maximum 
likelihood estimator to re-infer the true parameter values: Values of p1 close to 0.5, small 
differences between µ1 and µ2 and large σ blur the data and complicate parameter infer-
ence in practice. In the simulation study of this section, we investigate the sensitivity of 
parameter inference and which scenarios could be realistically identified.

We use the same datasets as in the previous simulation study: The parameter choices 
from before are considered as the standard and compared to those from  Additional 
file 6. In detail, p1 is reduced from 0.2 to 0.1 in one setting and increased to 0.4 in the 
next. µ2 is increased from 0 to 1, and σ increases from 0.2 to 0.5. µ1 is kept fixed to 2 
in all settings. As before, we consider 1000 data sets for every parameter setting and 
compare the resulting estimates to the true values. This was done for all pool sizes con-
sidered before, but here we only comment on the results of the 10-cell pools and refer 
to Additional file 6 for all other pool size settings.

Figure 7 shows the results of the study. In each row of the plot, we compare the esti-
mates of the datasets that were simulated with the standard parameters to the estimates 
of the datasets that were simulated with one of the parameters changed. Even if only 
one parameter is changed all parameters are estimated. Each violin accumulates the esti-
mates of 1000 datasets. For easier comparison, each of the twelve tiles shows the stand-
ard setting as turquoise violin, which means those are repeated in each row.

When changing the parameter values, they can still be derived without obvious addi-
tional bias, but accuracy decreases for increasing p, decreasing µ2 − µ1 and increasing σ 
(with few exceptions). Results for other pool sizes (see Additional file 6) show that these 
observations can be confirmed with some additions: Larger pool sizes infer parameters 
more accurately if p is smaller. In an increased first population setting ( p = 40% ), µ1 can 
be better inferred if the data set consists of smaller pools. For larger pools, the estima-
tion of µ1 and µ2 works comparably well after increasing µ2 . In general, the estimation 
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of σ is the most difficult one: As shown in Eq. (1), the mean (and variance) of the log-
normal distribution is determined by both the parameters µ1 and µ2 and by σ . Estimates 
of σ will be negatively correlated with estimates µ̂1 and µ̂2 if the mean is determined 
correctly. Indeed, in pools of 15 cells with increased σ , we see that µ1 is slightly overes-
timated. Therefore, to keep the mean σ is underestimated. This worsens in larger pools.

Simulation study on the uncertainty of pool sizes

One key assumption of the stochprofML algorithm is that the exact number of cells in 
each cell pool is known. In [8], accordingly, ten cells were randomly taken from each 
sample by experimental design. However, different experimental protocols may not 
reveal the exact cell number: In [19], for example, tissue samples were taken as whole 
cancer spheroids. Here, the cell numbers were experimentally unknown but estimated 
using light sheet microscopy and 3D image analysis. Since the stochprofML algorithm 
requires the pool sizes as input parameter, some estimate has to be passed to it. It is 
intuitively obvious that the better the prior knowledge about the cell pool sizes, the bet-
ter the final model parameter estimate. In this simulation study, we investigate the con-
sequences of misspecification.

In a first simulation study, we reuse from before the 1000 synthetic 10-cell datasets. 
Each of these contains 50 10-cell samples, simulated with underlying model parameters 
p = 0.2 , µ1 = 2 , µ2 = 0 and σ = 0.2 . As before, we re-infer the population parameters 
using the stochprofML algorithm. This time, however, we use varying pool sizes from 5 
to 15 as input parameters of the algorithm. This is a misspecification except for the true 
value 10. The resulting parameter estimates (empirical median and 2.5%-/97.5%-quan-
tiles across the 1000 datasets) are depicted in Fig. 8. Estimates are optimal or at least 
among the best in terms of empirical bias and variance when using the correct pool 
size. With increasing assumed cell number, the estimates of  p decrease, i.e. the frac-
tion of cells from the higher expressed population is assumed to be smaller. This is a 
reasonable consequence of overestimating n, because in this case the surplus cells are 
assigned to the second population with lower (or even close-to-zero) expression. Con-
sequently, at the same time the estimates of µ2 decrease to be even smaller. In a sec-
ond simulation study, we use the two settings with mixed cell pool sizes as introduced 
above. One setting embraces cell pools with rather small cell numbers (single-, 2-, 5- and 
10-cell samples), the other one pools with larger cell numbers (10-, 15-, 20- and 50-cell 
samples). For each of the two scenarios, we generate one dataset with 50 samples. We 
denote the true 50-dimensional pool size vectors by �nsmall and �nlarge and employ these 
vectors for re-estimating the model parameters p, µ1 , µ2 and σ . Then, we estimate the 
parameters again for the same two datasets for 1000 times, but this time using perturbed 
pool size vectors as input to the algorithm, introducing artificial misspecification. These 
50-dimensional pool size vectors are generated as follows: For each component, we draw 
a Poisson-distributed random variable with intensity parameter equal to the respective 
component of the true vectors �nsmall or �nlarge . Zeros are set to one, the minimum pool 
size. Figure 9 shows these 2× 1000 parameter estimates as compared to the true param-
eter values and those for which the true size vectors �nsmall and �nlarge were used as input. 
The violins of the estimates for the smaller cell pools (based on �nsmall ) indicate that the 
estimates of  p and µ1 are fairly accurate, but the estimates of µ2 have large variance, 
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and σ is overestimated in all 1000 runs. This is plausible as population 1 (the one with 
higher log-mean gene expression) is only present on average in 20% of the cells; even 
when misspecifying the pool sizes, the cells of population 1 are still detectable since this 
is the population responsible for most gene expression. Consequently, all remaining cells 
are assigned to population 2, which has lower or even almost no expression. If the pool 
size is assumed too low, this second population will be estimated to have on average a 
higher expression; if it is assumed too large, the second population will be estimated to 
have a lower expression. This leads to a broader distribution and thus an overestimation 
of σ.

The results for the larger cell pools (based on  �nlarge ) show a similar pattern. In this 
case, however, the impact of misspecification is less visible, as also confirmed by addi-
tional simulations in  Additional file  6. For large cell pools, the averaging effect across 
cells is strong anyway and in that sense more robust. In the study here, due to variabil-
ity of parameter estimates, the σ parameter is often even better estimated when using a 
misspecified pool size vector than when using the true one. It might also be appropriate 
to repeat the parameter estimation, as shown here, with similar pool size vectors to get 
more robust estimates.

Taken together, stochprofML can be used even if exact pool sizes are unknown. In that 
case, the numbers should be approximated as well as possible.

Interpretation of estimated heterogeneity

The stochprofML algorithm estimates the assumed parameterized single-cell distribu-
tions underlying the samples and, as described before, selects the most appropriate num-
ber of cell populations using the BIC. Assume we have performed this estimation for 
samples from two different groups, cases and controls. One may in practice then want 
to know whether the inferred single-cell populations are substantially different between 
the two groups, e.g. in case the estimated log-means µ̂cases and µ̂controls are close to each 
other. A related question is whether the difference is biologically relevant.

We hence seek a method that can judge statistical significance and potentially reject 
the null hypothesis that two single-cell populations are the same; and at the same time 
allow the interpretation of similarity. Direct application of Kolmogorov-Smirnov or 
likelihood-ratio tests to the observed data is impossible here since the single-cell data is 
unobserved: We only measure the overall gene expression of pools of cells. Calculation 
of the Kullback-Leibler divergence of the two distributions would be possible; however, 
it is not target-oriented for our application where we seek an interpretable measure of 
similarity rather than a comparison between more than two population densities.

For our purposes, we use a simple intuitive measure of similarity—the overlap of two 
PDFs, that is the intersection of the areas under both PDF curves:

for two continuous one-dimensional PDFs f and g [see also 25]. The overlap lies between 
zero and one, with zero indicating maximum dissimilarity and one implying (almost 
sure) equality. In our case, we are particularly interested in the overlap of two lognormal 
PDFs: 

(7)OVL(f , g) =
∫ ∞

−∞
min{f (x), g(x)}dx
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Figure 10 shows examples of such overlaps. Here, the overlap ranges from 12% for two 
quite different distributions to 86% for two seemingly similar distributions. The ques-
tion is where to draw a cutoff, that is, at what point we decide to label two distributions 
as different. Current literature considers two cases: Either the parametric case [e.g. 26], 
where both distributions are given by their distribution families and parameter values; 
or the nonparametric case [e.g. 25], where observations (but no theoretical distribu-
tions) are available for the two populations. Our application builds a third case: On the 
one hand, we want to compare two parametric distributions, but the model parameters 
are just given as estimates based on (potentially small) datasets, thus they are uncertain; 
on the other hand, we do not directly observe the single-cell gene expression but just the 
pooled one. To address this issue, we suggest to again take into account the original data 
that led to the estimated parametric PDFs. As an example, assume that we consider two 
sets of pooled gene expression, one for a group of cases and one for a group of controls. 
In both groups, pooled gene expression is available as 10-cell measurements, but the two 
groups differ in sample size. Let’s say the cases contain 50 samples and the controls 100. 
We assume the LN–LN model with two populations and estimate the mixture and pop-
ulation parameters using the stochprofML algorithm separately for each group, leading 
to estimates p̂cases, µ̂1,cases, µ̂2,cases, σ̂cases and p̂controls, µ̂1,controls, µ̂2,controls, σ̂controls . 
We now aim to assess whether the first populations in both groups have identical char-
acteristics, i.e. whether LN (µ̂1,cases, σ̂

2
cases) and LN (µ̂1,controls, σ̂

2
controls) are estimates of 

the same distribution.
Figure  10 displays the single-cell PDFs of the first population and their over-

laps for various values of the estimates. For example, in Fig.  10d, the orange 
curve shows the single-cell PDF of population  1 inferred from the cases, yielding 
LN (µ̂1,cases = 2.10, σ̂ 2

cases = 0.192) , and the blue one shows the inferred single-cell PDF 
of population 1 from the controls, LN (µ̂1,controls = 2.03, σ̂ 2

controls = 0.202) . The overlap 
of these two inferred PDFs equals 86%.

We now aim to test the null hypothesis that the underlying populations
LN (µ1,cases, σ

2
cases) and LN (µ1,controls, σ

2
controls) are the same versus the experi-

mental hypothesis that they are different. We perform a sampling-based test: Tak-
ing into account the inferred population probabilities p̂cases and p̂controls and 
the number of samples and cells in the data, we can estimate the number of 
cells which the estimates θ̂cases and θ̂controls relied on. The larger this cell num-
ber, the less expected uncertainty about the estimated population distributions 
LN (µ̂1,cases, σ̂

2
cases) and LN (µ̂1,controls, σ̂

2
controls)  (neglecting the impact of pool sizes). 

In our example, let  p̂cases = 12% . Then, approximately 12% of the 500 cells from the 
cases group ( 50× 10-cell samples) belonged to population  1, that is 60 cells. For 
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p̂controls = 20% , 200 cells were expected to be from the first population (that is 20% of 
1000 cells, coming from the 100 × 10-cell measurements for the controls). In our pro-
cedure, we compare parameter estimates that are based on the respective numbers of 
single cells, i.e. 60 cells for cases and 200 cells for controls. We perform the following 
steps:

• Calculate OVLoriginal, the overlap of the PDFs of 
N (µ̂1,cases = 2.10, σ̂ 2

cases = 0.192) andLN (µ̂1,controls = 2.03, σ̂ 2
controls = 0.202).

• Under the null hypothesis, the two distributions are identi-
cal. We approximate the parameters of this identical distribution as 
µ̃1,mean = (µ̂1,cases + µ̂1,controls)/2 and σ̃mean = (σ̂cases + σ̂controls)/2.

• Repeat N = 1000 times:

– Draw dataset A  of size 60 from LN (µ̃1,mean, σ̃
2
mean).

– Draw dataset B of size 200 from LN (µ̃1,mean, σ̃
2
mean).

– Estimate the log-mean and log-sd for these two datasets using the method of 
maximum likelihood, yielding µ̂A, σ̂A, µ̂B and σ̂B.

– Calculate OVL
(

f
LN (µ̂A,σ̂

2
A)
, f
LN (µ̂B ,σ̂

2
B )

)

.

• Sort the N  overlap values and select the empirical 5% quantile OVL0.05.
• Compare the overlap from the original data to this quantile:

– If OVLoriginal ≤ OVL0.05 , the null hypothesis that both populations are the 
same can be rejected.

– If OVLoriginal > OVL0.05 , the null hypothesis cannot be rejected.

This procedure is related to the idea of parametric bootstrap and the bootstrap per-
centile method with the difference that our original data is on the n-cell level and 
the parametrically simulated data is on the single-cell level. Note that under the null 
hypothesis the two population distributions are identical, but in practice this will 
hardly ever be the case for the estimated population parameters. Taking the average 
of estimated log-means and log-standard deviations in the second bullet point above 
is one way of approximating the null distribution.

The left panel of Fig. 11 shows one outcome of the above-described procedure (i.e. 
the stochastic, sampling-based algorithm was run once) with the above-specified val-
ues of the parameter estimates. Here, OVLoriginal lies in the critical range such that 
we reject the null hypothesis that the gene expression of the populations in question 
stem from the same lognormal distribution. We thus assume a difference here. The 
right panel of Fig. 11 demonstrates the importance of taking into account the number 
of cells which the original estimates were based on: Here, we show one outcome of 
the above described steps, but this time we assume that for the control group there 
were only 30 10-cell samples (i.e. 300 cells in total). With the same population fraction 
as before ( p̂controls = 20%), the datasets B now contain only 60 cells. Here, the value 
OVLoriginal does not fall into the critical range, and therefore we would not reject the 
null hypothesis that the two populations of interest are the same.
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When testing for heterogeneity for several genes simultaneously, multiple testing 
issues should be taken into account. However, genes will not in general be independent 
from each other.

Prediction of sample compositions

The stochprofML algorithm estimates the parameters of the mixture model, i.e.—in 
case of at least two populations—the probability for each cell within a pool to fall into 
the specific populations. It does not reveal the individual pool compositions. In some 
applications, however, exactly this information is of particular interest. Here, we pre-
sent how one can infer likely population compositions of a particular cell pool. This 
is done in a two-step approach via conditional prediction: First, one estimates the 

Fig. 1 Experimental design of pooling cells into samples, measuring the pooled gene expression across 
several genes for which identical population structures are assumed. The table illustrates the index notation 
of (tissue) samples, single cells, populations and genes as well as observed and latent measurements

Table 2 Estimates of numbers of cells from the first population in the simulated 5-cell data 
described in Figs. 12 and 13a and in the main text

Columns: Estimation results for the first six measurements from the datasets and (last column) summary across all 
100 samples. Rows: Estimation of cell numbers are based on conditional probabilities that use either the estimated model 
parameters (rows 1 and 2, corresponding to blue bars in Fig. 13a) or the true values (rows 3 and 4, orange bars). Within 
each of these two choices one can consider the mean number of cells from population 1 as determined by the conditional 
probabilities (rows 1 and 3) or the maximum likelihood estimator (MLE) that maximizes the conditional probabilities (rows 2 
and 4, first value) including a 95% confidence interval that covers at least 95% of the conditional probability mass (rows 2 
and 4, in parentheses). The last row shows the true pool composition. The last column shows for each estimator how many 
of the 100 cell numbers were inferred correctly (defined as follows: rounded mean is exact match; MLE is exact match; 
confidence interval (CI) includes correct number)

Estimator for # of cells in pop. 1 Measurement index # of hits

1 2 3 4 5 6

Estimated parameters Mean 0.00 1.00 1.00 1.00 2.14 1.01 98

MLE (CI) 0 (0,0) 1 (1,1) 1 (1,1) 1 (1,1) 2 (2,3) 1 (1,1) 98 (100)

True parameters Mean 0.00 1.00 1.00 1.00 2.39 1.02 97

MLE (CI) 0 (0,0) 1 (1,1) 1 (1,1) 1 (1,1) 2 (2,3) 1 (1,1) 97 (100)

True # of cells from population 1 0 1 1 1 2 1
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model parameters from the observed pooled gene expression, i.e. one obtains an esti-
mate  θ̂ of θ . Then, one assumes that θ equals θ̂ and derives the most probable popula-
tion composition via maximizing the conditional probability of a specific composition 
given the pooled gene expression (for calculations, see  Additional file  4). We evaluate 
this procedure via a simulation study. As before, we simulate data using the stochprofML 

a b

Fig. 2 Stochastic Profiling can be performed either on measurements of a homogeneous pool size of n 
cells or of b different pool sizes given by the cell number vector �n . In both cases, the stochprofML algorithm 
estimates the parameters for the specified number of populations from pooled data, leading to inferred 
single-cell distributions for each population. Additional File 2 describes how this density is visualized here
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package. In particular, we use the LN–LN model with two populations with parame-
ters p = (0.2, 0.8), µ = (2, 0) and σ = 0.2 . Each simulated measurement shall contain 
the pooled expression of n = 5 cells, and we sample k = 100 such measurements. We 
store the original true cell pool compositions from the data simulation step in order to 
later compare the composition predictions to the ground truth. Having generated the 
synthetic data, we apply stochprofML to estimate the model parameters p, µ and σ . Fig-
ure 12 shows a histogram of one simulated data set along with the PDF of the true pop-
ulation mixture and the PDF of the estimated population mixture (that is the LN–LN 
model with parameters p̂ = (0.14, 0.86), µ̂ = (2.04, 0) and σ̂ = 0.20).

Next, we calculate the conditional probability mass function (PMF; see  Additional 
file 4 for details) for each possible population composition conditioned on the particular 
pooled gene expression measurement. Figure 13a and Table 2 show results for the first 
six (out of 100) pooled measurements.

In particular, Fig. 13a displays the conditional PMF of all possible compositions (i.e. 
k times population and 5-k  times population 2 for k ∈ {0, 1, . . . , 5}). Blue bars stand 
for these probabilities when θ̂  is used as model parameter value. Orange stands for the 
hypothetical case where the true value θ is known and used. These two scenarios are in 
good agreement with each other.
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We regard the most likely sample composition to be the one that maximizes the 
conditional PMF (maximum likelihood principle). The true composition (ground 
truth) is marked with a black box around the blue and orange bars. We observe in 
Fig. 13a that the composition is in all six cases inferred correctly and mostly unam-
biguously. Only for the fifth measurement, there is visible probability mass on a 
composition other than the true one. In fact, it is the only pool (out of the six con-
sidered ones) with two cells from the first population. Alternatively to the maximum 
likelihood estimator, one can also regard the expected composition—the empirical 
weighted mean of numbers of cells in the first population—or confidence inter-
vals for this number. The respective estimates for the first six measurements of the 
dataset are shown in Table  2. The results are consistent with the interpretation of 
Fig.  13a. Certainly, the precision of the prediction depends on the employed pool 
sizes, the underlying true model parameters and how reliably these were inferred 
during the first step. We showed above that larger cell pools lead to less precise 
parameter inference. Hence, we repeat the prediction of sample compositions 
on another dataset, this time based on 10-cell pools. All other parameters remain 
unchanged. The resulting conditional probabilities are depicted in Fig.  13b. Since 
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p = 0.2 , one expects on average two cells to be from the first population in each 
10-cell pool. As in the previous 5-cell case, most predictions show a clear pattern. 
However, probability masses are spread more widely. Measurements 3 and 4 exem-
plify that almost identical gene expression measurements ( y = 19.69 and y = 19.79 ) 
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can arise from different underlying pool compositions (two times population  1 in 
measurement  3 vs. three times population  1 in measurement 4). For more similar 
population parameters, the estimation will get worse, which will then propagate to 
the well composition prediction. In such cases, to predict the pool compositions, 
one may use additional parallel measurements of other genes that might separate the 
population better by their different expression profiles while the pool composition 
stays the same across genes.
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Conclusion
With the stochprofML package, we provide an environment to profile gene expression 
measurements obtained from small pools of cells. Experimentalists may choose this 
approach if single-cell measurements are impossible in their lab (e.g. for bacteria), 
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if the drop-out rate is high in single-cell libraries, if budget or time are limited, or if 
one prefers to avoid the stress which is put on the cells during separation. The latest 
implementation even allows to combine information from different pool sizes, in par-
ticular, to simultaneously analyze single-cell and and n-cell data.

We demonstrated the usage and performance of the stochprofML algorithm in vari-
ous examples and simulation studies. These have been performed in an idealized in 
silico environment. This should be kept in mind when incorporating the results into 
experimental planning and analysis. Subsequent interpretation of heterogeneity will be 
informative if based on a good model estimate. The assumption of independent expres-
sion across genes within the same tissue sample is a simplification of nature that leads to 
less complex parameter estimation. Previous experimental validation [9] provided evi-
dence that transcriptional heterogeneity can be parameterized through stochastic profil-
ing even for non-ideal settings such as small sample sizes or in the presence of gene-gene 
correlation. If populations are similar or diffuse, they may not be identified as distinct 
populations through stochprofML. The same, however, applies to other statistical meth-
ods and also to the analysis of single-cell data. For the latter, noise is expected to be more 
pronounced than in n-cell pools, which again motivates the use of our method.

The optimal pool size with respect to bias and variance of the corresponding param-
eter estimators will depend on unknown properties such as numbers of populations 
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and their characteristics, and also on the relationship between the pool size and the 
amount of technical measurement noise. The latter aspect has been excluded from 
the studies here but further supports the application of stochastic profiling.

Availability of data and requirements
Project name: stochprofML.

Project home page: https ://githu b.com/fuchs lab/stoch profM L.
Operating system(s): Platform independent.
License: GNU GPL.
Programming language: R.
Other requirements: None; We used R version 3.5.3 [27]. In addition to our stoch-

profML version 2.0.3 [28], we attached the following R packages: MASS version 7.3-51.1 
[29], numDeriv version 2016.8-1.1 [30], EnvStats version 2.3.1 [31], vioplot ver-
sion 0.3.4. [32], zoo version 1.8-7 [33], sm version 2.2-5.6 [34], cowplot version 1.0.0 
[35], ggplot2 version 3.2.1 [36], knitr version 1.27 [37], microbenchmark version 
1.4-7 [38], and RcolorBrewer version 1.1-2 [39]. All calculations were performed on a 
64-bit x86_64-redhat-linux-gnu platform running under Fedora 28.

Any restrictions to use by non-academics: GPL license, open source.

Abbreviations
mRNA: Messenger ribonucleic acid; LN–LN model: Lognormal–lognormal model; rLN–LN model: Relaxed lognormal–log-
normal model; EXP–LN model: Exponential–lognormal model; PDF: Probability density function; BIC: Bayesian informa-
tion criterion; OVL: Overlap; PMF: Probability mass function; MLE: Maximum likelihood estimator; CI: Confidence interval.

Supplementary information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-021-03970 -7.

Additional file 1: PDF of n‑cell measurements of T cell populations. Derivation of the PDF shown in Eq. (3) in 
Section Small-pool models of heterogeneous gene expression.

Additional file 2: PDF of pooled gene expression for mixed pool size vectors. Derivation of the PDF of samples 
that contain different cell numbers.

Additional file 3: Transformation of population probabilities. Details about the transformation of the population 
probabilities during parameter optimization.

Additional file 4: Derivation of sample composition probabilities. Derivation of the conditional probability of a 
cell composition given the measured gene expression needed in Section Prediction of sample compositions.

Additional file 5: Interactive Functions. Examples how the interactive usage of stochprofML works.

Additional file 6: Details on Simulation Studies. More information and further details on the Simulation study 
on optimal pool size, on the Simulation study on impact of parameter values and on the Simulation study on the 
uncertainty of pool sizes.

Acknowledgements
We thank Susanne Amrhein and Xiaoling Zhang for code contributions to the simulation studies and Mercè Garí for 
feedback.

Authors’ contributions
The work was designed and the methods developed by LA and CF. CF implemented the first version of the software, LA 
developed the second version and performed the simulation studies. LA and CF wrote the paper. All authors have read 
and approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. Our research was supported by the German Research 
Foundation within the SFB 1243, Subproject A17 (funding of LA’s position), by the Helmholtz Initiative and Networking 
Fund, Pilot Project Uncertainty Quantification (funding of LA’s position), by the German Federal Ministry of Education 
and Research under Grant Number 01DH17024 (funding of research visits for scientific exchange), and by the National 

https://github.com/fuchslab/stochprofML
https://doi.org/10.1186/s12859-021-03970-7


Page 30 of 31Amrhein and Fuchs  BMC Bioinformatics          (2021) 22:123 

Institutes of Health under Grant Number U01-CA215794 (funding of research visit for scientific exchange). The funders 
had no role in study design, experiments, manuscript writing and decisions concerning submission.

Availability of data and materials
All scripts used in this study can be found in our open GitHub repository https ://githu b.com/fuchs lab/Stoch astic _Profi 
ling_in_R.

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, 
Germany. 2 Department of Mathematics, Technical University Munich, Boltzmannstrasse 3, 85748 Garching, Germany. 
3 Faculty of Business Administration and Economics, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany. 

Received: 22 June 2020   Accepted: 15 January 2021

References
 1. Kurimoto K. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microar-

ray analysis. Nucleic Acids Res. 2006;34(5):e42.
 2. Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. Single-cell transcriptional analysis of neuronal progenitors. 

Neuron. 2003;38(2):161–75.
 3. Sandberg R. Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods. 2014;11(1):22–4.
 4. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell 

RNA sequencing methods. Mol Cell. 2017;65(4):631–643.e4.
 5. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue 

expression profiles. Nat Methods. 2015;12(5):453–7.
 6. Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 

2014;11(6):637–40.
 7. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-

cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 
2015;33(2):155–60.

 8. Janes KA, Wang CC, Holmberg KJ, Cabral K, Brugge JS. Identifying single-cell molecular programs by stochastic 
profiling. Nat Methods. 2010;7(4):311–7.

 9. Bajikar SS, Fuchs C, Roller A, Theis FJ, Janes KA. Parameterizing cell-to-cell regulatory heterogeneities via stochastic 
transcriptional profiles. Proc Natl Acad Sci. 2014;111(5):E626–35.

 10. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, et al. Cell type-specific gene expression differ-
ences in complex tissues. Nat Methods. 2010;7(4):287–9.

 11. Erkkilä T, Lehmusvaara S, Ruusuvuori P, Visakorpi T, Shmulevich I, Lähdesmäki H. Probabilistic analysis of gene expres-
sion measurements from heterogeneous tissues. Bioinformatics. 2010;26(20):2571–7.

 12. Gong T, Hartmann N, Kohane IS, Brinkmann V, Staedtler F, Letzkus M, et al. Optimal deconvolution of transcrip-
tional profiling data using quadratic programming with application to complex clinical blood samples. PLoS ONE. 
2011;6(11):e27156.

 13. Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF. Deconvolution of Blood Microarray Data Identifies Cel-
lular Activation Patterns in Systemic Lupus Erythematosus. PLoS ONE. 2009;4(7):e6098.

 14. Wang N, Hoffman EP, Chen L, Chen L, Zhang Z, Liu C, et al. Mathematical modelling of transcriptional heterogeneity 
identifies novel markers and subpopulations in complex tissues. Sci Rep. 2016;6(1):18909.

 15. Gaujoux R, Seoighe C. Cell Mix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics. 
2013;29(17):2211–2.

 16. Aliee H, Theis F. AutoGeneS: automatic gene selection using multi-objective optimization for RNA-seq deconvolu-
tion. bioRxiv. 2020; Available from: https ://www.biorx iv.org/conte nt/early /2020/02/23/2020.02.21.94065 0.

 17. Hunt GJ, Freytag S, Bahlo M, Gagnon-Bartsch JA. dtangle: accurate and robust cell type deconvolution. Bioinformat-
ics. 2018;35(12):2093–9. https ://doi.org/10.1093/bioin forma tics/bty92 6.

 18. Frishberg A, Peshes-Yaloz N, Cohn O, Rosentul D, Steuerman Y, Valadarsky L. Cell composition analysis of bulk 
genomics using single-cell data. Nat Methods. 2019;16:327–32. https ://doi.org/10.1038/s4159 2-019-0355-5.

 19. Tirier SM, Park J, Preusser F, Amrhein L, Gu Z, Steiger S, et al. Pheno-seq: linking visual features and gene expression 
in 3D cell culture systems. Sci Rep. 2019;9:2045–322.

 20. Bengtsson M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal 
distribution of mRNA levels. Genome Res. 2005;15(10):1388–92.

 21. Fenton L. The sum of log-normal probability distributions in scatter transmission systems. IEEE Trans Commun. 
1960;8(1):57–67.

 22. Feldman RM, Valdez-Flores C. Applied probability and stochastic processes. Berlin: Springer; 2010.
 23. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.

https://github.com/fuchslab/Stochastic_Profiling_in_R
https://github.com/fuchslab/Stochastic_Profiling_in_R
https://www.biorxiv.org/content/early/2020/02/23/2020.02.21.940650
https://doi.org/10.1093/bioinformatics/bty926
https://doi.org/10.1038/s41592-019-0355-5


Page 31 of 31Amrhein and Fuchs  BMC Bioinformatics          (2021) 22:123  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 24. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.
 25. Pastore M, Calcagnì A. Measuring distribution similarities between samples: a distribution-free overlapping index. 

Front Psychol. 2019;10:1089.
 26. Inman HF, Bradley EL. The overlapping coefficient as a measure of agreement between probability distributions and 

point estimation of the overlap of two normal densities. Commun Stat Theory Methods. 1989;18(10):3851–74.
 27. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2019. https ://www.R-proje 

ct.org/.
 28. Amrhein L, Fuchs C. stochprofML: stochastic profiling using maximum likelihood estimation; 2020. R package ver-

sion 2.0.3. Available from: https ://CRAN.R-proje ct.org/packa ge=stoch profM L.
 29. Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.
 30. Gilbert P, Varadhan R. numDeriv: accurate numerical derivatives; 2019. R package version 2016.8-1.1. Available from: 

https ://CRAN.R-proje ct.org/packa ge=numDe riv.
 31. Millard SP. EnvStats: an R package for environmental statistics. New York: Springer; 2013.
 32. Adler D, Kelly ST. vioplot: Violin Plot; 2019. R package version 0.3.4. Available from: https ://githu b.com/TomKe llyGe 

netic s/viopl ot.
 33. Zeileis A, Grothendieck G. Zoo: S3 infrastructure for regular and irregular time series. J Stat Softw. 2005;14(6):1–27.
 34. Bowman AW, Azzalini A. R package sm: nonparametric smoothing methods (version 2.2-5.6). University of Glasgow, 

UK and Università di Padova, Italia; 2018. Available from: http://www.stats .gla.ac.uk/~adria n/sm/.
 35. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’; 2019. R package version 1.0.0. Avail-

able from: https ://CRAN.R-proje ct.org/packa ge=cowpl ot.
 36. Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
 37. Xie Y. knitr: a comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD, editors. Imple-

menting reproducible computational research. Boca Raton: Chapman and Hall/CRC; 2014.
 38. Mersmann O. microbenchmark: Accurate Timing Functions; 2019. R package version 1.4-7. Available from: https ://

CRAN.R-proje ct.org/packa ge=micro bench mark.
 39. Neuwirth E. RColorBrewer: ColorBrewer Palettes; 2014. R package version 1.1-2. Available from: https ://CRAN.R-proje 

ct.org/packa ge=RColo rBrew er.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=stochprofML
https://CRAN.R-project.org/package=numDeriv
https://github.com/TomKellyGenetics/vioplot
https://github.com/TomKellyGenetics/vioplot
http://www.stats.gla.ac.uk/%7eadrian/sm/
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer

	stochprofML: stochastic profiling using maximum likelihood estimation in R
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Implementation
	Notation
	Single-cell models of heterogeneous gene expression
	Lognormal distribution
	Exponential distribution
	Lognormal–lognormal (LN–LN)
	Relaxed lognormal–lognormal (rLN–LN)
	Exponential–lognormal (EXP–LN)
	Example: Mixture of two populations—Part 1

	Small-pool models of heterogeneous gene expression
	LN–LN
	rLN–LN
	EXP–LN
	Example: Mixture of two populations—Part 2
	LN–LN
	rLN–LN
	EXP–LN

	Likelihood function
	Example: Mixture of two populations—Part 3

	Maximum likelihood estimation
	Example: Mixture of two populations—Part 4
	Example: Mixture of three populations

	Model choice

	Results and discussion
	Usage of stochprofML
	Synthetic data generation
	Parameter estimation

	Simulation study on optimal pool size
	Simulation study on impact of parameter values
	Simulation study on the uncertainty of pool sizes
	Interpretation of estimated heterogeneity
	Prediction of sample compositions

	Conclusion
	Availability of data and requirements
	Acknowledgements
	References


