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For a given research question, there are usually a large variety
of possible analysis strategies acceptable according to the
scientific standards of the field, and there are concerns that this
multiplicity of analysis strategies plays an important role in the
non-replicability of research findings. Here, we define a general
framework on common sources of uncertainty arising in
computational analyses that lead to this multiplicity, and apply
this framework within an overview of approaches proposed
across disciplines to address the issue. Armed with this
framework, and a set of recommendations derived therefrom,
researchers will be able to recognize strategies applicable to
their field and use them to generate findings more likely to be
replicated in future studies, ultimately improving the credibility
of the scientific process.
1. Introduction
In recent years, the scientific community has been rocked by the
recognition that research findings often do not replicate on
independent data, leading to what has been referred to as a
replication crisis [1], reproducibility crisis [2] or statistical crisis
in science [3].
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In particular, a series of attempts to reproduce the results of published research findings in different
disciplines found that these replication efforts produced much weaker evidence than the original study
[4–7]. It has been estimated that in preclinical research alone, approximately $28 billion dollars are spent
every year on research findings that are not replicable [8]. The crisis has consequences far beyond an
insular world of scientists. Experts with strongly disagreeing viewpoints and publicized results that
are subsequently contradicted are highly detrimental to the trust the general public and decision
makers have in scientific results. This distrust endangers one of the key functions of science—
providing robust research findings that can be built upon to help tackle important challenges to
society [9]. The recent intense public debate surrounding key ‘global issues’ identified and targeted by
the United Nations [10]—such as, for example, climate change and migration—and the ambivalent
public perception of scientific contributions to these issues illustrates the importance of the scientific
community retaining credibility.

While there have been a number of widely publicized examples of fraud and scientific misconduct
[11,12], many researchers agree that this is not the major problem in this crisis [3,13]. Instead, the
problems seem to be more subtle and partly due to the multiplicity of possible analysis strategies [14,15].

For a given research question of interest, there is usually great flexibility in the choice of analysis
strategy, as many possible strategies are acceptable according to the scientific standards of the field
[16,17]. The resulting multiplicity of possible analysis strategies is nicely illustrated by two recent
experiments performed by Silberzahn et al. [18] and Botvinik-Nezer et al. [19]: Silberzahn et al. [18]
recruited 29 teams of researchers with strong statistical background and asked them to answer the
same research question (Are football referees more likely to give red cards to players with dark skin
than to players with light skin?) with the same dataset. Similarly, Botvinik-Nezer et al. [19] invited 70
independent teams to test nine hypotheses on a single neuroimaging dataset. In both experiments, the
teams obtained highly varied results, as they approached the data with a wide array of analytical
techniques. There is evidence that the combination of this multiplicity with selective reporting can
systematically lead to an increase in false-positive results, inflated effect sizes and overoptimistic
measures of predictive performance [15,20–23]. Ignoring the multiplicity of analysis strategies can
therefore lead to an overconfidence in the precision of results and to research findings that do not
replicate on independent data.

While the social and biomedical sciences have been at the heart of the recent replication crisis in science,
themultiplicity of analysis strategies has also contributed to credibility crises in other disciplines, e.g.—very
prominently—in climatology. In 2009, e-mails and documents of leading climate scientists at the University
of East Anglia became publicly available. Taken out of context, parts of these e-mails suggested that
researchers felt it was ‘a travesty’ they could not ‘account for the lack of warming’, and included an
allusion to ‘Mike’s Nature trick’ to ‘hide the decline’ [24]. This incident, which received broad media
attention, became known as ‘climategate’ and led to an erosion of belief in climate change [25,26] by
creating the impression that climatologists are exploiting the multiplicity of possible analysis strategies to
obtain overly alarmist results.

In response to the current crisis in science, a myriad of solutions to improve the replicability of
empirical findings have been developed in different disciplines. There are for instance a number of
recently proposed approaches which assess the robustness of research findings to alternative analytical
pathways by reporting the results of a large number of analysis strategies: the ‘vibration of effects’
approach in epidemiology [27], ‘specification curve analysis’ [28] and ‘multiverse analysis’ in
psychology [29], a ‘measure of robustness to misspecification’ in economics [30] or ‘multimodel
analysis’ [31] and ‘computational robustness analysis’ [32] in sociology. In other disciplines, including
climatology, ecology and risk analysis, there is a long-standing tradition of addressing the robustness
to alternative analysis strategies through sensitivity analyses, multimodel ensembles [33] and Bayesian
model averaging [34,35]. While the development of approaches addressing the issue of the
multiplicity of possible analysis strategies remains important, we currently risk ‘reinventing the wheel’
in each discipline. In order to avoid the proliferation of approaches that address the same problems
with similar ideas, we consider it advisable to benefit from lessons learned in other disciplines by
means of a multidisciplinary perspective. In this work, we define a framework on common sources of
uncertainty arising in computational analyses across a broad range of disciplines, covering both the
statistical analysis of empirical data and the prediction of complex systems of interest through
mechanistic physically-based models. The aim of this framework is to provide a common language to
efficiently translate ideas and approaches across disciplines. We illustrate how it can help researchers
benefit from experiences gained in other fields by giving an overview of solutions and ideas that have
been proposed to improve the replicability and credibility of research findings.
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2. The multiplicity of analysis strategies: examples from epidemiology
and hydroclimatology

In a large number of disciplines, an important part of a given research project is the generation of numerical
results describing the association between p input variables (denoted by X1, X2, . . . , Xp in the following)
and an outcome variable Y through a mathematical function f(). f() is typically referred to as the model,
while the input variables X1, X2,…, Xp are called independent, exogenous or explanatory variables, or
predictors, features, attributes or covariates, depending on context and discipline. The outcome variable
Y is also known as the dependent, endogeneous or response variable, or the output, label, criterion or
predictand. In the following, we refer to this type of research, which relies to some extent on data, as
empirical research, in contrast to research that is of a purely theoretical nature.

To illustrate the multitude of analyst decisions necessary in empirical research, we consider two examples
from different disciplines. The first example is the analysis of data from an epidemiological study on the link
between meat consumption and the risk of colorectal cancer to answer a research question in public health
which has attracted considerable attention in recent years. The second example, from hydroclimatology,
concerns the prediction of water mass stored in seasonal snowpack and its release as meltwater into the
river runoff [36,37], which is essential in the prediction of future flood occurrence and water availability for
irrigation and hydropower generation. Figure 1 illustrates how the analysis decisions in empirical research,
applied to these two examples, lead to a multiplicity of analysis strategies.

Both in observational epidemiology and hydroclimatology, the first step is to collect data on the
phenomenon of interest. In our example from epidemiology, these data come from n individuals who
are assumed to form a representative sample from a specified population of interest. In our example
from hydroclimatology, the system to be investigated is a valley of a certain size in which the winter
snowpack is transformed into spring snowmelt-induced streamflow. The data, which are indexed by
space and time, consist of two parts. The first part is historical data for which observations at one or
more meteorological stations exist for the input variables which include e.g. time-series data of
measured air temperature and precipitation covering the previous 20 years. The outcome is the gauge
streamflow at the outlet of the valley. The second part consists of values of the model input variables
which reflect future changes in temperature and precipitation resulting from different greenhouse gas
emission scenarios: with these model input variables in hand, and a developed model, one can
predict the future evolution of the seasonal snowpack and hence, the resulting streamflow.

For both examples, before beginning analysis, the data must be preprocessed, a procedure involving
numerous subjective choices. The flexibility in data preprocessing partly arises because the research
hypotheses are generally not precise enough that they fully specify the input and the outcome
variables [15,38,39]. Indeed, while measuring meat consumption and determining incidence of colon
cancer may naively appear to be straightforward, the analyst has considerable flexibility in the
definition of these two variables. For the same research question, one could consider meat
consumption of all kinds, focus on red meat or processed meat, or distinguish between beef, pork,
lamb and chicken [40]. Similarly, concerning the outcome, it is possible to concentrate on colon cancer,
on rectal cancer or to include all types of colorectal cancer and even precancerous lesions like
colorectal adenoma. In our example from hydroclimatology, we are faced with similar choices. For
instance, in the absence of measurements of the input variables for all locations in the region of
interest, the recordings from a single meteorological station have to be extrapolated. Furthermore, the
possible values of temperature and precipitation reflecting changes in greenhouse gas emission
scenarios are themselves outputs of mechanistic models. There are a large number of strategies to
obtain both spatial extrapolations and these possible future values.

Following data preprocessing, we next decide on a model to describe our phenomenon of interest. In
epidemiology, the aim is to control for all variables which might confound the association between meat
consumption and colorectal cancer. These variables may for instance include body mass index, smoking,
physical activity, socio-economic status and the consumption of alcohol, fruit and vegetables [41,42].
However, this is not an exhaustive list and there is no clear guidance on which variables should be
considered mandatory in the model and which will lead to an unnecessarily complex description of the
phenomenon of interest. Similarly, a model describing how snow accumulates, is stored and melts can be
based on a variety of alternative model assumptions, potentially leading to ‘1701 snow models’ [36]:
examples include modelling the snow microstructure and evolution over time in physical detail, or a
more simplified description of these processes in a snowpack representation with a single layer.
Additionally, there are a number of model parameters to be specified in order to predict the seasonal
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Figure 1. The multiplicity of analysis strategies arising from data preprocessing, model and method choices to obtain an estimate of
the parameter of interest θ and values of the outcome variable Y for two research questions in epidemiology and hydroclimatology,
respectively.
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snowpack evolution, parameters such as the surface albedo and roughness length, and the initial density of
the snow [37].

Once the model structure and its constituent variables are specified, there remain further decisions
concerning the method to use to obtain the main result of interest. In our example from epidemiology,
the result of interest is an estimate of a parameter θ describing the increase in colorectal cancer risk
associated with meat consumption. Common estimation techniques for this model parameter include
maximum-likelihood estimation, Bayesian inference, least-squares minimization and the method of
moments. In our hydroclimatology example, the result of interest is the outcome Y, i.e. the water
equivalent in the seasonal snowpack and its melt. A first method choice concerns the discretization of
the system to be investigated in space and time, i.e. the temporal and spatial resolution of the model
set-up. Further method choices arise due to the terabytes of simulation outputs typically produced.
These simulation outputs consist of a myriad of state variables describing for instance snow depth, snow
surface temperature and snow density. To be able to interpret these outputs, they have to be aggregated,
analysed and illustrated; however, different transformations and spatial and temporal aggregation
techniques may either mask or accentuate oscillations and trends which may be present in these results.

Through the illustration of two examples from different fields, we see that for a research question of
interest, researchers across disciplines are faced with a multitude of choices when presented with data in
a situation where there is no clear guidance on analysis strategy from a theoretical or a substantive point
of view. Although some of the choices made could be considered ‘wrong’, many would also be
justifiable. As all justifiable paths are likely to lead to different results, we see there is a source of
variability attributable to the choice of analysis strategy. In the presentation of scientific results,
however, this variability is not commonly accounted for or discussed.
3. Sources of uncertainty arising in empirical research
As the aim of research is to expand existing knowledge by operating on the edge of what is known, it is
hardly surprising that there are numerous sources of uncertainty arising in scientific discovery. In this
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section, we will introduce a general, albeit inevitably incomplete, framework on common sources
of uncertainty arising in computational analyses and show how the combination of these sources of
uncertainty with selective reporting can lead to unreplicable research findings.

The idea behind the use of a mathematical model f () is, in general, either explanation or prediction
[43,44]. The modelling of the association between meat consumption and colorectal cancer in
epidemiology can be seen as an instance of explanatory modelling. The main aims of explanatory
modelling are to test a causal hypothesis [20], i.e. to assess to what extent a theoretical variable Y is
influenced by the theoretical variables X1, . . . , Xp. As these theoretical variables are not directly
observable, they have to be operationalized by defining measurable outcome Y and input variables
X1, X2,…, Xp [44]. Once these observable variables are measured on a sample of observations,
statistical methods can be used to estimate the value of an unknown parameter of interest θ which
quantifies the association between Y and X1, . . . , Xp. The reporting of this parameter estimate is
typically combined with a p-value and a confidence interval, which are used to test the research
hypothesis concerning the association between Y and X1, . . . , Xp.

Our example from hydroclimatology, the modelling of the future evolution of the seasonal snowpack,
on the other hand, can be seen as an instance of what can be referred to as mechanistic predictive
modelling. The idea of mechanistic predictive modelling is to predict the values of an outcome Y at
new or untried values of the input variables. In contrast to explanatory modelling, the goal of
mechanistic predictive modelling is hence to apply a model to predict the behaviour of a system
which is so complex that it would be difficult to predict and analyse otherwise [45]. Mechanistic
predictive models (also referred to as physically- or process-based models [46,47]) typically heavily
rely on subject matter knowledge and the (physical) principles underlying the behaviour of the
studied phenomenon. Hence, model predictions are derived by relying on a number of physical laws
or mechanistic assumptions, and the values of a certain number of model parameters u ¼ (u1, . . . , up),
which are assumed to be known.

With the increasing availability of large datasets and improvements in computational efficiency, a
second type of data-driven predictive modelling coming from an algorithmic modelling culture—often
from artificial intelligence and more specifically from machine learning—is growing in popularity in
many disciplines [48,49]. Here, the function f () is estimated by an algorithm rather than by fitting a
pre-specified model class to the data [43]. These algorithms try to dispense with (potentially
restrictive) assumptions on the association between X1, X2,…, Xp and Y [50] and do not typically rely
on theoretical reasoning: they can thus be referred to as ‘agnostic’ predictive models.

Despite the main focus of explanatory modelling being the estimation of an unknown parameter and
the main focus of predictive modelling being prediction, many analyses are concerned with both aims.
For example, some parameter values in mechanistic predictive modelling can be determined by fitting
the model to historical data in which both the input variables and the outcome are measured, a
process referred to as calibration [45]. Conversely, in explanatory modelling, where the main focus is
on explanation, the estimated parameter values can be used to predict new observations and to
evaluate the adequacy of the chosen probability model [20].

While certain types of models are more popular in some disciplines than in others, there is no unique
assignment of disciplines to modelling strategies. Mechanistic predictive models, which are popular in
disciplines ranging from the geosciences and risk analysis to decision analytic modelling in health
economics, can also be used in the prediction of infectious disease dynamics in epidemiology [51].
Explanatory modelling, on the other hand, which is popular in disciplines such as biology,
psychology and economics [44,52], can for example also be applied in climatology when assessing the
extent to which an extreme event can be attributed to anthropogenic climate change [53].

As illustrated in our examples from epidemiology and hydroclimatology, the multiplicity of possible
analysis strategies can arise from data preprocessing, parameter, model and method choices. Data
preprocessing uncertainty is caused by all decisions needing to be made in the selection of the data to
analyse and in the definition, the cleaning and the transformation of the input and the outcome
variables. Additionally, there is usually model uncertainty, as the best or the ‘true’ model structure to
describe the phenomenon of interest is unknown. Parameter uncertainty, which is mainly present in
predictive modelling, arises through model parameter values having to be specified when the analyst is
armed with neither precise theoretical knowledge nor direct measurements [45]. In mechanistic
predictive modelling, estimates of these parameter values can be achieved by observation of the system,
through calibration or incomplete expert knowledge [45,46], but substantial uncertainty regarding the
true values typically remains. Similarly, the performance of many algorithms for agnostic modelling is
sensitive to hyperparameters [17], which have to be specified before running these algorithms. Examples
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include the minimal size of splitting nodes in random forests, the kernel and the cost parameter in support
vector machines, and the number of neighbours in k-nearest neighbours [54]. As there is typically no clear
guidance on which values to choose for these hyperparameters, their specification is sometimes considered
to be more of an art than a science. Finally, researchers encounter method uncertainty, as specifying a model
and parameter values is not sufficient to run the actual computations. Before the parameters in a statistical
model can be estimated or predictions from a mechanistic or agnostic model derived, researchers need to
choose, or even to develop, a specific implementation and computational method. Again, there is a
multitude of options without clear guidance or a definitive choice on the method that will provide the
most suitable answer to their research question [55].

The uncertainties detailed above—data preprocessing uncertainty, parameter uncertainty, model
uncertainty and method uncertainty—are epistemic: they arise due to a lack of knowledge. As
illustrated in figure 2, these epistemic sources of uncertainty can be contrasted with two additional
sources of uncertainty, namely measurement uncertainty and sampling uncertainty.

Measurement uncertainty is ubiquitous in empirical research as it is generally impossible to determine the
input variables X1, . . . , Xp and the outcome Y with absolute precision and accuracy. Depending on the
discipline, information on these variables may be acquired through questionnaires, measurement devices
or experimental protocols, which are all, to some extent, prone to imprecision. Finally, sampling
uncertainty, which is especially prominent in explanatory modelling, results from the variability
introduced when analysing a dataset assumed to be a random sample from a larger population of
interest. This variability is often expressed through an error term e. Table 1 provides a short description
of all six sources of uncertainty.

The interplay between these random sources of uncertainty and the multiplicity of analysis strategies
arising from the four epistemic sources of uncertainty can lead to unreplicable research findings when
combined with selective reporting, as illustrated in figure 3. If there is no restriction on the chosen
analysis strategy, a researcher may try to compare the results of many strategies—each a path
resulting from the given preprocessing, model, parameter and method choices—and then select the
final analysis strategy based on the ‘nicest’ result: a smaller p-value, an effect in the ‘desired’ direction,
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Table 1. Description of the six sources of uncertainty arising in empirical research.

description

measurement uncertainty randomness arising from the operationalization or the measurement of the input and the

output variables

data preprocessing

uncertainty

uncertain decisions in the selection of the data to analyse and in the definition, the

cleaning and the transformation of the input and the output variables

parameter uncertainty uncertain decisions in the specification of input parameters

model uncertainty uncertain decisions in the specification of the model structure to describe the phenomenon

of interest

method uncertainty uncertain decisions in the choice of a method and method settings

sampling uncertainty randomness arising from the selection of a sample from a larger population of interest
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or predictions in accordance with the expectations of the researcher, for example. This ‘selective
reporting’ can lead to a substantial overestimation of the result of interest in empirical research, an
effect heightened by small samples and imprecise measurements [1,56].

In explanatory modelling, confidence intervals and hypothesis tests typically only account for
sampling uncertainty, while ignoring measurement and epistemic uncertainty. This limited focus
thereby leads to apparently precise results which are not robust to variations in the choice of analysis
strategy; they therefore have a high probability of being contradicted in a replication study.
4. Lessons learned across disciplines
The solution to the replication crisis which has probably received the most attention in the scientific
community and beyond is the abandonment of statistical significance within the scientific literature
and its replacement with Bayes factors, confidence intervals or other inferential methods [57–61].
While there may be inferential paradigms that are easier to interpret and less prone to overconfidence



solutions

reduce
uncertainty

report
uncertainty  

integrate

accept
uncertainty 

benchmarking 
studies

increase
sample size  

integrate
existing knowledge  

more
precise
theories

standardize
experimental conditions 

multimodel
analysis  

crowdsourcing

vibration
of effects  

sensitivity
analysis 

specification
curve

multimodel
ensembles   

multiverse
analysis  

intercomparison
studies

replication
studies 

move to
p < 0.005  

distinguish
explanatory and

confirmatory analyses    

meta-
analysis 

acknowledge
constraints on

generality

improve
measurements 

Bayesian
model

averaging

multimodel
inference

structural
equation modelling  

probabilistic
sensitivity analysis  

simulation
extrapolation  

regression
calibration 

measurement
uncertainty 

model
uncertainty 

method
uncertainty parameter

uncertainty super
learner  

Bayesian
hierarchical
modelling

computational
robustness analysis 

multiple
lines of evidence 

Bayesian deep
learning 

Figure 4. Overview of solutions to the replication crisis which address the multiplicity of analysis strategies by reducing, reporting,
integrating or accepting uncertainty. For an interactive version of this graphic with assorted references see https://shiny.psy.lmu.de/
multiplicity/index.html.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201925
8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 M

ay
 2

02
1 
than null hypothesis statistical testing [62,63], the simple solution of jettisoning statistical significance can
seem somewhat shortsighted in addressing the issues. Taking confidence intervals as an example, figure
3 illustrates how they can be just as prone as p-values to selective reporting. More generally, no inferential
paradigm in itself is immune to overconfidence and the result-dependent selection of an analysis strategy
from among a multiplicity of possible strategies [64,65].

Another prominent solution which has been proposed in response to the replication crisis in science is to
increase transparency by promoting reproducible research practices [66,67]. While the publication of research
data, code and materials can help build trust in science [68] and make the entire research process more
efficient, it only indirectly addresses the multiplicity of possible analysis strategies. Transparency alone is
again not enough to prevent selective reporting or eliminate overconfidence in results [69].

We therefore argue that we have to go beyond open science practices and the focus on statistical
significance as the main culprit in the non-replicability of research findings by explicitly addressing the
sources of uncertainty introduced in the previous section. A wealth of ideas and approaches to reduce,
report, integrate or accept one or several of the sources of uncertainty have been discussed in the literature,
leading to a myriad of solutions in different disciplines. In figure 4, we give an overview of these solutions.
4.1. Reduce uncertainty
There are a variety of strategies to reduce one or several sources of uncertainty. In explanatory modelling, a
reduction in sampling andmeasurement uncertainty can for instance be achieved by increasing the sample
size of studies [70–72], by improving the quality of measurements [1] or by standardizing experimental
conditions [73–75]. To reduce model and data preprocessing uncertainty, Steegen et al. [29] and Schaller
[76] call for more conceptual rigour and precise theories to reduce the number of possible analysis
strategies. Method uncertainty, on the other hand, can be reduced through adoption of the results of
‘benchmarking’ studies, which aim to identify a best method for a given research question of interest in a
given setting [55,77]. The integration of existing knowledge into explanatory modelling can also reduce
uncertainty and help to obtain more precise parameter estimates. An example is the specification of
informative prior distributions [78] in Bayesian inference, where the prior evidence can range from
functional information in genome-wide association studies [79] to historical data in clinical trials [80].
4.2. Report uncertainty
In many disciplines, there is a long-standing tradition of reporting the results of a large number of possible
analysis strategies, or the variability of these results, to assess their robustness to alternative assumptions

https://shiny.psy.lmu.de/multiplicity/index.html
https://shiny.psy.lmu.de/multiplicity/index.html
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and model specifications. Common examples of this strategy include extreme bounds analysis in
econometrics [81], multimodel ensembles [33] in hydrology and climatology and sensitivity analyses,
which are used across many disciplines. More recent approaches to report uncertainty include the
‘vibration of effects’ approach [27], ‘specification curve analysis’ [28], ‘multiverse analysis’ [29]
‘multimodel analysis’ [31] and ‘computational robustness analysis’ [32], as discussed previously.
Silberzahn et al. [18] go a step further and propose the reporting of the results of different teams of
researchers analysing the same research question on the same dataset. In their ‘crowdsourcing approach’,
it is thereby possible to simultaneously report the variability in results due to data preprocessing, model
and method uncertainty, as different teams of researchers are likely to follow different paths in
formulating their analysis strategies. Considered from a multidisciplinary perspective, this approach is
similar to intercomparison studies, which have a long tradition in mechanistic predictive modelling in
hydroclimatology [82]. In cases where the data are made publicly available, methods to report
uncertainty can be applied by readers and reviewers to assess to what extent the originally reported
results are robust to alternative analysis choices.

4.3. Integrate uncertainty
There are a number of approaches which can generate broader and more realistic uncertainty intervals by
integrating measurement, model, parameter or method uncertainty when deriving parameter estimates
in explanatory modelling and predictions in mechanistic and agnostic predictive modelling. In
explanatory modelling, it is possible to account for measurement uncertainty through, for example,
structural equation models [83], Bayesian hierarchical approaches [84], simulation extrapolation or
regression calibration [85]. With regard to model uncertainty, Bayesian model averaging [34,35] and
multimodel inference [86] go beyond the simple reporting of the results of all possible models by
weighting the parameter estimates or predictions of all candidate models to produce a single
summary measure and a measure of its uncertainty. In mechanistic predictive modelling, Bayesian
melding [87] and probabilistic sensitivity analysis [88] can be used to integrate parameter uncertainty.
Similarly, in agnostic modelling, it has been suggested to account for parameter uncertainty through
Bayesian deep learning, where the uncertainty in hyperparameters is described by a prior distribution
[89], and to integrate method uncertainty by combining the weighted predictions of a great number of
candidate methods through a so-called ‘Super learner’ [90].

4.4. Accept uncertainty
Many authors have argued that classical statistical methods used in explanatory modelling suggest a
disproportionate level of certainty [59,91] and that the replication crisis in science is in fact a ‘crisis of
overconfidence in statistical results’ [92]. In this sense, a solution to the current crisis is to
acknowledge the inherent uncertainty in scientific findings. This can be achieved by recognizing that
statistical inference within exploratory analyses should be interpreted with great caution and that
scientific generalizations need to be based on cumulative knowledge rather than on a single study
[92]. Strictly confirmatory analyses can be realized either through the pre-registration of analysis plans
[93,94] and registered reports [95], where the analysis strategy is specified in detail before observing
the data; or through blind analyses, where researchers select an analysis strategy while being blinded
to the outcome of interest [96]. Alternatively, it is common in agnostic modelling to perform
exploratory and confirmatory analysis on the same dataset through split analysis plans: one part of
the data is used to determine the best analysis strategy, the other to fit the final algorithm and
determine its predictive performance [52].

A focus on cumulative evidence can be found in calls for replications as post-publication quality
control [15,97,98] and in the proposal of Benjamin et al. [99] to redefine statistical significance by
considering a p-value of < 0.05 merely suggestive (i.e. having to be confirmed in subsequent studies)
and only p-values < 0.005 significant. In psychology, Simons et al. [100] emphasize the need for
cumulative evidence and encourage authors to specify a ‘constraints on generality’ statement, which
clearly identifies and justifies the target population of reported research findings. Cumulative
knowledge can also be achieved by providing multiple lines of convergent evidence, also referred to
as triangulation [101,102]. In biology, these lines of evidence can stem from several independent
experiments, experiments performed for instance with isolated molecules, in cultured cell lines, or
using animal models. Lastly, in psychology and medicine, we see the usefulness of meta-analyses, the
summarization and aggregation of the results of similar studies.



Table 2. Six steps researchers can take to make their research findings more replicable and credible.

steps

before the analysis (1) be aware of the multiplicity of possible analysis strategies

(2) if possible, reduce sources of uncertainty in the study design

during the analysis (3) if possible, integrate remaining sources of uncertainty into the analysis

(4) report the results of alternative analysis strategies

after the analysis (5) acknowledge the inherent uncertainty in your findings

(6) publish all research code, data and material
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5. Steps to take to make one’s own research more replicable

Based on the lessons learned across disciplines discussed in the previous section, what are the steps an
individual researcher can take to improve the replicability and credibility or his or her own research? In
table 2, we derive six simple steps researchers can take to make their own research more replicable and
credible. A first step, which should not be underestimated, is simply to be aware of the multiplicity of
possible analysis strategies and the potential for selective reporting. As pointed out by Nuzzo [103],
even the most honest researcher is a master of self-deception and it is easy to jump to conclusions
when finding patterns in randomness.

Once aware of the potential for increased uncertainty, one should evaluate and implement
possibilities to reduce both the randomness in the data and the flexibility in analysis plan. In our
example from epidemiology, we could for instance have reduced some of the sources of uncertainty
by determining an adequate sample size through a power calculation, by integrating results from
previous studies on meat consumption and colorectal cancer to specify an informative prior
distribution and by clearly defining the research hypothesis and the input and outcome variables
before collecting the data. In our hydroclimatology study, measurement and model uncertainty could
have been reduced by, for example, including a very large number of confirmed measurements of the
input variables, e.g. through the integration of remote sensing data, and by using only models that
had been extensively validated elsewhere.

When deriving the result of interest, one should attempt to integrate all sources of uncertainty which
could not be reduced in the previous step. Since to this point, there is no all-encompassing method
accounting for model, measurement, method, data preprocessing and parameter uncertainty
simultaneously, an alternative is to systematically report the robustness to alternative analysis
strategies through one of the approaches presented in the last section. The next step—again, not to be
underestimated—is to acknowledge the inherent uncertainty in the presented research findings and
thereby avoid misleading readers into overinterpretation of the relevance of the results.

Finally, to make one’s research findings more credible and improve the efficiency of the research
process as a whole, one should publish all research code, data and material, both to allow others to
try alternative analysis strategies and for reuse of the data in future studies.
6. Conclusion
Despite growing evidence for its pervasive impact on the validity of research findings, current research
practices largely fail to address the multiplicity of analysis strategies. Currently, it is a highly profitable
strategy to analyse small datasets and to exploit the multiplicity of possible analysis strategies arising
from data preprocessing, model, parameter, and method uncertainty to obtain significant and
surprising results. These results have a high probability of getting published, but a low probability of
being replicated in subsequent studies. In the short term this lack of replication may simply be
embarrassing, but in the long run this strategy has devastating consequences for the scientific
community. While imprecise but convergent results are often readily accepted by the public, multiple
apparently precise but contradictory results have a negative impact on the credibility of research
findings [104,105]: these contradictory results can easily be discredited as conflicting evidence to
create the impression that scientific knowledge is unreliable and that there is no scientific consensus
on important research topics [106]. According to van der Linden et al. [107], this line of argumentation
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has been used for years to delay or prevent regulatory actions concerning climate change, maybe
contributing to the low belief in anthropogenic climate change among the American public [108].

If, on the other hand, we address the multiplicity of possible analysis strategies arising through data
preprocessing, model, parameter and method uncertainty through reporting, integrating and
acknowledgement, we will obtain broad but more realistic measures of our uncertainty, and research
findings that are robust to the choice of the analysis strategy.

It is important to raise awareness of the fact that the multiplicity of possible analysis strategies is an issue
affecting many different disciplines in similar ways; this awareness will enable us to join forces in our efforts
to increase the transparency, replicability and credibility of research findings. Integrating multidisciplinary
experience and insights is not only essential in the further development of appropriate solutions and in
the elaboration of guidelines to help researchers make their research more replicable, but also in
generating enough momentum to bring about change. As long as the reward structure in academia
favours significant, overly clear-cut, and hypothesis-consistent results, researchers might be tempted to
exploit the multiplicity of possible analysis strategies instead of addressing this issue in a transparent way
to make research findings more replicable. This creates a social dilemma structure where societal and
scientific interests are at odds with the individual career interest of researchers.

The multiplicity of possible analysis strategies is likely to become an even bigger challenge with the
advent of increasing amounts of data that are not originally recorded for research purposes in many
disciplines, for instance, in the form of routine care data in medicine, of administrative data in the
social sciences and of remote sensing data in ecology [20,109–111]. These data are not the result of
well-designed experiments where we have accurate knowledge on the data generation process, and a
small set of research hypotheses of interest. Instead, the data may be imperfect, heterogeneous, noisy
and high-dimensional [49,112]. When analysing these data, sampling uncertainty, which has attracted
a disproportionate amount of attention in the scientific community to this point, will be comparably
small, but measurement, data preprocessing, model and method uncertainty will be much larger than
when dealing with more traditional data [113].

Given the importance and the urgency of the challenges we are facing today, we need scientific results that
are veracious—both in their precision and in their (preliminary) imprecision. Novel and exciting but
unreplicable results impede scientific progress and its societal translation. By addressing the multiplicity of
possible analysis strategies through the framework and approaches suggested here, we can make the
researchprocessmore efficient and improve the replicability, andultimately the credibility, of research findings.
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