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Versatile knowledge guided 
network inference method 
for prioritizing key regulatory 
factors in multi‑omics data
Christoph Ogris1*, Yue Hu1, Janine Arloth1,2 & Nikola S. Müller1* 

Constantly decreasing costs of high-throughput profiling on many molecular levels generate vast 
amounts of multi-omics data. Studying one biomedical question on two or more omic levels provides 
deeper insights into underlying molecular processes or disease pathophysiology. For the majority 
of multi-omics data projects, the data analysis is performed level-wise, followed by a combined 
interpretation of results. Hence the full potential of integrated data analysis is not leveraged yet, 
presumably due to the complexity of the data and the lacking toolsets. We propose a versatile 
approach, to perform a multi-level fully integrated analysis: The Knowledge guIded Multi-Omics 
Network inference approach, KiMONo (https://​github.​com/​cellm​apslab/​kimono). KiMONo performs 
network inference by using statistical models for combining omics measurements coupled to a 
powerful knowledge-guided strategy exploiting prior information from existing biological sources. 
Within the resulting multimodal network, nodes represent features of all input types e.g. variants 
and genes while edges refer to knowledge-supported and statistically derived associations. In a 
comprehensive evaluation, we show that our method is robust to noise and exemplify the general 
applicability to the full spectrum of multi-omics data, demonstrating that KiMONo is a powerful 
approach towards leveraging the full potential of data sets for detecting biomarker candidates.

Over the past decade, inventions of high throughput techniques enabled the measurement of multiple omic 
levels on a large scale and in a cost-efficient manner. The resulting data provides deep insights into the network 
of molecules orchestrating biological mechanisms. Hence, it is no surprise that many studies underpin their 
findings using multi-omic analysis when identifying disease or condition specific key molecules. So far, there 
exist several different multi-omic analysis strategies. Probably one of the first and well-established combinations 
of two omic levels, are expression quantitative trait loci (eQTL) analyses1. However, integrating multiple levels 
simultaneously is still an ongoing challenge. To account for this, most studies use a level-by-level approach where 
each omic level is analysed independently. Disregarding the complex ‘cross-omic’ interplay simplifies the analysis 
problem but comes at the cost of potential overlooked and misinterpreted results2,3.

Recently, more sophisticated latent factor-based models have been introduced, capable of analysing multiple 
omic levels simultaneously4,5. These methods infer lower-dimensional representations (latent factors) of the 
original high dimensional multi-omic data space. Even though the latent factors represent certain patterns of 
the data, it is often difficult to find the biological meaning of these factors5. Improved interpretability is one of 
the big advantages of network based approaches. These identify condition specific key molecules via inferring 
and analysing a network representation of the processes6,7. Such networks often consist of thousands of nodes, 
representing the different omic input features, such as genes and proteins which are linked condition-specifically.

The most common and straightforward inference approaches generate correlation based networks. Here net-
work links are generated by calculating pairwise correlation between all features. Unfortunately, this strategy often 
results in low-specific and highly connected networks which are hard to interpret8. To increase the specificity one 
can use more advanced machine learning approaches, instead of correlation, to identify associations between 
nodes9,10. These methods are only applicable to high dimensional multi-omic data with large amounts of samples.

To overcome the limitation of relying on pairwise correlation we previously developed miRlastic11. MiRlastic 
facilitates prior knowledge to increase the performance for high dimensional and low sample size data analysis. 
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MiRlastic creates a multivariate penalized regression model for each mRNA with the multitude of predicted 
miRNA regulators per mRNA, thereby filtering predicted regulations in the context of real data. Next, aggregat-
ing miRNA and mRNA species from all regression models assembling a mRNA-miRNA interaction network.

We now developed a method capable of using any kind of omic levels inferring a multi-level network. Our 
novel Knowledge guIded Multi-Omic Network inference method—KiMONo, vastly expands miRlastic. KiMONo 
allows a simultaneous integration of multiple omics levels, for example, genomic variants, methylation, gene 
expression, proteomics and biological information. KiMONo leverages various prior information, reduces the 
high dimensional input space, and uses sparse group LASSO (SGL)12 penalization in the multivariate regression 
approach to model each gene’s expression level. The chosen penalty term allows for a bi-level selection, penalizing 
each omic level as well as penalizing within each level. Aggregating these models, all features are linked to their 
gene and assembled in the final heterogeneous multi-level network.

In our benchmark were able to showcase KiMONo’s performance by applying it to one of the most compre-
hensive multi-omic data sets available—the PanCancer data collection of The Cancer Genome Atlas. It consists 
of almost 5000 samples describing 12 different cancer types across ~ 50,000 features on five omic levels. As a 
validation we also applied the same benchmark setup to a data set of the highly complex disease major depressive 
disorder (MDD). This challenging data set contained over 107 samples measured on four different omic levels 
with in sum over 4.5 million features. Finally, we successfully identified key molecules driving the conditions 
within these data sets. KiMONo retrieved previously reported genes that matched the underlying disease setting, 
in addition to yet unknown potentially interesting genes. We present KiMONo as a versatile method to derive 
fully integrated and holistic multi-level networks capturing the data-supported interplay between omics levels.

Results
Network inference with KiMONo.  Our novel method KiMONo infers a condition specific multi-level 
network from any mix of multi-omic data sets (see Fig. 1). The network nodes represent omic input features, like 
genes or proteins, linked if a regulatory effect is present within the data. KiMONo’s efficient inference is achieved 
by using existing biological knowledge to pre-select features of different omic data types for a gene of interest. 
The condition-specific information is inherent to the data used for inference. This biological knowledge, or prior, 
can range from an experimentally validated interaction between proteins up to simple annotations between 
genes coding for proteins. This can be interpreted as a blueprint, used to further focus and guide the algorithm. 
For KiMONo the prior has to be submitted in a list format including all already known, thus biologically pos-
sible, associations. Within the prior knowledge, KiMONo can also differentiate between direct (first-order) and 
indirect (second-order) associations. For instance, first-order links can describe the relation between a protein 
complex and one of its coding genes and relations between all coding genes can be implemented as second-order 
links.

Figure 1.   Workflow. 1:Input—the input data for KiMONo can be any mix of multiple omic data and prior 
knowledge. The prior represents general biological knowledge and is submitted via a list of already known 
associations between input features. 2:Prior based pre-feature selection—Based on the prior, KiMONo pre-
selects omic features and generates a input matrix X for each gene. 3:Regression model—Each gene is modeled 
via a sparse group lasso using the genes expression as y and the previously selected matrix X as input. 4:Multi-
Omic Network—all gene models are merged to generate a multi-level network containing features from all input 
sources as nodes and links for all non-negative regression coefficients between them.
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Once the prior and input data are submitted, KiMONo optimizes a penalized regression model for nodes 
individually to establish its outgoing network links. The feature’s value, i.e. gene expression, represents the cri-
terion variable y while the input matrix X is assembled by the features associated to the gene within the prior. 
KiMONo uses the SGL regression approach to penalize within and between predefined groups of features. By 
performing this ‘bi-level’ selection, KiMONo accounts for different underlying distributions between the features 
originating from using multiple data types. Within SGL, the parameters α denotes the intergroup penalization 
while τ defines the group-wise penalization. KiMONo approximates an optimal parameter setting via using the 
Frobenius norm11. To be more specific,α is approximated by the mean Frobenius norm of all groups while τ is 
estimated by the frobenius norm within each omic level. The global LASSO parameter � is optimized using a 
fivefold cross-validation, using the mean squared error as loss function.

KiMONo further uses the fitted models, of all nodes to assemble a multi-level omic network. Within this 
network, nodes represent features of the input data, like genes, proteins methylation sites or SNPs, and connec-
tions between them are weighted via the β coefficient. Furthermore we assign each model a confidence score 
based on its evaluated R2.

Increased performance using second‑order links.  We used the breast invasive carcinoma data, a sub-
set of PanCancer collection, as a benchmark set. It is the largest set containing 604 patients with ~ 50,000 meas-
ured features across the 5 omic levels described in the previous section.

First, we evaluated the performance using all features at once without any prior pre-selection. Since, neither 
conventional LASSO or elastic net nor SGL were able to infer networks we asked next whether incorporating 
first- and second-order links would increase KiMONos inference performance?

An evaluation of the inferred networks using only the first-order prior showed that 5,349 models were inferred 
beyond intercept-only modes having a mean R2 = 0.02 . Only 96 gene models performed with R2 ≥ 0.02 . But, 
once we expanded the models with second-order associated features, the performance considerably increased: 
9480 gene models with successful feature selection showed an R2

= 0.11 of which 3,150 models performed better 
than R2 ≥ 0.1 with an R2 = 0.25.

Next we evaluated if the amount of different omic layers also impacts the performance. Therefore, we selected 
models with second-order prior and R2 ≥ 0.1 and grouped models according to the number of different data 
types retained in the selected features (Fig. 2A). No model was composed of a single data type. Models based 
on features originating from two omic levels showed an average R2

= 0.19 while five omic layers increased the 
R
2
= 0.3 . Furthermore we can also observe that the increased performance with increasing number of data types 

is also related to an increased number of features used, see Fig. 2B. Here the majority of models, which used 
composed of features from two omic levels with average number of 3.6 linked features, while models using data 
of five different omic sources detected an average of 77.5 selected features. Moreover we can observe that 2nd 
order selected features are dominating the final models. Here transcriptomic and methylation based features are 
dominating the generated models, see Fig. 2C.

Performance on small sample‑sized data.  One of the biggest challenges for multi-omic data analy-
sis methods is preserving robust performance on multi-omic data sets with low sample size. To benchmark if 
KiMONo is affected by low sample size data, we simulated in total 100 test sets based on PanCancers’s breast 
invasive carcinoma data. Using KiMONo we inferred a network for each test case where 5–95% of the samples 
were removed (Fig. 3A), and compared them to a reference network inferred on all samples. Interestingly, 80% 
of the initial higher-performing models ( R2 > 0.1 ) were inferrable even when we only use 5%, 30 of the 604, 
samples (Fig. S3A).

Figure 2.   (A) Boxplots of performances of models composed of features from 2, 3, 4, and 5 different data types/
omic levels, as well as the overall performance over all levels. (B) Number of features selected when selecting 
features of different data types, as well as the general number of features used over all levels. (C) Composition of 
omic types selected in models. Here orange-red refers to 1st order linked features while green and blue visualize 
2nd order features.
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To evaluate the overall performance we excluded genes models which explained less than 1% of the gene 
expression variance ( R2 < 0.01 ) and restricted the benchmark set further to 932 genes which have been also 
present in the 5% test case (an unrestricted view can be found in Fig. S3). Removing samples also decreased the 
variance of many features which indirectly decreased the overall dimensionality. Using 30 (5%), of the 604 sam-
ples, reduced the number of features from 57,966 to 15,632 features. Comparing the overall results we showed that 
KiMONos performance was stable for both large and small data sets. The reduction of variance and thus complex-
ity was reflected by a slight increase in performance between the 35% and 5% test cases, from R2 = 0.24 to 0.29.

Following our approach of dissecting the overall R2(see Materials and Methods) we were able to estimate the 
importance of the individual levels as well. The most informative sole information layer was the Protein informa-
tion with and average R2= 0.23 followed by the second-order linked Transcriptome information with an average 
R2 = 0.18. The sparse Mutation data seemed to improve its performance with smaller sample sizes whereas Clini-
cal, Methylation and second-order linked Protein information seemed to contribute the least. When comparing 
the results between the different sample sizes, the mutation layer constantly improved the performance by R2 
of 0.7 for reduced sample sizes with lower dimensionality while all other information layers slightly decreased 
in performance.

Performance on noisy data sets.  Another major challenge for data analysis methods is coping with 
noisy data sets. To evaluate this we simulated noisy variations of the breast invasive carcinoma data. Following 
the simulation approach described in Materials and Methods, we generated 100 different data sets across five 
noise levels. Using KiMONo we inferred networks for all test cases and again compared it to a reference network 
inferred of the breast invasive carcinoma data without noise.

We observed a strong effect of noise on the coverage of the network (Fig. S2B). Looking at the highest noise 
level of α = 1 KiMONo was able to still retrieve more than half (4071) of the initial models with R2 > 0.01 . 
Looking at higher-performing models ( R2 > 0.1 ), the gene coverage dropped from 3147 models to 463. This 
drop in coverage was also observed by evaluating the overall gene model performance. Here, we only evaluated 
models explaining at least 1% of the variance within the gene expression. The most drastic impact of noise can be 
observed at the 1st order linked Proteome and 2nd order Transcriptome data (Fig. 3B). In the Proteome data, the 
performance dropped from 0.21 to 0.05 while the Transcriptome decreased from 0.17 to 0.6. The overall average 
R2 = 0.28 was decreased to 0.05, after adding Gaussian noise with α = 1 . Similar to the previous performance 
test, there was a similar overall trend over all other information levels. Information levels that already started 
with a relatively low R2 like Methylation (0.03) and Clinical (0.02) layer, maintained the general low performance 
of 0.02 and 0.01, respectively.

Figure 3.   Robustness benchmark for (A) different sample sizes and (B) noise levels. First set of box plots 
(purple) shows the overall performance,R2(log scaled y axis) of inferred gene models using all available 
information layers. All following sets describe the stand-alone performances of Proteome, Methylation, 
Mutation, Clinical and Transcriptomic information layers. 1st order links (green) and 2nd order links (orange) 
are benchmarked separately. Note, Clinical and Transcriptome information consists of only 1st and 2nd 
order links. (A) Data sets with different sample sizes were generated using 5–100% of the 604 breast invasive 
carcinoma samples. (B) Different test data sets were simulated by adding Gaussian noise with increasing 
variance to the scaled feature values. Here, the noise level reflects the R2 for six intensities.
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Multi‑layer PanCancer networks.  To exemplify the data analysis power of KiMONo on multi-layer 
data, we inferred networks on the PanCancer data consisting of 11 cancer types. As a post-processing step, we 
excluded all models for which R2 < 0.1 and also excluded links within the network with a weight smaller than 
β < 0.02 , Fig. 4A.

The final networks had on average 26.343 links and 3158.2 nodes (Fig. 4A). The test for degree distribution 
yielded a significant gamma distribution ( p < 2.2e − 16 ). For each network, we ranked the nodes based on the 
node betweenness of centrality and selected the top 100. Comparing these sets showed that 88% of the top 100 
nodes are occurring in at least two of the cancer types. All genes which were identified as important across all 
11 cancer networks had been previously linked to cancer by several studies (see Table S1). We further used all 
those genes for pathway annotation using the open source tool pathwaX13. Here the top enriched KEGG path-
way is the cancer-related Chronic myeloid leukemia (FDR = 1.45e−37) pathway followed by Pathways in cancer 
(FDR = 6.3e−35). Furthermore, we were able to identify 345 features which were uniquely identified to each 
cancer type. For instance, the methylation site cg00103783 (chr17:7.583.931), mapping to MPDU1 gene, was 
only detected as important within the head & neck squamous cell carcinoma network. Interestingly14, introduced 
MPDU1 as a potential biomarker for HNSC.

Within the breast invasive carcinoma network, all three genes were among the top 20 nodes, lead by age and 
UBC which had been identified as an oncogene by15 (see Fig. 4B). Using these top 20 genes for pathway annota-
tion gave a clear picture of cancer-related KEGG pathways, i.e.: KEGG Pathways in Cancer (FDR = 2.94e−44) 
was the top enriched pathway, followed by Hepatitis B (FDR = 2.51e−39) and Cell cycle (FDR = 2.3e−38). Both, 
Cell cycle and Hepatitis B, were known breast cancer-related pathways16,17. However, the Breast Cancer-specific 
KEGG pathway ranked on place 14 (FDR = 5.0395e−33) among all enriched pathways. Another interesting result 
was the inferred Glioblastoma multiforme (GBM) network, Fig. 4C. Even though GBM is one of the rarest cancer 
types, it is also one of the most lethal ones having a survival time of 14–15 months after diagnosis18. The GBM 
data set was relatively small including only paired data for 61 patients with 58,051 features across 5 omic layers. 
Nevertheless, KiMONo inferred 112,945 links between 9341 nodes. Even though the top 20 features were not 
as densely connected as in the previous example, we were able to link CTNNB1, HIF1A, HDAC1 and EWSR1 to 

Figure 4.   (A) Performance on all gene models ( R2 > 0.1 ) inferred by KiMONo followed by number of gene 
models and number of features selected in the proteomics, mutation, epigenetic and clinical data layer. (B) 
Subnetwork of top 20 features (highest betweenness of centrality) within the inferred breast invasive carcinoma 
network ( R2

= 0.4 ). Within the network, we found nodes originating from mRNA (green), mutation (orange) 
and clinical (blue) feature space. The edges denote first order edges (grey), first and second-order (black). (C) 
Subnetwork of the top 20 features in Glioblastoma Multiforme ( R2

= 0.4).
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survival time. Beside EWSR1 all have been reported as survival time related in GBM (19,20. Interestingly21 showed 
that in GBM, EWSR1 was often fused with PATZ1, a cancer related gene, worsening the survival rates19,22.

Multi‑layer MDD network.  Even though the PanCancer is one of the most comprehensive multi-omic 
datasets available, we further wanted to evaluate our method on a more complex type of disease, like MDD. 
While progress has been made in understanding the pathomechanisms of MDD, success in translating findings 
into clinical practice has been limited23. Studies have been largely focused on single-level omics, like GWAS24) 
and multi-level omics are relatively new25,26. Therefore, making successful inference of a multi-omic cross-talk 
regulatory network is of importance to better understand the depression phenotype.

For this purpose, we applied KiMONo on a cohort, consisting of 107 healthy individuals and patients. There 
were 4,247,909 imputed SNPs, 12,418 transcripts and 320,481 methylation sites available for the evaluation of 
our method, after filtering for the 25% of methylation sites with the least variance. Biological information such 
as BMI, age, sex and status of the diagnosis and cell type composition were also taken into account for network 
inference.

To ensure a higher quality of selected features we filtered for β coefficients between − 0.02 and 0.02 as well 
as R2 < 0.1 values. The final MDD network, comprised of 9,943 gene models with median R2 = 0.184 of which 
few models even reached very high R2 > 0.75 values,. As predictors, we uncovered 7837 methylation sites and 
3749 SNPs as first-order links, as well as 5336 gene transcripts and 4351 methylation sites as second-order links. 
In addition, all of the biological covariates were found across the whole network (Fig. 5A,B).

To compare with state-of-the-art methods, we identified eQTL and eQTM genes using pairwise models and 
set them into context to the findings of KiMONo. Using the same proximity restrictions for the MatrixEQTL 
and KiMONo, we found 873 and 660 eQTL-genes, respectively, overlapping in 301 (Fig. 5C). Further, we found 
an overlap of 695 eQTM genes, with 1210, more than double found with KiMONo (Fig. 5D). Nearly all genes 
found in the overlap or only by KiMONo were further explained in multivariate models by information from 
other omic-layers of methylations, SNPs and gene expression.

The top 20 genes identified with the highest betweenness measure were found to exhibit higher performances 
compared to the average model. R2 ranged from 0.202 to 0.798 with a median of over 0.525, while the average 
across all models was 0.539 (Fig. 6A). Further, features selected by the penalty model represented information 
from many different omic-information levels, across methylation, SNP, gene expression as well as biological 
clinical information. Methylation sites possessing long-distance effects, gene expression associated over indirect 
links, and biological data were consistently present for the top 20 hits (Fig. 6B).

The potential of our method becomes apparent when looking at connections found through KiMONo but not 
pairwise models of MatrixEQTL. After correcting for residual effects of all other features in multilevel models, 
the connection between the expression of SLC39A11 (Solute Carrier Family 39 Member 11, chromosome 17) and 
SNP rs1493550 and methylation site cg26124719 located both in an intron became clearly resolved (Fig. 6C,D).

Half of the top 10 hits have been previously linked to depression or pathways involved in the pathogenesis of 
the disease (see Table 1). Here the top enriched KEGG pathway was endocytosis (FDR = 4.832e−8) which plays 
a major role in synaptic plasticity, which is an important component in disease development of stress-related 
disorders, like MDD27,28. The second important pathway was autophagy (FDR = 2.606e−6) an essential pathway 
for the central nervous system and studies have shown the effects of antidepressant treatments on autophagy29. 
Interestingly, among the top 10 pathways was Axon guidance (FDR = 1.054e−3), which has been shown to be a 
strong risk factor for depression, as stress may affect brain structure and function30,31.

Discussion
We presented KiMONo—a novel prior Knowledge guided Multi-Omics Network inference method. By leverag-
ing prior knowledge, the algorithm builds a statistical model for each gene, selects the most predictive features 
and uses these to assemble a multi-level network. Within this network nodes represent features of the input 
omic measurements and links define disease- or context-specific relation between them. Within all the pos-
sible linkages of nodes as derived from the prior, our network can be viewed as a subnetwork that is specific to 
condition-setting, containing only edges between meaningful associations. KiMONo was specifically designed 
to work on low sample size sets with high-dimensional data originating from a variety of information sources.

We used TCGA data, one of the biggest collections of multi-omic data, as the main evaluation set. For some 
omic types the data was lacking quality and information depth. For instance, mutation and methylation data 
were only available in a binarized form. We reasoned that KiMONo enhances the signal by combining various 
data sources and is therefore well suited for the analysis for this data format. Nevertheless, we also performed 
our tests on less preprocessed data describing MDD. Even though this data set has a higher dimensionality, we 
were also able to reproduce the performance behaviour we gained from the TCGA data (see Fig. S5).

In our robustness tests, we showed that, reducing the number of samples barely affected the overall per-
formance of KiMONo on TCGA’s PanCancer subset. When investigating the performance contribution of the 
mutation features alone, there was even a slight performance increase for low sample sizes. Even though it might 
be the sole effect of overfitting, we showed that it only occured for sparse binarized data. Hence, removing 
samples from this sparse matrix directly resulted in setting some features = 0 . Therefore, we not only removed 
samples but also shrank the feature space. which in turn resulted in less predictive models having slightly better 
regression performances.

In contrast, we found that the method was more sensitive to noise in the data than to reduced sample size. 
When increasing the simulated noise, it resulted in a rapid decrease in correctly predicting the gene expression 
level, as opposed to a moderate decrease when reducing the amount of samples.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6806  | https://doi.org/10.1038/s41598-021-85544-4

www.nature.com/scientificreports/

Next, we showed that KiMONo was able to find many of the eQTL and eQTM genes (34.5 and 26.7%) that 
were uncovered by MatrixEQTL using pair and level-wise tests. In addition we found further associations, com-
plementing MatrixEQTL, when deriving regulatory networks in context with all features from all omic levels. It 
is possible that these features can only be detected when taken into account the context of the underlying omic-
crosstalk. Across all top hits in the MDD dataset (Table 1), we observed that relationships from 2nd-order linked 
genes and methylation sites play an important role. For example, gene SLC39A11 being identified as eQTL and 
eQTM gene to SNP rs1493550 and methylation site cg26124719. Our results indicate that KiMONO is a power-
ful method to discover these long-distance and indirect relationships while establishing regulatory networks.

In addition to incorporating second-order links, we also showed the advantage of multivariate models derived 
from various omic-layers by uncovering relationships that were not found in pairwise models. After correcting 
for residual effects of every feature except for the one of interest, the connection became clear (Fig. 6C,D). Our 
approach allows uncovering many more effectors by accounting not only for the covariates but also all other 
features in a complex multi-omic context.

Applying KiMONo on both TCGA cancer types and MDD, we were able to find previously reported genes 
that matched well with the underlying disease setting (see Fig. 6B/Table 1). This provided a good evaluation 
of our method. Among the top hits we also identified genes that have not yet been reported in relation to the 
studied phenotypes. These genes could be essential for further exploration of the disease mechanisms for better 
understanding of the underlying molecular interplay.

In summary, we showed KiMONo is a versatile method to derive fully integrated and holistic multi-level net-
works capturing the data-supported interplay between omics levels. Comprehensive benchmarks demonstrated 
that KiMONo is more sensitive to noise than to the reduction of samples. Further, application to two human 
disease settings showed that key nodes of the inferred multi-omics disease networks also play key roles in disease 
pathophysiologies. Ultimately, the holistic networks inferred using KiMONo may serve as tools to easily uncover 
key regulatory features, no matter the disease setting or complexity of the data.

Figure 5.   (A) MDD network Performance on all gene models n = 9943 inferred by KiMONo after filtering 
for − 0.02 < β< 0.02 coefficient and R2 > 0.1 . (B) Composition of retained features deriving from omic levels 
of first-methylation and SNPs, as well as and second-order methylation, SNPs, gene expression and biological 
clinical features; comparison of (C) number of eQTL genes and (D) eQTMs gene derived from KiMONo and 
matrixEQTL.
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Methods
The cancer genome atlas data and prior.  As a real world example, we applied KiMONo to 12 differ-
ent datasets of varying complexity. The first 11 datasets were obtained via the PanCancer data from The Cancer 
Genome Atlas (TCGA​) data portal41. This is one of the most comprehensive multi-omic data sources. This collec-
tion contains multi-omic data sets of 4926 samples describing 11 different cancer types—acute myeloid leukemia 
(191 samples), bladder urothelial carcinoma (135 samples), breast invasive carcinoma (871 samples), colon adeno-
carcinoma (421 samples), glioblastoma multiforme (580 samples), head & neck squamous cell carcinoma (309 
samples), kidney clear cell carcinoma (496 samples), lung adenocarcinoma, lung squamous cell carcinoma (344 
samples), ovarian serous cystadenocarcinoma (563 samples), rectum adenocarcinoma (164 samples) and uterine 
corpus endometrioid carcinoma (495 samples). The portal provides open access to highly preprocessed ‘level 3′ 
data of five omic characterizations, Proteome (~ 130 proteins), Transcriptome (~ 16,115 transcripts), Copy Number 

Figure 6.   (A) Performance of n = 20 genes with the highest betweenness and (B) its composition of retained 
features deriving from omic levels for each gene. Gene expression with possible influence by (C) SNP and (D) 
methylation site found with KiMONo; the dotted line represents a correlation of 1.

Table 1.   Top 10 genes of most important nodes within Major Depressive Disorder (MDD) data. Ranking was 
derived via the nodes betweenness of centrality.

Gene symbol Location MDD BP References

1 FHL1 Four and a half LIM domains 1 chrX:136,146,702-136,211,359 No

2 NCK2 NCK adaptor protein 2 chr2:105,744,912-105,894,274 No

3 MTOR Mechanistic target of Rapamycin kinase chr1:11,106,531-11,262,557 Yes 32,33

4 CEP170 Centrosomal protein 170 chr1:243,124,428-243,255,406 No

5 PRKCZ Protein kinase C zeta chr1:2,050,411-2,185,395 No Yes 34,35

6 EIF3M Eukaryotic translation initiation factor 3 subunit 
M chr11:32,583,767-32,606,2 Yes 36,37

7 EIF6 Eukaryotic translation initiation factor 6 chr20:35,278,906-35,284,985 No

8 VPS35 Vacuolar protein sorting-associated protein 35 chr16:46,656,132-46,689,518 Yes 38

9 SAP130 Spliceosome-associated protein 130 chr2:127,941,217-128,028,120 Maybe 39

10 KLHDC4 Kelch domain containing 4 chr16:87,696,485-87,765,997 Yes 39,40
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Variation (~ 84 CNV), Mutation (~ 39,675 positions), Methylation (~ 2043 sites) but also phenotype information 
in the form of Clinical data (4 variables). In our analysis we only included samples which were measured across 
all 5 omic levels, restricting the data sets to 2036 patients across 11 cancer types (see Fig. S1). Beside binarizeing 
the Clinical feature ‘sex’ we also standardized all input features.

In order to assemble the prior knowledge networks for the PanCancer cohort, we used both first- and sec-
ond-order links to connect the Transcriptome to all information levels. First-order links to the Proteome were 
generated via the bioMart annotation resource. First-order links to CNV and Methylation were generated via a 
genomic position-confined prior. Here we used Bioconductor’s R packages Homo.sapiens, GenomicRanges 42 and 
FDb.InfiniumMethylation.hg19 43 to link copy numbers and methylation sites within a 500 kb range to genes of 
interest. The Mutation data type was already projected to gene identifiers, hence there were no additional pre-
processing steps needed. Furthermore, we used experimentally validated associations from BioGrid44 to create 
links within the Transcriptome. Additionally, we added second-order links to increase the coverage of individual 
gene models. This was done by connecting genes to first-order linked features of gene neighbours. In a final step, 
we also connected all features within the Transcriptome to the Clinical features.

Major depressive disorder data and prior.  In addition to the TCGA data we also used a Major Depres-
sive Disorder (MDD) data set as a second real data example. This cohort consisted of 289 caucasian individuals, 
160 healthy controls and 129 patients diagnosed with major depressive disorder. Recruitment strategies and 
further characterization of the MDD cohort have been described previously in26,45. Three levels of omic informa-
tion, comprising the transcriptome, methylome and genotype, as well as biological information, were measured 
for 107 out of 289 individuals, consisting of 33 females and 74 males, distributed over 64 controls and 43 patients. 
Details on the omic preprocessing can be found in26,45.

For generating the prior knowledge first-order links, we annotated gene expression probes and gene symbols 
using the Re-Annotator pipeline46 based on GRCh37 (hg19) RefSeq. Additionally, we annotated methylome, the 
CpG site probe, and the transcriptomes gene symbol to sequence positions by performing a re-alignment using 
Bismark47. Furthermore, we connected the genes to SNPs and methylation sites within a distance of 10 kbp and 
500 kbp, respectively. Second-order links were created between genes via a ‘guilt-by-association’ approach using 
the BioGrid database. Furthermore, we connected genes with their associated genes methylation site generating, 
introducing second-order linked methylation sites.

Performance test.  To assess goodness of fit on every gene-level model, we use the r-squared metric meas-
uring how much of the variance of the expression can be explained by the model. We calculate for each model 
the explained sum of squares ESS , defined as 

∑(
ŷ − y

)2 , and total sum of squares TSS =
∑(

y − y
)2 . Here, y 

represents the true (measured) and ŷ  the predicted gene expression. The amount of variance explained is then 
given by R2 = ESS/TSS.

In order to approximate each information level contribution to the R2 , we dissect the R2 and calculate a R2
l  

for each l omics/clinical level. This is done by calculating the R2
l  via ŷ ∼ Xmβm and ynew = y − Xnβn . Here m 

defines all features within level l  and n denotes all other features, For example in the PanCancer data set, to dis-
sect the goodness of fit for contribution of the proteomics level, we corrected the gene expression measurements 
by the contribution of the other omics layers but not the proteomics level. Then, ynew and ŷ  were further used 
to estimate a R2

l  which approximates the sole performance of l. Finally, R2
l = 0 ⇐⇒

∑
m = 0 , which sets the 

performance of levels without selected features of a given level l to 0.

Contribution of second order prior links.  Overall, we compared two different prior strategies. On the 
one hand, a prior solely based on the genomic location and annotation databases. Here we annotated protein, 
methylation, mutation and clinical information to the transcriptome level. On the other hand we generated a 
prior also including second-order links using the BioGrid44 resource. We not only interconnected the transcrip-
tome but also all other layers.We used the PanCancer breast invasive carcinoma network models as test sce-
narios, investigating the impact of the different prior strategies. To evaluate how well each strategy performed, 
we compared the performance of the models, which explained at least 10% of the variance within the data and 
the coverage of the inferred networks.

Robustness to noise and low sample sizes.  To benchmark the performance on small data, we simulate 
data sets with shrinking sample size. Therefore we used the TCGA breast invasive carcinoma data and randomly 
reduced the amount of samples. We repeated each simulation 20 times (except for the case where 100% of the 
data was available). The final test cases included 10%, 30%, 50%, 70% and 100% of the data. Note, for each gener-
ated dataset, KiMONo excludes features with σ = 0.

We followed a similar strategy for benchmarking the robustness of the method with respect to noise. Here 
we simulated test sets by decreasing the signal to noise ratio. All simulated sets were generated using a subset of 
the PanCancer breast invasive carcinoma data. Random noise was generated using Gaussian noise, N

(
0, σ 2

)
 with 

increasing σ 2 . Here we simulated noise with σ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and summed noise and original measure-
ments to simulate an increase in noise. For both, we used the above described R2 and R2

l  metric to evaluate the 
models’ performances, excluding all models R2 < 0.1.

Quantitative trait analyses.  In the MDD dataset, we implicitly computed multivariate expression quan-
titative trait loci in the KiMONo approach, as we impose a genomic proximity prior to link variants and gene 
expression measurements. Thus, we compared the quantitative trait analysis results of KiMONo to the state-of-
the-art pairwise analysis tool, matrixEQTL. Here we used both methods to detect expression quantitative trait 
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loci (eQTL) and expression quantitative trait methylation sites (eQTM) genes within the MDD data set. For 
the matrixEQTL calculation, we focused on cis-eQTL and cis-eQTM windows of 10 kbp and 500 kbp distance, 
respectively. Further, we corrected the expressed genes for the covariates, BMI, age, sex and status of the diagno-
sis, with significance threshold set to DR < 0.05 . In the case of KiMONo, eQTL and eQTM genes are identified 
via the inferred cross-layer interactions between genes and methylation sites and SNP’s. Here, robustly inferred 
results were defined as models with R2 ≥ 0.1 and the respective cross-layer association of ≥ 0.2.

Network analysis.  We treated all links between the multiple levels after KiMONo inference as undirected 
edges, generalizing the multi-layer directed network to a simple single-layer association network representation. 
To show that the generalized network structure is, like most biological networks, scale-free, we tested goodness 
of fit to evaluate if the node degree follows a gamma distribution48. Furthermore, we used the betweenness cen-
trality to estimate the importance of nodes within the single-layer network. The betweenness centrality is defined 
as (v) =

∑ σst (v)
σst

 . Here σst(v) defines the shortest path between node s to node t, passing node v.

Data access.  The PanCancer data is publicly available via the TCGA​ data portal (downloaded May, 2017). A 
list of the sampleIDs and cancer types which contained all 5 omic levels can be found in Data S1. The transcrip-
tomic and epigenomic information layer of the MDD cohort can be found at GEO GSE64930 and GSE74414, 
while the SNP data cannot be provided due to patient privacy regulations.

Software and prio data sources.  KiMONo is freely available as an R package on https://​github.​com/​
cellm​apslab/​KiMONo. We used the Bioconductor’s R packages Homo.sapiens, GenomicRanges and FDb.Infini-
umMethylation.hg19 to generate the annotation between various omic types within TCGA’s PanCancer data. 
Furthermore we used the Re-Annotator pipeline46 based on GRCh37 (hg19) RefSeq and Bismark47 to annotate 
the MDD data. For state-of-the art eQTL analysis we applied the open source tool matrixEQTL (version 2.3). 
Pathway annotations were performed via the open source tool pathwaX13.

Ethics approval and consent to participate.  No ethics approval was required for the study.
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