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Nonlinear machine learning pattern recognition and
bacteria-metabolite multilayer network analysis of
perturbed gastric microbiome
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The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance.

Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as

Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the

commensal bacteria re-organize, due to these perturbations of the gastric environment, are in

early phase and rely principally on linear techniques for multivariate analysis. Here we dis-

close the importance of complementing linear dimensionality reduction techniques with

nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we

prove the advantages to complete multivariate pattern analysis with differential network

analysis, to reveal mechanisms of bacterial network re-organizations which emerge from

perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally,

we show how to build bacteria-metabolite multilayer networks that can deepen our under-

standing of the metabolite pathways significantly associated to the perturbed microbial

communities.
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The gastric environment with its microbiota is the active
gate that regulates access to the whole gastrointestinal tract,
and therefore it has a remarkable impact on the correct

functionality of the entire human organism. Recent studies have
revealed that many orally administered drugs can perturb the
elegant balance of the gastric microbiota1,2. However, not all of
them cause permanent adverse effects and particular attention
should be addressed to drugs that are frequently prescribed and
administered for long periods. They can cause permanent
unbalance of the gastric microbiota that might generate adverse
side effects for the patient’s health. Since the introduction of
proton pump inhibitors (PPIs) into clinical practice more than 25
years ago, PPIs have become the mainstay in the treatment of
gastric-acid-related diseases3. PPIs are potent agents that block
acid secretion by gastric parietal cells by binding covalently
to and inhibiting the hydrogen/potassium (H+/K+)-ATPases
(or proton pumps), and additionally they can bind non-gastric
H+/K+-ATPases, both on human cells and on bacteria and fungi,
such as Helicobacter pylori (H. pylori)4–6.

PPIs are drugs of first choice for peptic ulcers (PU) and their
complications (e.g. bleeding), gastroesophageal reflux disease
(GERD), nonsteroidal anti-inflammatory drug (NSAID)-induced
gastrointestinal (GI) lesions, Zollinger-Ellison syndrome and
dyspepsia3,7,8. In particular, dyspepsia is a common clinical
problem characterized by symptoms (e.g. epigastric pain, burn-
ing, postprandial fullness or early satiation) originating from the
gastroduodenal region9. The potent gastric-acid suppression
drugs PPIs can treat the most frequent causes of dyspepsia
including GERD, medication-induced gastritis, and PU, thus
minimizing the need for costly and invasive testing, and moreover
are currently recommended to eradicate H. pylori infection, in
combination to antibiotics7,9,10. Nevertheless, some patients are
resistant or partial responders to empiric PPI therapy, and con-
tinue to have dyspepsia7.

Additionally, there is growing evidence that these medications
are associated with increased rates of pharyngitis and upper and
lower respiratory tract infections11. Their long-term over-
utilization has been associated with potential adverse effects. For
instance: the development of corpus predominant atrophic gas-
tritis in H. pylori-positive patients (that is a precursor of gastric
cancer), enteric infections (especially Clostridium difficile-asso-
ciated diarrhoea), increased risk of fundic gland polyps, hypo-
magnesaemia and hypocalcaemia, osteoporosis and bone
fractures, vitamin and mineral deficiency, pneumonia, acute
interstitial nephritis and increased risk of drug–drug interactions,
among others7,12–15.

Consumption of such acid-suppressive medications has also
been associated with changes in microbial composition and
function of gut microbiota. More recent studies relying on
amplicon-based metagenomic approaches, have shown that PPIs
exert an effect on gastric, oropharyngeal, and lung microflora in
children with a chronic cough11, and have a significant impact on
the gut microbiome in healthy subjects, with an increase of oral
and pharyngeal bacteria and potential pathogenic bacteria16,17.
Furthermore, another study by Tsuda et al.18 revealed that PPIs
influence the bacterial composition of saliva, gastric fluid and
stool in a cohort of adult dyspeptic patients. However, this latter
study highlights how the influence of PPI administration on the
fecal and gastric luminal microbiota is still controversial and
further investigation is required to understand the interaction
between PPIs and non-H. pylori bacteria. Hence, this represents
the first reason that motivates the present study.

In fact, by irreversibly blocking H+/K+-ATPases, PPIs inhibit
gastric-acid secretion by gastric parietal cells, which results in a
higher intragastric pH, meaning the microenvironment of this
niche changes, hence allowing more bacteria to survive the

gastric-acid barrier4,5,16. The use of PPIs and higher gastric pH
were indeed correlated with the overgrowth of non-H. pylori
bacterial microflora in the stomach of patients with gastric-reflux
and PPIs were shown to aggravate gastritis because of co-
infection with H. pylori and non-H. pylori bacterial
species4,14,19,20. However, PPIs may also affect the gastro-
intestinal microbiome through pH-independent mechanisms, by
directly targeting the proton pumps of naturally occurring bac-
teria by binding P-type ATPases (e.g. H. pylori)4,6.

Attempts to detect patterns of PPI-related gastrointestinal
changes have been made in different studies21,22 through linear
multidimensional analysis techniques, such as Principal Com-
ponent Analysis (PCA) and Multidimensional Scaling (MDS),
also called Principal Coordinates Analysis (PCoA). Nevertheless,
they failed to detect the effect of PPIs on gastric fluid samples21,
nor any significant PPI-related modification in esophageal21 and
gastric22 tissue samples. This represents the second reason that
motivates our investigation. Are these controversial results due to
complex patterns that cannot be detected using linear analysis?

In this study, we show that: unlike linear approaches, Mini-
mum Curvilinear Embedding (MCE)23, which is a technique for
nonlinear dimension reduction, discriminated both the esopha-
geal and the gastric tissue microbial profiles of patients taking PPI
medications from untreated ones when re-analyzing the data
published in the abovementioned studies. This finding demon-
strates the importance of routinely integrating the use of non-
linear multidimensional techniques into clinical metagenomic
studies, since addressing nonlinearity could significantly modify
the results and conclusions. Indeed, the absence of separation by
means of linear transformations does not imply absence of
separation in general, and nonlinear techniques could prove it,
especially in complex datasets such as the ones generated in
metagenomics 16 S rRNA. As a matter of fact, the high
throughput profiling of bacteria is frequently used in clinical
studies, thus posing a challenge to efficient information retrieval:
understanding how microbial community structure affects health
and disease can indeed contribute to better diagnosis, prevention
and treatment of human pathologies24.

The common practice in unsupervised dimension reduction
data analysis is to consider only the first two (or three, less used)
dimensions of mapping, and the goal is to visually explore the
distribution of the samples and the incidence of significant
patterns25. This type of analysis is advantageous to validate
hypothesis or to generate new ones. In addition, this procedure is
particularly useful in case of studies with small-size datasets23, or
for imbalance class samples, to obtain unbiased (the labels are not
used) confirmation of the separation between groups of samples
for which diversity is theorized or expected.

In addition, we will provide an analysis with two nonlinear
algorithms for dimensionality reduction often used in literature,
namely Isomap26 and t-SNE27,28. These methods, although
unsupervised, need hyperparameters optimization. Indeed, Iso-
map needs as input a parameter related to ‘k’ number of neigh-
bours to construct a network, whereas t-SNE needs the perplexity
and number of dimensions (or components). Different values of
these parameters may lead to different results, which represent a
challenge in an unsupervised scenario where automatic and label-
free selection of the best solution is wished. This is the reason why
this study will focus mainly on parameter-free dimensionality
reduction techniques, whereas Isomap and t-SNE results will be
shortly considered for a specific dataset in the result section.

Here, we will specifically analyse the many aforementioned 16
S rRNA amplicons datasets to address the following pattern-
recognition questions: (1) Is PPI treatment affecting change on
the microbiota of esophageal and gastric tissues in dyspeptic
patients, regardless of the initial pathological infection due to H.
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pylori? (2) Is this PPI-induced change so dominant as to result in
a discernible pattern in the first two dimensions of mapping by
unsupervised dimension reduction? (3) Are linear techniques
sufficient to bring out patterns in complex microbial data?

Furthermore, using differential network analysis we will
address from the systems point of view these other questions: (4)
How is PPI affecting the microbiota in the gastric environment in
dyspeptic patients? (5) What is the effect of H. pylori infection on
gastric mucosal microflora? Both factors (PPI treatment and H.
pylori infection) can influence the composition of the gastric
microbiota, and this further analysis will help to understand the
general (overall) behaviour of the microbial ecosystem under
these conditions and their impact on bacteria-associated meta-
bolic pathways. Ultimately, this means that we will try to clarify
and visualize via a bacteria-metabolite multilayer network
representation how the bacteria-metabolite cooperative organi-
zation is systemically altered either by the use of this acid sup-
pressant drug in the gastric environment under dyspepsia, or by
H. pylori infection in the gastric mucosa.

Results
To answer the five questions stated in the Introduction section,
we analysed the abovementioned 16 S rRNA gene sequencing
datasets with information on PPI consumption in dyspeptic
patients, following the flowchart shown in Fig. 1. Our study is
innovative at two different levels. At the more general ‘metho-
dological level’, we introduce a computational data mining
pipeline (Fig. 1), which explains how to overcome the limits of
current multivariate analysis of small-size microbial data. At the
more specific ‘technical level’, we propose solutions in each of the
five steps that composes this pipeline: dimension reduction,
clustering, PC-corr networks, multilayer bacteria-metabolite
networks and metabolic network pathways analysis. In the
dimension reduction section, we illustrate the benefits to apply
minimum-curvilinear nonlinear machine learning methods for
dimension reduction. In the clustering section, we propose MC-
MCL, which represents the nonlinear version of Markov clus-
tering. In the PC-corr section, we show how to extract valuable
and robust information (that would otherwise be missed using
standard procedure of analysis) across several (4 in total) small-
size microbial datasets. In the fourth and fifth step we clarify how
to enhance the biomedical interpretation with the aim to increase
the impact of the findings on the scientific community.

It is important to underline that, in one of the three initially
analysed datasets (in Paroni Sterbini et al.22), we have the addi-
tional information on positivity or negativity to H. pylori infec-
tion. A fourth dataset (Parsons et al.29) is used only for the
validation of the PC-corr network results and it contains not only
information on PPI consumption but also additional information
on positivity or negativity to H. pylori infection.

Unsupervised approaches were chosen for dimension reduc-
tion, and clustering because supervised (constrained) methods
have been shown to perform poorly on small datasets, as
explained in the paper by Smialowski et al.30 and the work by
Zagar and colleagues31.

First, we performed unsupervised dimension reduction, both
linear and nonlinear (described in the ‘Methods- PCA, MDS and
LDA’ and ‘Methods- Minimum Curvilinear Embedding’) and we
focused on the first two dimensions of embedding as they are
significantly related with the treatment/infection response (Sup-
plementary Data 1). As we will show, linear techniques will fail to
bring out the patterns in the microbial datasets related to PPI
treatment. Instead, nonlinear dimension reduction will reveal the
presence of hidden patterns related to PPI treatment. In parti-
cular, in the gastric biopsies dataset (Paroni Sterbini et al.22),

nonlinear dimension reduction will point out the evidence of PPI
perturbation. Second, clustering algorithms were applied to the
studied datasets to confirm that the hidden patterns detected by
nonlinear dimension reduction are well posed. Furthermore, the
PC-corr algorithm32 is used to find the bacteria community
(features) that make the difference between the patterns or
groups, allowing our understanding of the PPI-induced and H.
pylori-induced microbial perturbations. Finally, bacteria-
metabolic networks are displayed addressing possible metabolic
alterations produced by the respective perturbed bacteria.

Data exploration and visualization: the reason for unsu-
pervised dimension reduction. The main reason to perform an
unsupervised dimension reduction is to explore and visualize the
most relevant sample patterns that should emerge in the first two
dimensions of embedding (which represent the information of
higher variability in the data) from the hidden multidimensional
space of a dataset. The fact that the sample labels (if known) are
not used for the data projection makes the analysis unsupervised.
The advantage of performing an unsupervised analysis is both for
data quality checking and to gather the main trends hidden in the
data, independently from any hypothesis or knowledge available
on the samples. This is particularly useful to discover the presence
of interesting sub-groups inside the studied cohort or to detect
the influence of confounding factors.

A final interesting advantage offered by unsupervised analysis
is in small-size datasets, where the number of samples n is
significantly lower that the number of features p, a condition that
unfortunately occurs in several metagenomic studies. When n«p
the application of supervised approaches can become proble-
matic, because the supervised procedure of parameter learning
can suffer from overfitting23,30,33.

Below, we report some of the PCA major advantages and
drawbacks, that were pinpointed in a recent study on multi-
dimensional population genomics34, and of other conventional
dimensional reduction techniques employed for the analysis of
metagenomic data.

PCA is time-efficient, parameter-free and straightforward to
interpret, yet it strives to resolve structure in datasets with few
samples and highly numerous features, which enclose nonlinear
patterns. Therefore, PCA can occasionally fail to reveal
differences among samples, even when differences are known a-
priori, which means it can also miss represent hidden nonlinear
relations among the samples in the feature space. For instance, see
the illustration of the PCA two-dimension reduction mapping of
the Tripartite-Swiss-Roll dataset in Supplementary Fig. 1b. PCA
clearly fails to unfold and reveal the structure of the three
separated groups of samples (Supplementary Fig. 1a). MDS, on
the other hand, preserves the sample distances in a 2D space
based on the calculation of a distance matrix. Nonetheless, given
by the distance matrix, it can too strive to resolve nonlinear
structures (Supplementary Fig. 1c,d).

Gastric tissue dataset unsupervised analysis. According to the
questions formulated in our study, we are interested in an
unsupervised approach to verify whether PPI drugs cause a major
change in the gastric tissue microbiota of dyspeptic patients
regardless of the initial pathological infection due to H. pylori22.

In our first analysis, we focused on the Paroni Sterbini et al.
dataset22 and, to facilitate the visualization of the sample
separations in the 2D reduced space, we assigned: red colour to
untreated dyspeptic patients without H. pylori infection (H-);
green colour to untreated dyspeptic patients with H. pylori
infection (H+); and blue colour to patients treated with PPI
regardless of their H. pylori infection (P). However, to help to
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Paroni Sterbini
Gastric mucosa Features

24 dyspeptic patients:
• 12 untreated, of which 4 

H. pylori-positive
• 12 PPI-treated, of which 

5 H. pylori-positive

187 
bacteria

Datasets

Amir3
Esophageal mucosa Features

8 dyspeptic patients:
• after PPI tr.
• before PPI tr.

217
bacteria

Amir4
Gastric fluid Features

8 dyspeptic patients:
• after PPI tr.
• before PPI tr.

224 
bacteria

Parsons
Gastric mucosa Features

42 PPI-untreated patients:
• 20 normal stomach
• 22 H. pylori gastritis

597
bacteria

Multilayer bacteria-
metabolite networks

Metabolic network 
pathways analysis

Consensus Bacteria
Genus

PPI-analysis:
• 11 bacteria
H.Pylori analysis:
• 8 bacteriaBacteria-associated

metabolites

PPI-analysis:
• 70 metabolites
H.Pylori analysis:
• 95 metabolites

Fig. 1 Flowchart of the data analysis. To answer the five questions under investigation in our study, we implemented a workflow based on machine
learning tools. Following the flowchart shown in the figure, we analysed three 16 S rRNA gene sequencing datasets with information on PPI use in dyspeptic
patients; for one of the datasets (Paroni Sterbini et al.22), patients were also determined to be positive or negative to H. pylori infection. First, we performed
unsupervised dimension reduction, both linear and nonlinear, in the first two dimensions of embedding. Nonlinear dimension reduction will show the
presence of hidden patterns, in the form of sample groups. Secondly, nonlinear clustering was applied to confirm the well-possedeness of the hidden
patterns found by nonlinear dimension reduction. Furthermore, our workflow ends with the network analysis. It starts with the use of the PC-corr algorithm,
that reveals which combination of bacteria (features) are responsible for the identified differences between the groups of samples. A fourth dataset
(Parsons et al.29) is used only for the validation of the PC-corr network results and it contains information of PPI treatment and H. pylori infection. From the
consensus bacteria found in each PC-corr network, a bacteria-metabolite multilayer analysis that lastly end with the metabolite pathway enrichment
analysis that introduces evidence to possible perturbed biological mechanisms.
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detect also the effect of the H. pylori infection for the P patients,
we reported the labels close to each sample with a ‘&H+’
indicating the infection (P&H+) or a ‘&H−’ indicating the
absence of infection (P&H−). Finally, we also tested whether this
separation into three main groups (H−, H+, P) is more truthful,
from the metagenomics data standpoint, than the one in four
groups (H−, H+, P&H−, P&H+).

Figure 2 shows the results of the multivariate techniques widely
employed in metagenomic studies, PCA (Fig. 2a), MDSbc
(Fig. 2b), MDSwUF (Fig. 2c) and NMDS (with Sammon
Mapping) (Fig. 2d) (for more detail see the corresponding
method section; the plots represents the best results based on PSI-
PR in Supplementary Data 2), which could only differentiate the
group of untreated H. pylori-positive samples (green dots) with
respect to the group of untreated H. pylori-negative samples (red
dots), and PPI-treated samples (blue dots), and no further
separation is significantly detectable. Considering the PSI results,
the values are high (Table 1 and Fig. 2) (evaluated in the 2D
embedding space, for details see ‘Procedure to evaluate the
performance of the dimension reduction algorithms’). PCA (PSI-
ROC= 0.85, PSI-PR= 0.91) and NMDS (PSI-ROC= 0.85, PSI-
PR= 0.90) exhibit the highest PSI-ROC and PSI-PR values,
followed by MDSwUF (PSI-ROC= 0.84, PSI-PR= 0.88) and
MDSbc (PSI-ROC= 0.81, PSI-PR= 0.86). Indeed, in all the plots
there is a visible trend of separation between PPI-treated (blue
dots) and untreated (red and green dots) samples, but this is not
sufficient to declare the presence of the complete separation, and
a manifest ‘crowding problem’33 mixes the two cohorts together
(blue and red dots). According to this output, the dataset appears
to be strongly influenced by the presence of H. pylori, which is the
predominant taxon (abundance > 50%, Supplementary Data 3,
percent abundance sheet) in four of the untreated H. pylori-
positive patients: where H. pylori is predominant, sample groups
are quite close to one another and far from all the other samples
in all four multivariate analyses (Fig. 2a–d). Thus, PCA and MDS
mainly show us that these 16 S rRNA amplicons separate
according to H. pylori abundance, and there is no treatment-
related pattern.

Noncentred MCE (Fig. 2e, DCS normalization) was the best
performing technique, with a PSI-ROC of 0.91 and PSI-PR of
0.96 (Table 1) (for details see Supplementary Data 2). It even
outperforms the nonlinear methods NMDS (Sammon Mapping)
and MDSwUF, since MCE is automatically able to unsupervisedly
infer from data the underlying (hierarchical) phylogenetic
relationship among the bacteria. MCE does not receive in input
any phylogenetic information but directly infers it from the
bacterial abundance of the dataset by performing a hierarchical
embedding, as already shown in the study of Alanis-Lobato
et al.34 (see ‘Supplementary Note 1—MCE to unsupervisedly infer
and visualize phylogenetic (hierarchical) relations’). The gain in
performance compared with the rest of the dimensionality
reduction techniques is relevant.

Indeed, the PSI-ROC improvement from 0.85 (PCA and
NMDS) to 0.91 is not trivial. We want to stress that in general
offering an AUC-ROC result that is higher than 0.9 is considered
relevant in all scientific literature. Furthermore, as suggested by
Ammirati et al.35, the same level of increase becomes more
significant when being close to perfect segregation. For details, see
the Supplementary Note 2—Relative performance improvement.

Furthermore, the MCE performance does not depend on its
centring/noncentring, in fact the centred MCE version resolves
the nonlinearity in the data too. Whereas, PCA regardless of
being centred or noncentred does not resolve the nonlinearity in
the data.

While MDS and PCA are confounded by the mixture of factors
characterizing the samples and do not manage to resolve the

differences between treated and untreated samples, noncentred
MCE is the only technique that visibly separates samples by
ordering them along the second dimension into three groups,
detecting a treatment-related structure in the data (Fig. 2f). This is
plausible, because in any noncentred embedding the first
dimension points towards the centre of the manifold33, while
the second dimension in the case of noncentred MCE represents
the direction of higher topological nonlinear extension of the
manifold. Interestingly, untreated H. pylori-negative samples (red
dots, H−) gather in the upper tail of the samples’ distribution,
while treated samples (blue dots, P), both H. pylori test positive
(P&H+) and negative (P&H−), are mixed and show no other
internal discernible groups. Untreated H. pylori-positive samples
(green samples, H+) gather at the bottom of the plot (Fig. 2e).
Unlike the other approaches, noncentred MCE detects a
treatment-related structure in the data and separates patients
into three, not four, groups: PPI treated, untreated H. pylori-
negative and untreated H. pylori-positive. This last group appears
as a subgroup marginally discriminating from the PPI-treated
group and the topology of the samples seems to suggest that PPI
treatment modifies the gastric microbiota of H. pylori-negative
patients with dyspeptic symptoms and gastric mucosa inflamma-
tion, shifting their gastric ecosystem in the same direction of PPI-
treated H. pylori-positive patients. We speculate that the fact that
PPI treatment and H. pylori infection determine the samples to
gather in a similar position (i.e. out of the PPI-untreated/HP-
negative group) in the noncentred MCE reduced space, indicates
that both the PPI drugs and H. pylori induce an ecological change
in the stomach, which might be driven by similar mechanisms. As
a matter of fact, H. pylori can colonize the acidic lumen of the
stomach thanks to its ability to hydrolyse urea into carbon
dioxide (CO2) and ammonia (NH3)36, thus increasing the
intragastric pH. On the other hand, PPIs obtain the same result
through the inhibition of acid secretion in gastric parietal cells,
which blocks H+/K+ -ATPases. Both processes are therefore
shifting the gastric environment towards an alkaline condition.
Thus, MCE provides an ordering of the groups along the second
dimension that is related to pH increment (from H− to P&H+).

Furthermore, we contrast MCE performance on this challen-
ging dataset versus two baseline algorithms for nonlinear
dimension reduction: t-SNE and Isomap. The results are shown
in Supplementary Fig. 2. t-SNE (PSI-ROC: 0.90, PSI-PR: 0.94)
and Isomap (PSI-ROC: 0.87, PSI-PR: 0.94) performances are
lower than MCE performances, displaying difficulty to resolve the
difference between treated and untreated samples, mostly for the
cases of treated patients (blue points) and untreated patients
without H. Pylori infection (red points). For more details see the
Supplementary Note 3—Nonlinear dimension reduction techni-
ques t-SNE and Isomap.

On the other hand, and similarly to the Paroni Sterbini et al.
microbial dataset, all dimensionality reduction techniques were
compared in two artificial scenarios (for more details see the
Supplementary Note 4—Artificial datasets). These analyses
confirm anew that certain methods will fail to uncover hidden
nonlinear structures whilst methods tailored for this purpose will
not (for more details see the Supplementary Note 5—Dimension-
ality Reduction analysis in artificial datasets).

For the Paroni Sterbini dataset, we also performed a supervised
linear approach for dimension reduction, LDA (Supplementary
Fig-. 3), yet the cross-validation test showed that this constrained
technique could re-assign samples to their groups with 54% of
error (ldaCVErr in Supplementary Data 4), confirming its
statistical invalidity for the small-size dataset problem.

Moreover, the clustering algorithms MCL and MC-MCL, that
is the minimum-curvilinear version of MCL were applied to the
Paroni Sterbini et al. dataset and the best results (highest
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Fig. 2 Dimension reduction techniques applied to the Paroni Sterbini dataset. The plots represent the best dimension reduction results based on PSI-PR
projection-based separability index (PSI) for the three different labels (P-treated, untreated H+ and untreated H−), evaluated in the 2D embedding space.
Moreover, also the average values of all pairwise PSI-ROC are reported as overall estimators of separation between the groups in the 2D reduced space.
a PCA; b MDS with Bray-Curtis dissimilarity (MDSbc); c MDS with weighted UniFrac distance (MDSwUF); d nonmetric MDS with Sammon Mapping
(NMDS); e MCE. Blue dots represent PPI-treated samples, while red and green dots are the untreated samples which resulted either negative (red) or
positive (green) to the H. pylori test (histological observation and urease test). f The curves in three different colours (red, blue and green) highlight the
different distributions of the three groups on the second dimension for the MCE plot (e).
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accuracies) are shown in Table 3 (for more details see the
methods’ sections ‘From Markov Clustering to Minimum Curvi-
linear Markov Clustering’ and ‘Procedure to evaluate the
performance of clustering algorithms’). MC-MCL performs better
than the MCL (both for three and four clusters), even if their
accuracies are not remarkably high, confirming that difficulties in
pattern-recognition arise also from the presence of three clusters
in the high-dimensional space. In addition, the hypothesis of
three clusters seems more congruous than four clusters, because
both MC-MCL and MCL decrease their accuracies in detecting
four clusters.

While MC-MCL represents the minimum-curvilinear version
of MCL, MCE is the minimum-curvilinear version of PCA,
particularly valuable for small sample size datasets. The principle
behind them is MC23, that suggests that curvilinear (nonlinear)
distances between samples may be estimated as pairwise distances
over their Minimum Spanning Tree (MST) (constructed accord-
ing to a selected distance). In fact, as explained in ref. 37, to
approximate nonlinear (curvilinear) distances between the points
of the manifold it is not necessary to reconstruct the nearest-
neighbour graph. Indeed, a greedy routing process (that exploits a
norm, for instance Euclidean) between the points in the
multidimensional space is enough to efficiently navigate the
hidden network that approximates the manifold in the multi-
dimensional space. And a preferable greedy routing strategy, at
the basis of MC-kernel, is the minimum spanning tree (MST).

Overall, we can conclude that both MCE in dimensionality
reduction and MC-MCL in clustering perform better than the
respective non-MC-based versions, and this result confirms the
presence of nonlinear complexity in this dataset, generated by a
three-body interaction (presence of three clusters). In addition,
when considering correlation-based distances, they do not react
to the presence of compositionality, since pairwise correlations
are computed between samples. Compositionality instead is a
problem that arises when the correlations are computed between
OTUs (features) from metagenomics abundance data (which are
normalized by diving each OTU count to the total sum of counts
in the sample38,39), which yields unreliable results due to
dependency of microbial relative abundances.

To discover the nonlinearity of the data, a pairwise group analysis
applied to the Paroni Sterbini gastric biopsy dataset (Supplementary
Fig. 4) and the Tripartite-Swiss-Roll (Supplementary Fig. 5)
revealed that the nonlinearity was indeed associated to the presence
of three hidden clusters. For more information see the Supplemen-
tary Note 6—Origin of the Paroni Sterbini data nonlinearity.

In conclusion, the results confirm that linear techniques, even
if supervised like LDA, are not able to resolve the differences in
the data due to the presence of nonlinear complexity generated by
the three-body interaction (H−, H+ and P). Once the complexity
is reduced to a two-body interaction, the problem tends to vanish
and PCA can detect significant differences between the groups, as
shown by the PCA pairwise comparisons (Supplementary Fig. 4
and Supplementary Fig. 5). However, the presence or absence of
H. Pylori does not seems to heavily affect patients with PPI
treatment (Supplementary Fig. 6)

Hence, the results of unsupervised analysis on Paroni Sterbini
et al. dataset show that PPI treatment causes a major change in
gastric mucosal communities of dyspeptic patients, regardless of
the initial pathological infection due to H. pylori.

Comparison of unsupervised analysis in three gastroesophageal
datasets. We compared the performance of unsupervised analysis
(dimensional reduction and clustering) in the Paroni Sterbini
dataset22 (gastric biopsies) and two additional datasets by Amir
and colleagues21, that investigated the PPI influence on the eso-
phageal microbiota (Amir3) and gastric fluid (Amir4).

Table 1 shows the best results in performance of unsupervised
dimension reduction (PCA, MDSwUF, MDSbc, NMDS, MCE, for
details see ‘Methods—PCA, MDS and LDA’ and ‘Methods—
Minimum Curvilienar Embedding’) according to PSI based on
AUC and AUPR, on the three different datasets (for more details
on the PSI see ‘Methods—Procedure to evaluate the performance
of the dimension reduction algorithms’). Just the space of the first
two dimensions of embedding were here used since they are the
ones related with the treatment/infection-related structures
(Supplementary Data 1). The mean performance across all
datasets is shown in the last column of the Table 1 for each
method. The corresponding ranked performance for each

Table 1 Results of unsupervised dimension reduction techniques on the real dataset.

Method Paroni Sterbini Trust Amir3 Trust Amir4 Trust mean

PSI-ROC
HD 0.88 0.0036 0.95 0.0009 0.98 0.0009 0.94
MDSwUF 0.84 0.0089 1.00 0.0009 0.88 0.0329 0.90
MCE 0.91 0.0036 0.88 0.0329 0.91 0.0009 0.90
PCA 0.85 0.0063 0.91 0.0009 0.86 0.0169 0.87
MDStyc 0.84 0.0076 0.88 0.0009 0.84 0.0249 0.85
NMDS 0.85 0.0036 0.86 0.0169 0.84 0.0089 0.85
MDSbc 0.81 0.0183 0.86 0.0089 0.84 0.0189 0.84

PSI-PR
HD 0.94 0.0009 0.96 0.0009 0.99 0.0009 0.96
MDSwUF 0.88 0.0036 1.00 0.0009 0.90 0.0089 0.93
MCE 0.96 0.0009 0.89 0.0089 0.92 0.0039 0.92
PCA 0.91 0.0039 0.90 0.0009 0.88 0.0089 0.90
MDStyc 0.88 0.0116 0.90 0.0009 0.88 0.0089 0.89
MDSbc 0.86 0.0116 0.89 0.0009 0.90 0.0009 0.88
NMDS 0.90 0.0036 0.87 0.0089 0.87 0.0009 0.88

Best results of unsupervised dimension reduction techniques according to the PSI indices for sample separation in the space of the first two dimensions of embedding. HD (no dimension reduction)
represents the reference results to see how good the separability present in the high-dimensional space is preserved by dimension reduction techniques. Results are ordered from the best (top) to the
worst (bottom) method. For the Paroni Sterbini dataset, we show the results for three different labels (PPI treated, untreated H+ and untreated H−). For the Amir datasets, the PSI measures were
computed for two groups, identified by the presence or absence of PPI treatment. For each PSI value, a respective trustworthiness was calculated.
All PSI-ROC and PSI-PR values can be found in Supplementary Data 2.
HD high dimension, MCE Minimum Curvilinear Embedding, MDSbc Multidimensional Scaling with Bray-Curtis dissimilarity, MDSwUF Multidimensional Scaling with weighted UniFrac distance, NMDS
Nonmetric Multidimensional Scaling, MDStyc Multidimensional Scaling with Theta-YC distance, PCA Principal Component Analysis, PSI-ROC Projection Separability Index measured by Area Under the
Curve, PSI-PR Projection Separability Index measured by Area Under the Precision Recall, Trust trustworthiness.
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method, based PSI-ROC and PSI-PR, is presented instead in
Table 2. For the Paroni Sterbini dataset, we show the results for
three different labels (untreated H−, untreated H+ and PPI
treated). For Amir datasets, the PSIs were computed for two
groups, identified by the presence or absence of PPI treatment.
The PSIs were also applied to the data in the original high-
dimensional (HD) space, as a reference to see how good the
unsupervised dimension reduction approaches are in preserving
the group separability in the HD. Moreover, the PSI-ROC and
PSI-PR best results with trustworthiness and standard error on
the real datasets, when applying leave-one-out-cross-validation
(LOOCV), are shown in Supplementary Table 2.

For the Paroni Sterbini dataset, the PSI evaluation in the first
two dimensions of embedding identifies MCE as the best
dimension reduction technique that is able to preserve the group
separability in the HD space. Surprisingly, MCE (presented in
Fig. 2e, PSI-ROC= 0.91, PSI-PR= 0.96) outdoes HD in sample
separation in three groups (for HD, PSI-ROC= 0.88, PSI-PR=
0.94). Similarly, in Amir4, MCE (PSI-ROC= 0.91, PSI-PR=
0.92) succeeds in preserving the separability of the original HD
space (in HD, PSI-ROC= 0.98, PSI-PR= 0.99), better than the
other dimension reduction methods. Finally, dimension reduc-
tion analysis on the Amir3 dataset shows that esophageal biopsies
were significantly different before and after PPI treatment, as
shown by MDSwUF results (PSI-ROC= 1=PSI-PR), that surpass
the PSI-ROC and PSI-PR values in HD space (PSI-ROC= 0.95,
PSI-PR= 0.96). Markedly, MDSwUF reaches a value of AUPR
and AUC of 1, meaning perfect classification of the samples.

Overall, when averaging across all datasets, the two metrics
based on PSI-ROC and PSI-PR pointed out that MDSwUF (PSI-
ROC= 0.90, PSI-PR= 0.93) gave the best results of separability
compared to HD (PSI-ROC= 0.94, PSI-PR= 0.96), followed by
MCE with close results (PSI-ROC= 0.90, PSI-PR= 0.92). Then
PCA is the third best result (PSI-ROC= 0.87, PSI-PR= 0.90),
followed by MDStyc, NMDS and MDSbc. However, to conclude

what is the best method, we considered an evaluation based on
ranking (Table 2). It is important to note that MCE was the
dimension reduction approach that ranked first in performance
across all the datasets, followed by MDSwUF (Table 2). Hence,
the results of sample separability suggest the presence of hidden
patterns that emerge by applying nonlinear dimension reduction
techniques like MCE and MDSwUF.

Then, clustering algorithms, MCL and its Minimum Curvi-
linear version (for more information see ‘Methods—From
Markov Clustering to Minimum Curvilinear Markov Clustering’),
were used to confirm the well-possedeness of the hidden patterns
that were recognized by nonlinear dimension reduction. The best
results as highest accuracies in each dataset and the mean
performance across all the datasets are exhibited in Table 3. As
already discussed in the previous section, the minimum-
curvilinear version of MCL (MC-MCL, acc= 0.71) outperforms
the MCL clustering algorithm (acc= 0.67) in the Paroni Sterbini
dataset, confirming the presence of underlying nonlinear
complexity in the data. However, the accuracy doesn’t reach
high values, because of the difficulty in pattern recognition
generated by the three-body problem in the HD space. Curiously,
the accuracies for four clusters (H−, H+, P&H−, P&H+) drop to
0.58 for MC-MCL and to 0.63 for MCL, supporting the
hypothesis that three clusters are more congruous than four
clusters. Notably in Amir3, MC-MCL attains high clustering
accuracy (acc= 0.81), compared to MCL (acc= 0.69). This is the
dataset for which, surprisingly, Amir and collaborators did not
find significant changes in the esophageal tissue microbiota
following PPI treatment, using classical MDS unsupervised
multivariate method with unweighted UniFrac distance21.
Instead, in the gastric fluid dataset (Amir4), MC-MCL and
MCL got the same accuracy of 0.75, where a significant separation
of samples according to PPI consumption was already proved in
the original article21.

Other normalizations besides DRS, DCS and log transfor-
mation could potentially improve the performance of the
unsupervised analysis. Therefore, we analysed the data with
two regularly employed normalizations in microbiome studies:
(1) applying a Variance-Stabilization Transformation (VST)
(results in Supplementary Tables 3–5 and Supplementary
Data 9 and 10) and (2) rarefying the OTU table (results in
Supplementary Tables 6–8 and Supplementary Data 11 and
12). As discussed in the Supplementary Note 7—Normal-
izations applied in microbiome studies, these normalizations
tend to linearize the data structure but at the cost of
information loss.

Network analysis clarifies the effect of PPI treatment on the
gastric microbiota. Five major phyla have been detected in the
normal gastric microbiota: Firmicutes, Bacteroidetes and

Table 3 Results of clustering on the real dataset.

Method Paroni Sterbini Amir3 Amir4 mean

Accuracy
MC-MCL 0.71 (0.58) 0.81 0.75 0.76
MCL 0.67 (0.63) 0.69 0.75 0.70

Best results of clustering (highest accuracies, regardless of the normalization and type of
correlation) MCL and MC-MCL, in each of the three studied datasets (Paroni Sterbini, Amir3
and Amir4), and the mean performance (mean of the highest accuracies) across all the
datasets.
For Paroni Sterbini dataset, we show the results for three clusters (PPI treated, untreated H+
and untreated H−) and in brackets the results for four clusters (P&H+, P&H−, untreated H+
and untreated H−). Instead, for Amir datasets, the accuracies were computed for two groups,
identified according to the presence or absence of PPI treatment. All accuracies can be found in
Supplementary Data 5.
MCL Markov Clustering, MC-MCL Minimum Curvilinear Markov Clustering.

Table 2 Ranked performance of unsupervised dimension
reduction techniques on the real datasets.

Method Paroni
Sterbini

Amir3 Amir4 mean

PSI-ROC
HD 2 2 1 1.67
MCE 1 4 2 2.33
MDSwUF 5 1 3 3.00
PCA 3 3 4 3.33
NMDS 3 6 5 4.67
MDStyc 5 4 5 4.67
MDSbc 7 6 5 6.00

PSI-PR
HD 2 2 1 1.67
MCE 1 5 2 2.67
MDSwUF 5 1 3 3.00
PCA 3 3 5 3.67
MDStyc 5 3 5 4.33
MDSbc 7 5 3 5.00
NMDS 4 7 7 6.00

The table shows the ranked performance of unsupervised dimension reduction techniques
according to the PSI indices for sample separation (PSI-ROC and PSI-PR) in the space of the first
two dimensions of embedding, for the three studied datasets (Paroni Sterbini, Amir3 and
Amir4). Each rank is related to the results obtained in Table 1. The results are ordered by the
mean performance (fourth column) from the best (top) to the worst (bottom) method.
HD high dimension, MCE Minimum Curvilinear Embedding, MDSbc Multidimensional Scaling
with Bray-Curtis dissimilarity, MDSwUF Multidimensional Scaling with weighted UniFrac
distance, NMDS Nonmetric Multidimensional Scaling, MDStyc Multidimensional Scaling with
Theta-YC distance, PCA Principal Component Analysis, PSI-ROC Projection Separability Index
measured by Area Under the Curve, PSI-PR Projection Separability Index measured by Area
Under the Precision Recall.
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Actinobacteria dominate the gastric fluid samples, while Fuso-
bacteria and Proteobacteria are the most abundant phyla in
gastric mucosal samples1.

However, the composition and abundance of gastric micro-
biota may be affected by many factors, such as dietary habits, H.
pylori infection, diseases and drugs, including PPIs1.

Yet, although recent studies have highlighted the potential
of these antacid drugs to affect the gastric microbiota,
more knowledge needs to be gained about the association between
PPI usage and the non-H. pylori bacteria in the stomach.

Since we wanted to investigate the effect of PPI intake on
gastric microbiota in dyspepsia, we analysed: Amir4 for gastric
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fluid microbiota21 and Paroni Sterbini et al. dataset22 for gastric
mucosal microflora, in the latter case restricting to PPI-treated H.
pylori-negative (P&H−) and untreated H. pylori-negative patients
(H−). In both studies, the samples from dyspeptic patients were
analysed using the same next-generation sequencing technologies
for direct sequencing of 16 S rRNA gene amplicons, 454
Pyrosequencing.

For this purpose, we employed PC-corr algorithm, that was
discussed in the Methods section named: ‘PC-corr network’. In
brief, PC-corr discloses the discriminative network of features
that are associated to a sample separation along a principal
component direction. Hence, we expect that the PC-corr network
of bacteria will offer a view on how the community of bacteria
respond to PPI-treatment perturbation in the gastric niche
(environment), in dyspeptic patients. For more explanation about
the usage of PC-corr on the microbiome data please see the
Supplementary Note 8—From nonlinear data to linear analysis.

In Amir4 (gastric fluid), PCA revealed that gastric fluid
samples were separated into two groups according to PPI
treatment along PC2 and their difference is significant (p-value
< 0.01) (Supplementary Fig. 7). Hence, we built the PC-corr
network32 using the loadings of PC2 at cut-off 0.5 (Supplemen-
tary Fig. 8).

Similarly for the Paroni Sterbini dataset (gastric mucosa), PCA
(Supplementary Fig. 9) could (significantly or close to signifi-
cance) separate PPI-treated H. pylori-negative patients from
untreated H. pylori-negative patients along PC2 and PC15 (p-
value along PC2= 0.014, p-value along PC15= 0.054). Therefore
we built the PC-corr network for both PC2 and PC15
discriminating dimension using 0.5 cut-off (Supplementary
Fig. 10, panel a and b).

Subsequently, to investigate how PPI is affecting the microbiota
in the gastric environment, we considered the conserved PC-corr
network as an indication of bacteria behavior robustness. It is
obtained as the union of the two PC-corr networks (obtained for
PC2 and PC15) derived from the Paroni Sterbini gastric mucosa
dataset intersected with the PC-corr network derived from the
Amir4 gastric fluid dataset. The resulting conserved network
displays the bacteria with same trend in the two datasets, i.e.
either increased or decreased abundance for patients with PPI
treatment, respectively in red and black colour, as emphasized by
the violet circle at the centre of Fig. 3. Figure 4 is the same as
Fig. 3 but here the nodes are coloured according to phylum-level
taxonomy. The conserved network which arises at the overlap
between the two PC-corr networks (union of Paroni Sterbini
networks intersected with the Amir4 network) is statistically
significant (p-value= 1.00E-04), as a result of the statistical test
based on trying to obtain the same conserved network by random
resampling the bacteria in the two networks (Supplementary
Fig. 11), implying the difficulty of generating this intersection

simply at random (since this intersection lies to the right of the
critical value at the 0.05 level in the distribution of overlap). This
is an important result because it confirms the robustness of the
detected conserved network as a microbiota signature perturbed
by PPI treatment. The top and bottom panels in Figs. 3 and 4
show instead the remaining part of Amir4’s network (top panel)
and of Paroni Sterbini’s network (bottom panel) that are not in
the intersection, and therefore might be more specific for the
gastric fluid and mucosa, respectively. The PPI-perturbed
conserved network is characterized by a main interconnected
module with nine bacteria of four different phyla (Bacteroidetes,
Fusobacteria, Proteobacteria, Firmicutes) that are positively
associated (red edges) and by two single bacteria order without
interactions (Streptophyta, Clostridiales), all being increased
following PPI treatment, except Streptophyta that is instead
decreased with PPI treatment (Figs. 3 and 4). Note that a mix
between genera, phyla and order of bacteria can be found in the
networks. The reason behind it is the availability of detail
information regarding different bacteria. Some of the spotted
bacteria (Veillonella, Clostridiales, Campylobacter) were already
observed in previous studies. The genus Veillonella was found
increased in relation to PPI use16 in the gut microbiome and has
been associated with increased susceptibility to Clostridium
difficile infection40. These Gram-negative anaerobic cocci with
lactate fermenting abilities are abundant in the human micro-
biome and are normally found in the intestines and oral mucosa
of humans41. Interestingly, they favour nitrite accumulation in
the stomach during nitrate reduction, promoting a carcinogenic
effect1. In addition, the order Clostridiales, that is associated to
Clostridium difficile infection, was also seen significantly changed
in the gastrointestinal tract; however; Freedberg et al.4 found it
significantly decreased during PPI use, in contrast to our results.
PPIs use also increases the risk of other enteric infections, apart
from C. difficile infection, such as campylobacteriosis, as reported
in42,43. Moreover, half of the bacteria present in the network
normally colonize the human oral cavity. Indeed, it is the main
purpose of PPI treatment to increase the stomach pH, and the
higher pH of treated patients is known to favour the growth of
bacteria that usually reside in the mouth and esophagus and are
not adapted to survive the normal gastric acidity6,20. Among
genera usually reported as part of the normal microbiota of the
gastrointestinal tract, only Veillonella is found regularly at other
sites, like the mouth44. Leptotrichia species mostly colonize the
oral cavity and they were isolated from various human infections,
suggesting that they are emerging human pathogens45,46.
Oribacterium also inhabits the mouth, besides the upper
respiratory tract47. Prevotella is a genus of Gram-negative bacteria
that tend to colonize the human gut, mouth and vagina, and may
cause infections, mostly observed in the oral cavity (odontogenic
infections)46. Porphyromonas has been found by48 as part of the

Fig. 3 PC-corr method to unveil how PPI is affecting the microbiota in gastric environment in dyspeptic patients. (Middle panel) To investigate the
effect of PPIs on the gastric microbiota in dyspeptic patients, we constructed the conserved PC-corr network at 0.5 cut-off, by merging the PC-corr
networks obtained from the gastric mucosa (Paroni Sterbini et al.22) and the gastric fluid (Amir et al.21). To do so, we firstly considered the union of the two
PC-corr networks obtained from the gastric tissue dataset and then we intersected it with the PC-corr network from the gastric fluid dataset. All the
bacteria spotted in the conserved PC-corr network (violet circle) were found increased with PPI use. In both the two studied datasets, red nodes indicate
bacteria whose abundance is increased with PPI treatment, while black nodes indicate bacteria with lower abundance following treatment with this acid
suppressing medication. The common bacteria that showed an opposite trend in the two datasets, i.e. microbial abundance increased in one dataset and
decreased in the other dataset, were removed from the network. (Top panel) The top panel shows the obtained Amir4’s network, not in common with the
Paroni Sterbini’s network. The module on the left side (except Enterobacteriaceae) include bacteria more abundant following PPI treatment in Amir4’s data,
while the module on the right (and Enterobacteriacea) is composed of decreased bacteria in abundance under PPI therapy in Amir4’s data. (Bottom panel)
The bottom panel represents the part of Paroni Sterbini’s network (union of the two PC-corr network), that is not shared with Amir4’s one. As in the top
and middle panels, the colour of the nodes represents if the bacteria display higher (red nodes) or lower abundance (black nodes) in PPI-treated samples of
Paroni Sterbini’s dataset.
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salivary microbiome. Both Prevotella and Porphyromonas con-
tribute to the formation of abscesses and soft tissue infections in
various part of the body and they can cause infections, including
periodontal and endodontal diseases49. Capnocytophaga are
inhabitants of the oral cavity too, and these opportunistic
pathogens can cause infections (both in immunocompromised
and immunocompetent hosts), the severity of which depend on

the immune status of the host50,51. As well, Granulicatella are
Gram-positive cocci normally found in the oral microbiota and
are uncommon causes of infections, nevertheless they can cause
infections, including bloodstream infection and infective
endocarditis52. Besides, the genus Fusobacterium inhabits the
mucosal membranes of humans and all its species are parasites of
humans53, and some species are found in the oral cavity. The
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remaining bacteria (Campylobacter, Bulleidia) do not belong to
the oral microbiota49. The genus Campylobacter was increased in
relation to PPI use and the increased abundance of these Gram-
negative bacteria has the potential to cause diseases and infections
in humans (most commonly diarrhoea). Due to the induced
increase of pH, PPI is hypothesised to facilitate gastrointestinal
infections and a study by Brophy et al.54 reported an increased
risk of Campylobacter infection following PPI therapy. Moreover
Campylobacteriosis, mostly caused by eating undercooked foods
derived from poultry or other warm-blooded animals or contact
with contaminated water or ice55, has been shown by the Dutch
National Institute for Public Health and the Environment to
noticeably increase in incidence when PPI use grows42.

Altogether, PC-corr approach was applied on gastric fluid and
gastric mucosal datasets (in the latter case, excluding the samples
positive to H. pylori infection) to investigate how PPI is affecting
the gastric microbiota (both gastric fluid and gastric mucosal
microbiota), because of PC-corr’s ability to pinpoint the
combination of bacteria that play a major role in the discrimina-
tion of the samples, in this case according to PPI intake. The PC-
corr conserved network identified eleven genera and order of
bacteria, which belong to the phyla (Bacteroidetes, Fusobacteria,
Proteobacteria, Firmicutes) commonly found in the stomach
which, with exception of Streptophyta, demonstrated increased
abundance following PPI treatment. Mostly all the found bacteria
were not reported in previous studies, except Veillonella,
Clostridiales and Campylobacter, but they were found as
inhabitants of the oral cavity and/or possible cause of infections
and diseases in humans. Hence, and in concordance to previous
studies6,20, these results point out that PPI treatment, by
increasing the intragastric pH, favours the growth of bacteria
that usually reside in the mouth and survive through the harsh
acidic conditions of the stomach. Furthermore, the results suggest
that PPI-associated increase of some bacterial populations may
lead to infections and diseases or increase susceptibility for other
bacterial infections (like Veilonella) or promote a carcinogenic
effect (like Veilonella). Previous studies have highlighted that PPI
intake is associated with decreased bacterial richness16,18,56,57,
increased risk of enteric and other infections (e.g. caused by
Salmonella, Clostridium difficile, Shigella, Listeria)17,58, increase in
the abundance of oral and upper GI tract commensals and
potential pathogenic bacteria (e.g. Enterococcus, Streptococcus,
Staphylococcus and Escherichia coli)16,17 in the gut microbiota.
Nevertheless, our analysis by means of PC-corr does not spot
single bacteria perturbed in the gastric environment by PPI
treatment, but a community of bacteria is altered in abundance by
PPIs and their inter-specific bacterial interactions in the
gastric niche.

Therefore our study will ground the basis for further
investigations that could better clarify the effect of PPI
treatment on the human gastric microbiota and additionally
verify the identified altered bacteria, as PPIs may have possible
side effects, including increased risks of different infections and
diseases.

Network analysis clarifies the effect of Helicobacter pylori
infection on gastric mucosal microbiota. The stomach was long
thought sparsely colonized by bacteria due to the gastric micro-
bicidal acidic barrier (pH < 4.0)59. This view dramatically chan-
ged with the discovery of the Gram-negative bacterium H. pylori
in the 1980’s by Warren and Marshall60, that is a carcinogenic
bacterial pathogen infecting the stomach of more than one-half of
the world’s human population. This human pathogen is able to
survive in the highly acidic environment within the stomach by
producing cytoplasmic urease that, by catalysing the hydrolysis of
urea into CO2 and NH4, produces a neutralizing ammonia cloud
around it19,61,62. However, most H. pylori avoid the acidic
environment of the gastric lumen by swimming towards the
mucosal cell surface (using their polar flagella and chemotaxis
mechanisms) and may adhere and invade the gastric mucosal
epithelial cells63,64. Hence, it doesn’t represent a dominant species
in gastric fluid microbiota65, but was found to generally reside in
the gastric mucosae5,63,66.

Persistent (chronic) infection with this Gram-negative bacter-
ium induces changes in gastric physiology and immunology,
e.g. reduced gastric acidity and parietal cell mass, perturbed
nutrient availability, local innate immune responses67,68, that
most probably induces shift in gastric microbiota composition67.
Although H. pylori colonization usually persists in the human
stomach for many decades without adverse effects, the
infection of this bacteria is associated with increased risk for
several diseases, including peptic ulcers, chronic gastritis,
mucosa-associated lymphoid tissue lymphoma, gastric
adenocarcinoma69,70 and dyspepsia71,72. The potential alterations
induced by the H. pylori can in turn lead to dysbiosis and may
cause aberrant proinflammatory immune responses73, suscept-
ibility to bacterial pathogens and increased risk of gastric disease,
including cancer1,74. However, the effect of H. pylori infection on
overall composition of gastric microbiota at genus level and the
bacterial interplay in presence of this widespread human infection
remain unclear.

Similar to the PPI treatment network analysis in the previous
section, in order to investigate the influence of H. pylori infection
on the gastric mucosal microbiota by means of PC-corr, we
analysed: (1) Paroni Sterbini et al.22 considering only PPI-
untreated dyspeptic patients, either infected (H+) or not by H.
pylori (H−); (2) Parsons et al.29 restricting to PPI-untreated
patients from: (i) normal stomach group with no evidence of H.
pylori infection; (ii) H. pylori gastritis group with evidence of H.
pylori infection. Even though the same technology is important
for a comparative study, unfortunately in the literature there was
no such data available like Paroni Sterbini’s one, that is 16 S
rRNA gene pyrosequencing data (derived from gastric mucosal
microflora in dyspeptic untreated patients either positive or
negative for H. pylori). Despite this, the two studied datasets,
obtained with two different next-generation sequencing technol-
ogies for direct sequencing of 16 S rRNA gene amplicons (454
Pyrosequencing for Paroni Sterbini et al. and Illumina MiSeq for
Parsons et al.)75, both contain community profiling of gastric

Fig. 4 PC-corr networks to unveil how PPI is affecting the microbiota in gastric environment in dyspeptic patients, coloured according to phylum-level
taxonomy. To investigate the effect of PPIs on the gastric microbiota in dyspeptic patients, we constructed the conserved PC-corr network at 0.5 cut-off,
by merging the PC-corr networks obtained from the gastric mucosa (Paroni Sterbini et al.22) and the gastric fluid (Amir et al.21). To do so, we first
considered the union of the two PC-corr networks obtained from the gastric tissue dataset and then we intersected it with the PC-corr network from the
gastric fluid dataset. All the bacteria spotted in the conserved PC-corr network (violet circle) were found increased with PPI use. (Top panel) The top panel
shows the obtained Amir4’s network, not in common with the Paroni Sterbini’s network. The module on the left side (except Enterobacteriaceae) include
bacteria more abundant following PPI treatment in Amir4’s data, while the module on the right (and Enterobacteriacea) is composed of decreased bacteria
in abundance under PPI therapy in Amir4’s data. (Bottom panel) The bottom panel represents the part of Paroni Sterbini’s network (union of the two PC-
corr network), that is not shared with Amir4’s one. As in the top and middle panels, nodes are coloured according to bacterial phylum level.
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mucosa-associated microbiota in PPI-untreated H. pylori-nega-
tive and -positive subjects. However, for the sake of clarity, we
have to specify a difference: while in Paroni Sterbini’s dataset the
gastric mucosal biopsy specimens were collected from patients
with dyspepsia, this is not the case for Parsons’s data.

To enhance the understanding of the H. pylori-triggered
microbial perturbation in this ecological niche, we employed

again PC-corr algorithm (for details see ‘Methods-PC-corr
network’). The analysis of the 16 S rRNA sequencing data was
restricted only the overlapping OTUs, excluding Helicobacter
because our goal is to investigate its impact on the rest of the
microbial network.

In Paroni Sterbini’s dataset, since PCA could significantly
separate gastric mucosal biopsy samples of PPI-untreated patients
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according to H. pylori positivity (p-value= 0.01) along PC2
(Supplementary Fig. 12), the PC-corr network was constructed
from PC2 loadings at 0.5 cut-off (Supplementary Fig. 13).
Similarly, for Parsons’ dataset, since PCA (Supplementary Fig. 14)
could significantly separate patients from the normal stomach
group with no evidence of H. pylori infection and PPI-untreated
(Control) from H. pylori gastritis group positive to H. pylori
infection and not using PPIs (HPGas) along PC1 (p-value along
PC1 < 0.01), the PC-corr network was constructed from this
discriminating dimension at 0.5 cut-off (Supplementary Fig. 15).
The obtained microbial differential networks (Fig. 5, coloured
according to phylum level) pinpointed, from the system point of
view, the bacteria affected by H. pylori infection in the gastric
mucosa, that are precisely bacteria whose abundance is decreased
in H. pylori-positive patients. A presumable explanation of this
trend is already pointed out in literature, where the presence of H.
pylori leads to a reduced gastric microbial diversity76–78. Never-
theless, in some cases the diversity increases again, because of
diverse factors that allow survival and colonization of bacteria in
the stomach1,79. Then, the preserved network of gastric mucosa
microbiota was constructed by intersecting the two PC-corr
networks obtained from Paroni Sterbini’s and Parsons’s dataset.
Figure 5, middle panel, shows the conserved network (violet
circle), which presents the common bacteria coloured according
to phylum level and their associations. The spotted bacteria
display decreased abundance with H. pylori infection (i.e.
increased in H. pylori-negative subjects) in both the two 16 S
rRNA gene sequencing data. By performing a statistical test based
on random resampling of the bacteria in the two networks, we
verified that the shown bacterial conserved network is statistically
significant and difficult to be generated at random (p-value=
1.00e-04), because getting this intersection at random is very rare
(Supplementary Fig. 16). The top and bottom panels in Fig. 5
show instead the remaining part of Paroni Sterbini’s network (top
panel) and of Parsons’s network (bottom panel) that are not in
the intersection. At the genus level, a study by Klymiuk et al.80

identified Actinomyces, Granulicatella, Veillonella, Fusobacterium,
Neisseria, Helicobacter, Streptococcus and Prevotella as signifi-
cantly different between the H. pylori-positive and H. pylori-
negative gastric samples. These bacteria do not emerge in the
conserved network, while they all (except Neisseria) appear
altered (decreased) during H. pylori infection in the study by
Parsons and colleagues (present in the bottom panel of Fig. 5).

Our analysis pinpoints a conserved network from two
independent 16 S rRNA gene sequencing data that reveals
microbial communities altered by H. pylori infection and their
interactions in the gastric mucosa. It revealed a main core of six
associated bacteria (with positive association, red edges) and two
single nodes without any interaction with the main module, from
three different phyla (Proteobacteria, Firmicutes, Actinobacteria)
all resulting decreased in H. pylori-infected subjects (that is
increased in noninfected subjects). The decreased abundance of
the phyla Firmicutes and Actinobacteria in H. pylori-positive
patients with respect to H. pylori-negative subjects was already
shown in a previous study by Maldonado-Contreras et al.81. In

addition, other studies have demonstrated an increased coloniza-
tion of Proteobacteria in H. pylori-positive patients81,82, while the
obtained conserved PC-corr network shows that the bacteria from
this phylum are instead decreased in those individuals. Among
the spotted bacteria, Methylobacterium is a genus of facultative
methylotrophic bacteria that are commonly found in diverse
natural environments (such as leaf surfaces, soil, dust and fresh
water) and in hospital environment due to contaminated tap
water. Methylobacterium species can cause health care-associated
infections (mainly catheter infection), especially in immunocom-
promised patients83. In addition, Sphingomonas plays a role in
human health, as some of the sphingomonads (in particular
Sphingomonas paucimobilis) are the cause of a range of mostly
nosocomial, non-life-threatening infections. Sphinhomonas spe-
cies are widely spread in nature, having been isolated from many
sources, from water habitats to clinical settings84.

Pseudomonas, due to its great metabolic versatility, can also
colonize different types of niches85, including soil and water, in
addition to plant and animal associations, and includes
pathogenic species in humans86. Acinetobacter species are instead
common, free-living saprophytes found in soil, water, sewage and
foods and are ubiquitous organisms in hospitals. They have been
increasingly identified as a key source of infection in debilitated
patients in hospitals, due to their rapid development of resistance
to antimicrobials87. In particular, one species, Acinetobacter
lwoffi, can trigger gastritis, apart from H. pylori88. Propionibac-
terium, so named for their unique ability to synthesize propionic
acid by using unusual transcarboxylase enzymes89, are primarily
facultative pathogens and commensals of humans, living on the
skin, while other members are widely employed for synthetizing
vitamin B12, tetrapyrrole compounds, and propionic acid, as well
as used as probiotics90. Catonella is another node in the network
and this bacterial genus is obligative anaerobic, non-spore-
forming and nonmotile, with one known species (Catonella
morbi) from the human gingival crevice91,92, that has been
associated with periodontitis91 and endocarditis93. Besides, the
bacterial genus Enhydrobacter so far contains a single species,
Enhydrobacter aerosaccus, a Gram-negative nonmotile bacterium
that is both oxidase and catalase positive and shows gas
vacuoles94,95. Bulleidia, a Gram-positive, non-spore-forming,
anaerobic and nonmotile genus, has one known species too
(Bulleidia extructa)96.

In conclusion, by means of the PC-corr approach, we
determined the combination of bacteria responsible for the
difference between H. pylori-positive and H. pylori-negative
gastric mucosa of untreated patients and their microbe-microbe
interactions. All the bacteria, both in the conserved network and
not, were decreased in H. pylori-infected individuals (i.e.
increased in H. pylori-negative group). H. pylori, like acid
suppressing medications (for the treatment of dyspepsia), alters
the population structure of the gastric and intestinal microbiota97

and regularly, this bacterium constitutes most of the gastric
microbiota79, literally depleting bacterial biodiversity. Moreover,
most of the identified bacteria represent bacteria of potential
health concern, as agents of diseases and infections.

Fig. 5 PC-corr network to investigate the effect of H. pylori infection on the gastric mucosal microbiota, coloured according to phylum-level taxonomy.
(Middle panel) To investigate the effect of H. pylori infection on the gastric mucosal microbiota, we constructed the conserved PC-corr network at 0.5 cut-
off, by intersecting the PC-corr networks obtained from Paroni Sterbini et al.22 and Parsons et al.29 dataset. All the bacteria spotted in the conserved PC-
corr network (violet circle) were found decreased in abundance with H. pylori infection. The common bacteria that showed an opposite trend in the two
datasets, i.e. microbial abundance increased in one dataset and decreased in the other dataset, were removed from the network. (Top panel) The top panel
show the obtained Paroni Sterbini’s network, not in common with the Parsons’s network. It contains all bacteria whose abundance is decreased in H.pylori-
positive patients in Paroni Sterbini et al. dataset. (Bottom panel) The bottom panel represent the part of Parsons’s network that is not shared with Paroni
Sterbini’s one. As in the top and middle panels, it includes bacterial communities decreased in H. pylori-infected patients.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22135-x

14 NATURE COMMUNICATIONS |         (2021) 12:1926 | https://doi.org/10.1038/s41467-021-22135-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Bacteria-metabolite multilayer network analysis associates
possible metabolic pathways perturbations. The relation
between bacteria and metabolites is fundamental both to deepen
the understanding of mechanisms associated to diseases dys-
function and drugs action, and to foster their biomedical
interpretation98–100. For this reason, we made a quantum leap in
our investigation from bacteria to metabolites and we built two
bacteria-metabolite multilayer networks: one (Fig. 6) was derived
from the PPI-affected bacteria network in Fig. 4, the other (Fig. 7)
was derived from the H. pylori-affected bacteria network in Fig. 5.
The methodological procedure to build those multilayer networks
is provided in the Methods (see section: Bacteria-metabolite
multilayer network construction). Remarkably, by applying
metabolic pathway enrichment analysis, we found that the
metabolite layer of the PPI-affected (Fig. 6b) and H. pylori-
affected (Fig. 7b) networks contain metabolites significantly
involved (p < 0.05 after Benjiamini correction) in important

pathways (see full list in Supplementary Data 6 and 7) associated
with obesity101, symptomatic atherosclerosis102, functional
dyspepsia103, gestational diabetes mellitus104 Wilson’s disease105,
among others. To simplify the visualization and interpretation
(for the methodology of selection see Method section: Bacteria-
metabolite multilayer network construction) we displayed the
three most significant and relevant pathways in both PPI-affected
(Fig. 6b) and H. pylori-affected (Fig. 7b) networks. Interestingly,
the bacteria Porphyromonas and Fusobacterium are highly con-
tributing for possible perturbations on the Aminoacyl-tRNA
biosynthesis pathway for alterations produced by PPI (Fig. 6b),
while Methylobacterium does it on the H. Pylori infection side
(Fig. 7b). Besides, N-Acetylneuraminic acid (Supplementary
Fig. 17) is a sialic acid that has been associated also with patho-
genic enteric bacteria106,107 and tumors108. Overproduction of
nitrites and nitrates by the observed anaerobic bacteria have been
already noticed in diverse parts of the gastrointestinal tract in

Fig. 6 PPI-affected bacteria-metabolite network in gastric environment of dyspeptic patients. a Multilayer (bacteria-metabolite) network
representation: the first layer is derived from Fig. 4 and represents the consensus network (confirmed in two datasets: gastric mucosa from Paroni Sterbini
et al.22 and gastric fluid from Amir et al.21) with PPI-affected bacteria nodes that present information on metabolite interaction in ref. 148. The second layer
represents the network whose nodes are the metabolites in ref. 148 interacting with the bacteria network in the first layer; different node shapes and colours
refer to different metabolite classes (carbohydrates, amino acids, glycolysis, amines, miscellaneous). b In depth visualization of the bacteria-metabolite
network interactions. The metabolites are grouped according to their involvement in significant pathways. For discernibility, the metabolites are arranged
according to three significant pathways (p < 0.05 after Benjamini correction as result of a metabolite pathway enrichment analysis by a one-sided test) and
a fourth group that encloses altogether nodes associated to other significant pathways (please refer to the method section: Bacteria-metabolite multilayer
network construction and metabolite pathway analysis); note that only metabolites present in significant pathways are here displayed. For more
information, please refer to Supplementary Fig. 17 and Supplementary Data 6. The bacteria node stroke color is associated to the phyla information as in
Fig. 4, whereas the different colours in the inner fill are associated to the different pathways and their extent is proportional to the number of metabolites
that the bacterium connects with in the different displayed pathways.
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patients suffering from migraine109, intestinal dysbiosis and col-
orectal cancer110,111, an effect already associated with the use of
PPIs such as omeoprazole112.

Discussion
This study indicates the necessity of including nonlinear multi-
dimensional techniques into clinical studies based on 16 S meta-
genomic sequencing data, since drawing a study’s conclusions by
solely relying on linear techniques, such as PCA and MDS, can
lead to data misinterpretation and impair the translational path
from research to diagnostic. In the era of post-genomics and
systems approaches, nonlinear dimension reduction and cluster-
ing by MCE and MC-MCL can offer new insights into complex
clinical 16 S metagenomics data, like the ones studied in this
article or the presence of clinical sub-types, and serve as a valuable
tool in the run towards precision medicine. Moreover, this study
shows how it is possible to complement multivariate analysis by
means of network analysis employing PC-corr algorithm, that
accounts for the bacteria responsible for the sample discrimination
and their co-occurrence relationships. Precisely, from the system
point of view the obtained microbial differential networks

pinpointed marked bacteria–bacteria interactions and modules
affected by PPI treatment in the gastric environment in dyspepsia
and by H. pylori infection in the gastric mucosa. Moreover, we
elucidated via bacteria-metabolite multilayer networks, possible
metabolic alterations produced by the perturbed bacteria com-
munities and the respective metabolic pathways involved in those
changes. The fact that we find significant metabolic pathways
associated to the discriminative bacteria networks, which are
detected by PC-corr, is a nontrivial finding that suggests the
reliability and impact of the integrated machine learning/network
biology methodology we propose. However, some limitations
frequently present in integrative systems biology also affect our
study. For instance, when we adopt protein interaction networks
in drug repositioning113 or in disease analysis114, we are aware
that further information such as the contextualization of the
network to the peculiar organ, tissue, cell or cell-compartment
would allow more accurate results. The same is valid for our study,
where we have to adopt a generic bacteria-metabolite gut network,
because it is the most updated resource currently available in the
field. This means that when—hopefully in future—more specia-
lized bacteria-metabolite networks will be available for the gastric

Fig. 7 H. pylori-affected bacteria-metabolite network in gastric environment of dyspeptic patients. a Multilayer (bacteria-metabolite) network
representation: the first layer is derived from Fig. 5 and represents the consensus network (confirmed in two different datasets of gastric mucosa: Paroni
Sterbini et al.22 and Parsons et al.29) with H. pylori-affected bacteria nodes that present information on metabolite interaction in ref. 148. The second layer
represents the network whose nodes are the metabolites in ref. 148 interacting with the bacteria network in the first layer; different node shapes and colours
refer to different metabolite classes (carbohydrates, amino acids, glycolysis, lipids, vitamins, miscellaneous). b In depth visualization of the bacteria-
metabolite network interactions. The metabolites are grouped according to their involvement in significant pathways. For discernibility, the metabolites are
arranged according to three significant pathways (p < 0.05 after Benjamini correction as result of a metabolite pathway enrichment analysis by a one-sided
test) and a fourth group that encloses altogether nodes associated to other significant pathways (please refer to the method section: Bacteria-metabolite
multilayer network construction and metabolite pathway analysis); note that only metabolites present in significant pathways are here displayed. For more
information, please refer to Supplementary Fig. 18 and Supplementary Data 7. The bacteria node stroke color is associated to the phyla information as in
Fig. 5, whereas the different colours in the inner fill are associated to the different pathways and their extent is proportional to the number of metabolites
that the bacterium connects with in the different displayed pathways.
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mucosa/fluid and even in specific areas of the stomach, then our
analysis—such as many other omic analyses in integrative network
biology—will benefit of this quantum leap in the data quality and
contextualization. Hence, we suggest that our findings can be an
important starting point to design therapies that consider not only
H. pylori infection but also the directly associated microbial
alterations as well as the indirect alterations due to the drugs used
for H. pylori eradication such as PPI.

Methods
Dataset description. In the case of Amir3 (esophageal mucosa), the 16 S rRNA
gene sequences were generated by Amir and colleagues21 and are publicly available
via the MG RAST database (http://metagenomics.anl.gov/linkin.cgi?project=5767).
The dataset was obtained from 16 esophageal mucosal biopsies of eight individuals
before and after eight weeks of PPI treatment. Two patients with heartburn pre-
sented normal oesophagogastroduodenoscopy (H) indicating that they present
healthy oesophageal tissues but are exposed to gastric refluxate, four patients had
oesophagitis (ES) and two had Barrett’s oesophagus (BE). Metagenomics data were
obtained by pyrosequencing 16 S rRNA gene amplicons on the GS FLX system
(Roche). Data were processed by replicating the bioinformatics workflow followed
by Amir and colleagues21 in order to obtain the matrix of the bacterial absolute
abundance: sequence reads were analysed with the pipeline Quantitative Insights
into Microbial Ecology (QIIME) v. 1.6.0115 using default parameters (sequences
were removed if shorter than 200 nt, if they contained ambiguous bases or
uncorrectable barcodes, or if the primer was missing). Operational Taxonomic
Units (OTUs), that are clusters of sequences showing a pairwise similarity no lesser
than 97%, were identified using the UCLUST algorithm (http://www.drive5.com/
usearch/). The most abundant sequence in each cluster was chosen as the repre-
sentative of its OTU, and this representative set of sequences was then used for
taxonomy assignment by means of the Bayesian Ribosomal Database Project
classifier116 and aligned with PyNAST117. Chimeras, that are PCR artefacts, were
identified using ChimeraSlayer118 and removed. The Greengenes database, which
was used for the annotation of the reads, additionally identifies groups of bacteria
that are supported by whole-genome phylogeny, but are not yet officially recog-
nized by the Bergeys taxonomy, which is the reference taxonomy and is based on
physiochemical and morphological traits. This results in a special annotation for
some taxa, like Prevotella, that thus appears both with the general annotation, that
is Prevotella, and with the special annotation, that is between square brackets,
[Prevotella]. The list of primers used and its sequence can be found in Supple-
mentary Table 9.

For Amir4 (gastric fluid), the dataset was generated in the same study as for
Amir3 by Amir and colleagues21, and is public and available in the MG RAST
database (http://metagenomics.anl.gov/linkin.cgi?project=5732). It comprises eight
patients, whose gastric fluid was sampled at two different time points, that is before
PPI treatment and after eight weeks of PPI treatment, for a total of 16 samples. The
patients are the same described in Amir3. Metagenomics data were obtained by
pyrosequencing fragments of the 16 S rRNA gene amplicons on the GS FLX system
(Roche). Then the data were processed by replicating the same bioinformatics
workflow followed by Amir and colleagues21 that was described in the previous
data description (Amir3), in order to obtain the matrix of the bacterial absolute
abundance. As for Amir3, the Greengenes database was used for the annotation of
the reads. The list of primers used and its sequence can be found in Supplementary
Table 9.

The Paroni Sterbini (gastric mucosa) dataset was generated by Paroni Sterbini
and colleagues22, and is public and available in the NCBI Sequence Read Archive
(SRA) (http://www.ncbi.nlm.nih.gov/sra, accession number SRP060417), where all
details pertaining the sequencing experimental design are also reported. It contains
24 biopsy specimens of the gastric antrum from 24 individuals who were referred
to the Department of Gastroenterology of Gemelli Hospital (Rome) with dyspepsia
symptoms (i.e. heartburn, nausea, epigastric pain and discomfort, bloating, and
regurgitation). Twelve of these individuals (PPI1 to PPI12) had been taking PPIs
for at least 12 months, while the others (S1–S12) were not being treated (naïve) or
had stopped treatment at least 12 months before sample collection. In addition,
nine (five treated and four untreated) were positive for H. pylori infection, where H.
pylori positivity or negativity was determined by histology and rapid urease tests.
Metagenomics data were obtained by pyrosequencing fragments of the 16 S rRNA
gene amplicons on the GS Junior platform (454 Life Sciences, Roche Diagnostics).
Then the sequence data were processed by replicating the bioinformatics workflow
followed by Paroni Sterbini et al.22—which is in principle the same procedure as for
the Amir datasets—in order to obtain the matrix of the bacterial absolute
abundance. The list of primers used and its sequence can be found in
Supplementary Table 9.

The Parsons (gastric mucosa) dataset was generated by Parsons and
colleagues29, and is public and available in the EBI short-read archive (the
European Nucleotide Archive, ENA) (https://www.ebi.ac.uk/ena, accession number
PRJEB21104). In the original study, the authors focused on the analysis of gastric
biopsy samples of 95 individuals (in groups representing normal stomach, PPI
treated, H. pylori-induced gastritis, H. pylori-induced atrophic gastritis and

autoimmune atrophic gastritis), selected from a larger prospectively recruited
cohort patients who underwent diagnostic upper gastrointestinal endoscopy at
Royal Liverpool University Hospital29. RNA extracted from gastric corpus biopsies
was analysed using 16 S rRNA sequencing (MiSeq). Then the sequence analysis was
performed, as described by the authors in the supplementary methods of the
original article29, by first cleaning the sequences employing Sickle 1.200 to remove
reads shorter than 10 bp (available in QIIME115), assembles of paired-end reads
was processed via FLASH119 and samples were compared using BLASTn120.
Subsequently, same procedures were carried out for the obtainment of OTU tables
as in Amir datasets. Here we focused on the analysis of gastric biopsy specimens (in
total 42 samples) from normal stomach group (20 patients) and belonging to the H.
pylori gastritis group (22 patients). As described in ref. 29, patients in the normal
stomach group showed normal endoscopy, no evidence of H. pylori infection by
histology, rapid urease test or serology, were not treated by PPI and were
normogastrinaemic. Patients in the H. pylori gastritis group were instead positive to
H. pylori infection by urease test, histology and serology, were not taking PPI
medication and were normogastrinaemic. The list of primers used and its sequence
can be found in Supplementary Table 9.

PCA, MDS and LDA. The mainstream multivariate methods to unsupervisedly
explore data patterns in metagenomic studies are based on linear dimension
reduction, in particular PCA121,122 and MDS123,124, also known as PCoA, methods
that have been used to explore and visualize data structure in many metagenomic
studies, from sponge125,126 to gastric tissue microbiota22. These tools perform a
dimension reduction of the data either by multidimensional variance analysis (for
instance PCA) or dissimilarity embedding (for instance MDS/PCoA). PCA collects
uncorrelated variance in the multidimensional space, creating new synthetic
orthogonal variables, which are linear combinations of the original ones, then plots
the samples in a reduced space using the new variables that embody the largest
orthogonal variances. MDS computes dissimilarities between every pair of samples,
plotting the Euclidean part of these dissimilarities as distances between every pair
of points (MDS) in a reduced space, in this way the linear part of the sample
relations can be represented.

In ecology, distance (or dissimilarity) matrices are a major way to transpose the
ecological information of samples in terms of their species composition and
abundance127,128. In this article we will consider classical MDS (which uses
Euclidean distance and is in practice equivalent to PCA129,130), and nonmetric
MDS (NMDS) obtained according to Sammon’s Mapping131. In the latter, the
elements of the multivariate space are mapped onto a lower dimensional space
while retaining the original inter-point dissimilarities, by means of a nonlinear, but
monotonic transformation (Sammon Mapping). Since it respects the ranking of
dissimilarities, it tends to linearize the relationships between the samples. In
addition, MDS will be performed also according to Bray-Curtis (MDSbc)
dissimilarity and weighted UniFrac (MDSwUF) distance because they are
considered the reference in metagenomics studies. Bray-Curtis dissimilarity
quantifies how dissimilar two sites (samples) are based on counts (bacterial
abundances), where 0 means two samples are identical and 1 means that the two
samples do not share any taxa132,133. Dissimilarly, the UniFrac distance, either
unweighted (qualitative) or weighted (quantitative), is the most popular
phylogenetic distance measure for the microbial community diversity between
different samples (also known as β-diversity134) and, differently from the previous
discussed methods, uses the phylogenetic information (which is an external
knowledge not contained in the dataset) on the taxa to compare samples. In
particular, its weighted-version weights the branches of a phylogenetic tree based of
the taxa abundance information135–138. Hence the weighted UniFrac distance
directly accounts for differences in the abundance of different kinds of bacteria, and
can be crucial to describe community changes136 in the studied samples.

We need to specify that both MDSwUF and NMDS are in practice nonlinear
methods and weighted UniFrac is not a classical unsupervised technique like the
others. In fact, MDSwUF adopts a distance that combines the information given by
the bacterial abundance of the dataset with the supervised prior (external)
knowledge regarding the known hierarchical phylogenetic relationship among the
bacteria. However, like PCA, MDS can fail to detect patterns if data are not
properly linearized139. For instance, see Supplementary Fig. 1c-d where MDSbc
and NMDS respectively fail to resolve the Tripartite-Swiss-Roll dataset. When we
consider clinical 16 S rRNA amplicons data, this failure potentially reduces the
chances of correctly pinpointing samples, which may represent clinical subspecies,
and thus remain undetected and undiagnosed. In brief, these methods are not
efficient to perform hierarchical embedding directly from the abundance value,
since hierarchies preserve tree-like structures, and tree-like structures follow a
hyperbolic, thus nonlinear, geometry140–142. Only MDSwUF is able to account for
nonlinear hierarchical organization, yet this is not directly inferred from the
abundance values, but rather forced as a constraint of prior supervised knowledge
on the phylogeny of bacteria. For this reason we cannot offer a test on the
Tripartite-Swiss-Roll dataset.

In our analysis of the Paroni Sterbini dataset, we also showed the results of a
supervised technique, Linear Discriminant Analysis (LDA), which uses the labels to
perform dimension reduction. LDA aims to separate the samples into groups based
on hyperplanes and describe the differences between groups by a linear
classification criterion that identifies decision boundaries between groups123. This
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technique is not congruous (and sometimes statistically invalid) for small sample
size datasets. The reason is that given the reduced sample size we cannot divide the
dataset in a training and test set, which is a fundamental requirement of supervised
methods such as LDA.

Minimum Curvilienar Embedding. In 2010, Cannistraci et al.23 introduced the
centred version of Minimum Curvilinear Embedding (MCE), which provided notable
results in: (i) visualisation and discrimination of pain patients in peripheral neuro-
pathy, and the germ-layer characterisation of human organ tissues23; (ii) discrimina-
tion of microbiota in sea sponges125; (iii) embedding of networks in the hyperbolic
space141; (iv) stage identification of embryonic stem cell differentiation based on
genome-wide expression data31. In this fourth example, MCE performance ranked
first on 12 different tested approaches (evaluated on 10 diverse datasets). More recently
in 201333, the noncentred version of the algorithm, named ncMCE, has been used: (i)
to visualise clusters of ultra-conserved regions of DNA across eukaryotic species143; (ii)
as a network embedding technique for predicting links in protein interaction
networks33, outperforming several other link prediction techniques; (iii) to unsu-
pervisedly reveal hidden patterns related with gender difference and metabolic-disease
risk-factors in lipidomic profiles extracted from human plasma samples144; (iv) to
unsupervisedly infer and visualize phylogenetic (hierarchical) relations directly from
individual SNP profiles in human population genetics34. Finally, also applications in
nonbiological problems such as the unsupervised discrimination of bad from good
radar signals33, represented a proof of concept of the universality of MCE for
addressing nonlinear investigation of data and signals in general. Also in the case of the
metagenomics studies targeting sea sponges,125,126, both MCE and its noncentred
variant23,33 once again proved successful in detecting structure where PCA and MDS
could not, or hardly find any. This is mainly because MCE/ncMCE are unsupervised
and parameter-free topological machine learning for nonlinear dimensionality
reduction and multivariate analysis, that are able to perform a hierarchical embedding
(For more information see Supplementary Note 1—MCE to unsupervisedly infer and
visualize phylogenetic (hierarchical) relations).

This study stems from the intuition that MCE/ncMCE analysis could
successfully reveal undetected patterns also in esophageal and gastric
metagenomics data, where only unsupervised linear methods or classical nonlinear
methods such as NMDS and MDSwUF had been used and had failed to achieve
any clear-cut result21,22.

Minimum Curvilinearity (MC)23, the principle behind MCE and ncMCE, was
invented with the aim to reveal nonlinear data structures also, and especially, in the
case of datasets with few samples and many features. MC principle suggests that
curvilinear (nonlinear) distances between samples may be estimated as pairwise
distances over their Minimum Spanning Tree (MST), constructed according to a
selected distance (Euclidean, correlation based, etc.) in a multidimensional feature
space (here the metagenomic data space). In this study, we considered Pearson-
and Spearman-correlation-based distance (refer to ref. 23 for details on the way to
compute the distance for the MST). The collection of all nonlinear pairwise
distances forms a distance matrix called the MC-distance matrix or MC-kernel,
which can be used as an input in algorithms for dimensionality reduction,
clustering, classification and generally in any type of machine learning. In MCE
and ncMCE, the MC-kernel (which is noncentred for ncMCE) is followed by
dimensionality reduction using singular value decomposition (SVD), and then by
the projection of the samples onto a two-dimensional space for visualisation and
analysis. Thus, MCE/ncMCE is a form of nonlinear and parameter-free kernel
PCA33. In the rest of the article we will simply use the name MCE to indicate both
MCE and ncMCE, since the centring transformation is related to the specific data
pre-processing and will be specified for each dataset as a technical detail in the
respective results’ tables.

Procedure to evaluate the performance of the dimension reduction algo-
rithms. The performance of the mentioned dimension reduction algorithms is
evaluated as the ability to separate the samples in the first two dimensions of
embedding since, as discussed, they are related with the treatment/infection
response. In order to quantitatively evaluate the performance, we use a recently
proposed index termed Projection Separability Index (PSI) used for sample
separation145. This index can be defined for any separation-measure and in this
study we considered well-known measures: Area Under the ROC-Curve (PSI-
ROC) and Area Under the Precision-Recall curve (PSI-PR), that are regularly used
to quantitatively measure the performance of a binary predictor.

More precisely, in the 2D space a line is drawn between the centroids of the two
groups that are compared, subsequently all the points are projected on this line and
then AUC and AUPR are computed for the projected points. This index can
actually be applied not only in a 2D space, but in any N dimensional space. For the
calculation of the centroids we consider the 2D-median of each cluster/class’s
group. In case more than two groups are present in a dataset, all the AUC and
AUPR values between the possible pair-groups are computed. Then, the following
formula is applied: E/(1+ δ), where E is the mean of the pairwise PSI values and δ
their standard deviation. Thus, the standard deviation works as a penalization in
case of outliers PSI values, ensuring that the overall PSI is high only when all
pairwise PSI values are close to the mean. The computed values are finally chosen
as an overall estimator of separation between the groups in the 2D reduced space.
This case applies only to the Paroni Sterbini dataset, which is composed of three or,

possibly, four groups of samples. All the other datasets are instead composed of two
groups.

It is important to note that the PSIs were also applied to the data in the original
high-dimensional (HD) space, as a reference to see how good the unsupervised
dimension reduction approaches are in preserving the original group separability of
the HD space.

All the algorithms were tested considering (when allowed by the dimension
reduction method) data centring or noncentring. In addition, multiple
normalization options were investigated and the datasets were considered under a
certain type of normalization: division by the column—which reports the OTU—
sum (indicated by DCS); division by the row—which reports the sample-sum
(indicated by DRS); function log10(1+ x) applied to the dataset (indicated
by LOG).

In order to verify that the performances obtained by our evaluations using PSI
on the DR techniques are not obtained by chance, we calculate a measure termed
trustworthiness, which exploits a resampling technique based on label-reshuffling
to build a null model (Supplementary Fig. 19). The labels are reshuffled uniformly
at random on the embedded points whose location is maintained unaltered in the
reduced space. For each random reshuffling (the total number of reshuffling is a
resampling parameter decided by the user, we adopted 1000 realizations), a PSI
measure value is computed. The collection of all these values is used to draw the
null model distribution. This distribution is employed to compute the probability
to get at random a separation equal or higher than the one detected by using the
original labels.

From Markov Clustering to Minimum Curvilinear Markov Clustering. MCL is
an unsupervised algorithm for the clustering of weighted graphs based on simulations
of (stochastic) flow in graphs146 (http://micans.org/mcl/). By varying a single para-
meter called inflation (with values between 1.1 and 10), clustering patterns on different
scales of granularity can be detected. For clustering samples of a multidimensional
dataset, the workflow starts with the computation of correlations (generally Pearson
correlations) between the samples, and creates an edge between each pair of samples,
where the edge-weight assumes the value of the respective pairwise positive sample
correlation, or values zeros in case of negative correlations. This generates a weighted
correlation graph (network), which is used as a map to simulate stochastic flows and
detect the structural organization of clusters in the graph.

With the purpose of creating and testing a nonlinear variant of the MCL
algorithm, we adopt an innovative algorithm, which was recently proposed and
called MC-MCL147. The idea is the following. The MC-kernel—discussed above in
the MCE section—is a nonlinear distance matrix (or kernel) that expresses the
pairwise relations between samples as a value of distance: small samples distance
indicates sample similarity, while large samples distance indicates sample
dissimilarity. Here we reverse (using the following function: f(x)= 1− x and after
this we put to zero the negative values—strategy already applied in the original
MCL algorithm—of the MC-distance kernel to get a MC-similarity kernel, where
small values (close to zero) indicate low sample similarity and large values (close to
one) indicate high sample similarity. A technical detail: for the computation of the
MC-distance kernel, it is necessary to firstly square root the original distances
(correlation based) between the samples. As already investigated in ref. 23, this
attenuates the estimation of large distances and amplifies the estimation of short
distances; consequently it helps to regularize the nonlinear distances inferred over
the MST in order to subsequently use them for message passing23 (such as affinity
propagation) or flow simulation (such as MCL) clustering algorithms.

Then, the standard stochastic flow simulations of MCL algorithm runs on the
graph weighted with the values of the MC-similarity kernel (which collects pairwise
nonlinear associations between samples) instead of the Pearson-correlation kernel
(which collects pairwise linear associations between samples). In practice, this is an
algorithm for clustering that is a nonlinear version (based on the MC-kernel) of the
classical MCL. The goal of the MC-MCL analysis is to verify whether the use of the
MC-kernel improves performance, by solving nonlinearity, not only in dimension
reduction (such as in MCE) but also in clustering (such as in MC-MCL).

Procedure to evaluate the performance of clustering algorithms. The cluster-
ing algorithms MCL and MC-MCL were applied to the datasets, either raw, or after
the same normalization procedures used before dimensionality reduction (DCS:
division by column (OTU) sum; DRS: division by row (sample) sum; LOG:
function log10(1+ x) applied to the dataset) and their performance was evaluated
by means of accuracy. The accuracy is computed as the ratio of the number of
samples assigned to the correct clusters over the total number of samples. For both
MCL and MC-MCL, we tested Pearson and Spearman correlations to build the
similarity measure to feed into the clustering methods. The Spearman correlation
can also detect a subclass of nonlinear associations (which have monotonic shape
function) or correct for outliers. Differently from what suggested for large gene
datasets with thousands of samples in ref. 146 (http://micans.org/mcl/), in this study
we had to consider the whole set of original positive correlations without applying
any threshold (cut-off) to the values. This was compulsory, since we considered
datasets with few samples. In our case, to keep the graph connected, with one
unique connected component, we could not introduce any kind of threshold that
would otherwise alter the real graph connectivity (dividing the graph in dis-
connected components) and hence the clustering result. Since the MCL algorithm
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needs a single input parameter (inflation) to control the granularity of the output
clustering, we ran it for different inflation values until we achieved the desired
number of clusters. Finally, in the Paroni Sterbini et al. dataset22 it was not clear in
advance whether the correct number of clusters present in the multidimensional
space was three or four. Hence, we tested the clustering algorithms considering as
output both three and four clusters’ configurations, and we identified as the best
solution the one that offered the highest accuracy.

PC-corr network. Furthermore, we investigated the effect of PPI on the microbiota
of gastric fluid and gastric mucosa in dyspeptic patients, and the changes induced
by H. pylori infection on the gastric mucosal microbiota, by means of the PC-corr
approach32. PC-corr represents a simple algorithm that associates to any PCA
segregation a discriminative network of features’ interactions32. It is a method for
linear multivariate-discriminative correlation network reverse engineering, that,
thanks to its multivariate nature, can help to stress and squeeze out the underlying
combinatorial and multifactorial mechanisms that generate the differences between
the studied conditions32. Said what PC-corr is able to do, now we offer an intuitive
explanation of how it works. PCA is one of the most employed approaches to
unsupervisedly map linear dissimilarities (hidden in the high-dimensional space)
into a visible space of data representation. When we notice that two or more groups
of samples are separated along one of the axes of this representation space, gen-
erally the first question is to discover what are the features that are contributing
more to this separation. This is easily achievable by analysing the PCA loading
values that are associated to the axis along, which emerges the sample separation
under investigation. But the loading values do not provide any information on how
those features mutually interact. On the other hand, a correlation network between
the features provide information on their associative relation but not on their
contribution to the discrimination. PC-corr is an algorithm that is able to integrate
together the discriminative information of the loadings with the combinatorial
information of the correlations. Indeed, PC-corr offers as output a discriminative
correlation network of features that can help to elucidate the possible associative
mechanisms that are at support of the sample separation along a specific axis of
PCA representation. Hence, for the studied datasets, it can be employed to point
out the possible presence of bacterial alterations and their interplay, induced by a
medical treatment (PPIs in dyspepsia) or infectious state (H. pylori).

Bacteria-metabolite multilayer network construction and metabolite pathway
analysis. We used a recently realized bacteria-metabolite bipartite network, which
is an open access resource148 to infer the metabolic activity of the bacteria pre-
sented in the intersections of Figs. 4 and 5. The study148 provided a large set of
9136 bacteria to metabolite interactions validated on experimental studies from
mouse and human gastroenteric microbiota. It was available as a network, named
NJC19, where node represented either bacteria or metabolites connected by several
types of edges (e.g. production, consumption, degradation). In this dataset we
restricted the analysis to interactions found on human bacteria. Since the dataset
identified bacteria according to the taxonomic levels of species while our data
referred to the genus level, we made a new form of the NJC19 network with edges
starting from the bacteria genus to metabolites. When we did not find any inter-
actions for specific bacteria, we discarded them from further analyses. Therefore,
from the list of intersected bacteria from Fig. 4 (Porphyromonas, Capnocytophaga,
Streptophyta, Granulicatella, Clostridiales, Oribacterium, Veillonella, Bulleidia,
Fusobacterium, Leptotrichia, Campylobacter, Prevotella) we dropped Streptophyta,
Granulicatella, Oribacterium, Bulleidia and Prevotella. Similarly, from the inter-
sected bacteria of Fig. 5 (Enhydrobacter, Methylobacterium, Catonella, Pseudomo-
nas, Acinetobacter, Sphingomonas, Propionibacterium, Bulleidia) we dropped
Bulleidia, Catonella, Sphingomonas and Enhydrobacter. For the graph representa-
tion, we used the color code already applied in the previous figures for the bacteria
according to the taxonomic order. While for metabolites we classified them in
seven classes, assigning to each a different node shape and colour: vitamins, gly-
colysis, lipids, amino acids, carbohydrates, amines and miscellaneous. Furthermore,
an enrichment analysis of metabolites (linked to the discriminative bacteria net-
works detected by PC-corr) has been conducted to unveil the metabolic pathways
that might be associated to these bacteria perturbations. To this purpose, we used
the framework provided by metaboloAnalyst suite149. Specifically, we performed
the “Enrichment Analysis” against the KEGG database and we selected the sig-
nificant pathways according to the Benjianini corrected p-values smaller than the
significance level of 0.05. For the case of the H. Pylori-affected network, just few
nodes were available and only one significant pathway was obtained from it with
few metabolite hits. Therefore, the network was expanded by adding first neigh-
bours metabolites—obtained from KEGG—from the current ones.

Finally, the metabolite layer network nodes were grouped according to the three
most significant pathways in both the PPI- and H. Pylori-affected bacteria-
metabolite networks. This was ensured according to the following procedure: a
ranking was generated for the list of significant pathways in each of the two
networks. Then, the nodes of each network were grouped according to the three
pathways with the highest average ranking in the two networks, which in our study
are: aminoacyl-tRNA biosynthesis; galactose metabolism; Alanine, aspartate and
glutamate metabolism. A fourth group encapsulating the metabolites involved in
the other significant pathways was also provided. Regarding the links considered in
each bacteria and metabolite layer, the bacteria–bacteria associations were

maintained from Figs. 4 and 5, while edges between metabolites were obtained by
the metabolite interaction involved in the significant enriched KEGG pathways.

The processing pipeline has been developed in the R environment150 and by
using the following packages: igraph151, taxize152, graphite153, RCy3154.

More information about the computing platforms concerning the analyses
found in this study can be found in the Supplementary Note 9—Computing
platforms adopted to implement the algorithms.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in: the MG RAST database
accession code mgp5767 and mgp5732 for Amir3 and Amir4, respectively; the NCBI
Sequence Read Archive (SRA) accession number SRP060417 for the Paroni Sterbini data;
and the EBI short-read archive accession code PRJEB21104 for the Parsons data. In the
case of the artificial microbial-like and Tripartite-Swiss-Roll datasets, they are available
within the paper supplementary information Supplementary Data 13 and 14,
respectively.

Code availability
Codes for the PSI measure can be found in the biomedical-cybernetics git repository
https://github.com/biomedical-cybernetics/projection-separability-indices. The code for
MC-MCL clustering algorithm can be found in https://github.com/biomedical-
cybernetics/minimum-curvilinear-Markov-clustering. The R or MATLAB code for PC-
corr network analysis can be found in https://github.com/biomedical-cybernetics/PC-
corr_net. The code to compute the trustworthiness can be found in https://github.com/
biomedical-cybernetics/trustworthiness. The MCE code for nonlinear dimensionality
reduction can be accessed from https://sites.google.com/site/carlovittoriocannistraci/5-
datasets-and-matlab-code/minimum-curvilinearity-ii-april-2012.
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