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Transcriptional networks in at-risk individuals identify 
signatures of type 1 diabetes progression
Louis-Pascal Xhonneux1,2, Oliver Knight1,2, Åke Lernmark3, Ezio Bonifacio4, William A. Hagopian5, 
Marian J. Rewers6, Jin-Xiong She7, Jorma Toppari8,9, Hemang Parikh10, Kenneth G.C. Smith1,2, 
Anette-G. Ziegler11, Beena Akolkar12, Jeffrey P. Krischer10, Eoin F. McKinney1,2,13*

Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic 
islet  cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from 
weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The num-
ber, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and 
robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of 
Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and envi-
ronmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 
400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted 
age-associated gene expression changes in healthy infancy and age-independent changes tracking with progres-
sion to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We 
combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and 
validated the association of a natural killer cell signature with progression and the model’s predictive performance 
on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention 
study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expres-
sion, informing the immunopathology of disease progression and facilitating prediction of its course.

INTRODUCTION
An autoimmune pathogenesis for type 1 diabetes (T1D) is indicated 
by strong genetic association of Human leukocyte antigen (HLA) and 
other immune variants (1) along with progressive development of 
pancreatic islet  cell autoantibodies (IAbs) (2), although metabolic, 
microbial, and dietary factors also contribute (3). Genetic risk scores 
can identify those at highest risk of developing disease (4) in whom 
peak onset occurs in early childhood, around 1 to 2 years of age (5). 
Studying early events associated with T1D progression is challenging 
given the need to identify at-risk individuals and to sample before 
evidence of autoreactivity begins. Previous studies have typically been 
cross-sectional investigations of small numbers of individuals after 
the onset of islet autoimmunity or T1D. Expansions of islet antigen-
reactive T cells have been documented in the blood of both T1D 
cases and healthy controls (6), whereas age-dependent changes in 

immune phenotype at diagnosis (7) have underlined the complexity 
of studying disease in the context of a developing immune system. 
Within the pancreas, longitudinal single-cell RNA sequencing analysis 
has indicated complex, dynamic changes in infiltrating immune cell 
populations (8). Although comparable study of human tissue is not 
possible, pseudotime mass cytometry of pancreatic tissue from 
T1D-diagnosed donors has illustrated an influx of cytotoxic and 
T helper cells associated with reductions in  cell mass (9).

Longitudinal metabolomic (10) and microbiomic (11, 12) analy-
ses before onset of autoimmunity or T1D diagnosis have indicated 
marked age-dependent effects but not a clean association with auto-
immunity or disease progression. A viral trigger for pancreatic 
autoimmunity has long been proposed (13) and has been supported 
by both early transcriptional signatures of type 1 interferon (IFN1) 
response (14) and prolonged enteroviral shedding (15) before islet 
autoimmunity. Enteroviruses can directly infect pancreatic  cells 
and have been linked to a natural killer (NK) cell insulitis (16). Early 
changes in blood gene expression (17, 18) before islet autoimmunity 
are likely to be driven by changes in relative proportions of constituent 
blood cells (19), although their interpretation is confounded by a 
lack of data describing how such changes develop in healthy infancy.

T1D onset occurs in the dynamic context of a maturing immune 
system: Changes observed in children developing autoimmunity 
must be carefully related to healthy developmental changes to focus 
our attention on factors that initiate and propagate autoreactive re-
sponses. Recently, systems immunology studies of immune devel-
opment during infancy have indicated early, stereotyped changes in 
blood cell and protein composition (20) and dynamic changes in 
the gut microbiome related to breastfeeding patterns, islet auto-
immunity (11, 12), and onset of childhood inflammatory disease (21). 
Such high-throughput analyses create the potential for identifica-
tion of previously unsuspected pathways associated with disease 
initiation and progression to improve understanding of disease biology 
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and aid the building of predictive models to suggest targeted 
therapies (22).

The Environmental Determinants of Diabetes in the Young 
(TEDDY) study aims to identify gene-environment interactions 
causing T1D in high-risk infants participating in serial prospective 
sample collection and monitoring every 3 to 6 months from birth to 
age 15 years (23). By combining genetic risk stratification and pro-
spective follow-up, it has been possible to collect samples and data 
from infants before development of both islet autoimmunity and 
T1D onset, facilitating systematic analysis of early and longitudinal 
changes associated with the later development of disease. This can 
facilitate both an improved understanding of the pathogenetic 
mechanism of human islet autoimmunity and early prediction of its 
subsequent course. Although the presence of IAbs indicates the de-
velopment of islet autoimmunity and hence long-term risk of T1D 
development (2), validated predictive markers have not been able to 
report serial, individual risk over a near-term horizon such as is 
necessary to inform clinical decision-making (24).

Here, we undertook transcriptional network analysis of gene ex-
pression microarray data using a nested case:control cohort (25) from 
the TEDDY study to identify early longitudinal changes in whole 
blood gene expression in healthy infancy or tracking with progres-
sion to both islet autoimmunity and T1D. We also built a predictive 
model incorporating multivariate longitudinal features including 
gene expression and islet autoantibodies to estimate individual risk 
of T1D progression.

RESULTS
A dynamic landscape of whole-blood gene expression 
during infancy
We analyzed data from nested, matched case control cohorts (25) 
comprising 2013 whole blood transcriptomes sampled longitudinally 
from 401 individuals, divided into those developing islet auto-
immunity or T1D (Fig. 1, A and B, and figs. S1 to S2). We applied 
transcriptional network analysis (26) to identify groups of co-
expressed genes (modules) based solely on patterns of transcription 
in the data (Fig. 1, C and D, and fig. S1B). We first constructed 
independent transcriptional networks for both cases and controls, 
observing closely matched coexpression patterns in each with no 
evidence of disease-specific modules (fig. S1B): Genes coexpressed 
in cases were found to be similarly coexpressed in the control co-
hort and vice versa (Fig. 1, C and D). As genes in a module are by 
definition coexpressed, they can be summarized by a single profile 
known as an eigengene (27). As coexpression patterns were pre-
served in disease and control groups, we constructed a coexpression 
network based on all samples considered together (fig. S1B) and 
applied linear mixed modeling (lmm) to whole blood modular 
eigengenes from this combined network (table S1). We found that a 
substantial proportion of modules (23 of 85, 27%) demonstrated 
significant temporal changes during infancy [false discovery rate 
(FDR) < 5%; Fig. 1E]. Patterns of gene coexpression are highly con-
served (28), and modular signatures can be interpreted by screening 
their composite genes for enrichment of well-defined gene expres-
sion signatures in external relational databanks and public reposito-
ries (fig. S1) (29,  30). In this way, the biological meaning of the 
identified patterns of gene coexpression can be interpreted, with the 
caveat that repositories typically include samples and data from adults 
rather than infants. We compared each age-associated module 

(Fig. 1E) to the largest compendium of cell- and tissue-specific tran-
scriptomic signatures [ARCHS4 repository (30)], identifying fre-
quent modular enrichment for cell type–specific transcripts (17 of 
23, 74%), upstream kinases (22 of 23, 96%), and transcription factors 
(22 of 23, 96%) (fig. S3) including progressive reductions in stem 
cell–specific transcripts (Fig. 1F) along with B cell– and neutrophil-
specific transcripts and associated transcription factors (fig. S3).

We also undertook “digital cytometry” using a deconvolution 
approach comparing whole blood transcriptional profiles to immune 
cell–specific transcripts to estimate cell type frequencies (Fig. 1G) 
(31). This confirmed the association of the majority of modular sig-
natures identified with the frequency of circulating immune cell 
phenotypes (Fig. 1G). Individual modular signatures correlated 
with multiple deconvoluted cell frequencies as expected, as cell per-
centages often vary together during an immune response.

Multiple modular signatures mapped to the same cell type de-
spite showing distinct longitudinal trajectories, suggesting that they 
cannot be explained by changes in the proportion of circulating cell 
types in blood alone and likely reflect more subtle phenotypic dif-
ferences than can currently be mapped by deconvolution or enrich-
ment strategies. Together, these data show marked gene expression 
changes during healthy infancy, highlighting the dynamic context 
in which autoimmune diseases such as T1D occur.

Distinct disease-specific transcriptional signatures 
in T1D subgroups
We next asked whether longitudinal changes in modular patterns of 
gene expression tracked with progression toward T1D onset. As 
children get older, they inevitably approach the time of disease on-
set. Consequently, it is necessary to ensure that the longitudinal 
changes seen in cases are not simply age-associated changes expected 
to occur in healthy children. To overcome this, we identified 
modular eigengenes correlating with time to T1D in cases and, as 
the study design included age-matched healthy samples, compared 
these to the longitudinal changes seen in infants who did not prog-
ress to disease (Fig. 1, H and I). Although 35 modular signatures 
significantly correlated with T1D progression (FDR  <  5%), none 
were specific to T1D cases and all showed stronger association with 
healthy aging in matched controls (Fig. 1I), highlighting the impor-
tance of placing longitudinal changes into the dynamic immune 
context of early infancy.

T1D is thought to be a heterogeneous condition; however, 
evidence supporting the existence of disease subgroups has proven 
elusive (32, 33). Those developing autoantibodies to insulin (IAAs) 
show earlier and more rapid progression to both additional IAbs and 
to T1D than those initially developing IAbs to the other major pan-
creatic autoantigen, GAD (glutamic acid decarboxylase) (2). How-
ever, it remains unclear whether this observation reflects a distinct 
immunopathology, or simply autoimmunity occurring at younger 
age. We next stratified the T1D cohort by target of first appearing 
autoantibody, comparing modular gene expression changes in IAAs-
first and GADA (GAD antibody)–first subgroups with their matched 
controls as before. Whereas disease-specific longitudinal changes 
were not apparent in T1D on the whole (Fig. 1I), distinct gene ex-
pression signatures showed clear age-independent association with 
time to T1D onset in IAbs subgroups (Fig. 2, A and B). Among IAAs 
cases, one dominant signature (IAAsig) showed an early increase in 
expression with a later secondary increase before diagnosis (Fig. 2C), 
a pattern not seen in most matched controls. The nested study 

 at H
elm

holtz Z
entrum

 M
unchen - Z

entralbibliothek on M
ay 27, 2021

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

http://stm.sciencemag.org/


Xhonneux et al., Sci. Transl. Med. 13, eabd5666 (2021)     31 March 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  R E S O U R C E

3 of 15

T1D No T1D

Color bar: T1D modules

T1D modules

D

F

Time to T1D Age in matched controls Ratio T1D:control

C

Modules

−Log10FDR

A

T1DAb1 Ab3Ab2

3–6 months
TEDDY sampling

15
-y
ea
r T

1D
 ri
sk

Birth

100

0

No Ab

0.4 13

62
79

Time

I

20000

M
od
ul
e 
ex
pr
es
si
on

Age-associated modules

Age (days)

G
CD34+ stem cell

0 2000Age (days) Cells/tissues
−log10FDR

M
od
ul
e 
pr
es
er
va
tio
n

Z
su
m
m
ar
y 

0

50

100

150 Strong preservation 
      threshold

E

lmm

Cases

Matched controls

H
T1D

B

       T1D 
case:control

Islet autoimmunity 
      case:control

TEDDY nested study

2013 samples 
400 individuals

1698 samples
342 individuals

794 samples
124 individuals

E
ig
en
ge
ne

ex
pr
es
si
on

Time to T1D /age

  FDR ratio
T1D:control

Modules

D
ec
on
. p
op
ul
at
io
ns
 %

−l
og

10
FD

R
C
or
re
la
tio
n >20

0

Fig. 1. Dynamic changes in the infant blood transcriptome. (A and B) Schematic illustration of the (A) TEDDY cohort (B) sampling from birth, through IAbs seroconver-
sion to T1D diagnosis illustrating population-level risFk of T1D. IAb+ samples may appear in both case:control cohorts hence subgroups do not add up to the total. Ab, 
antibody. (C) tSNE plot illustrating the dissimilarity matrix of gene coexpression networks in T1D (left) and matched controls (right). Each dot represents a distinct gene 
(n = 15,000). Genes in both plots are colored by modular assignment in the T1D coexpression network. (D) Scatterplot showing strength of T1D module preservation 
(y axis, Zsummary score) in matched control data (red dashed line = strong preservation threshold, Zsummary = 10). (E) Line and scatterplots showing lmm effects [red, ±95% 
confidence interval (CI)] and gene expression eigenvalues (black dots) for 23 modular eigengenes showing significant (FDR < 5%) age association in infancy. Colors are 
matched to (C to E). (F) Example module enrichment: Line and scatterplot (left) showing lmm effects (red line, ±95% CI) for the “yellow” module alongside radar plot (right) 
showing module enrichment (radial axis, −log10FDR) for cell type–specific transcripts. (G) Clustered heatmap illustrating significance (−log10FDR) of correlation (Pearson) 
of deconvolved cell subset proportions (y axis) against modular eigengene values (x axis). (H) Schematic line and scatterplot illustrating the use of lmm to compare mod-
ular gene expression signatures in matched cases and controls. (I) Radar plots showing all modules (arranged around plot circumference) associated with time to T1D 
onset (FDR < 5%, left), association of the same modules with sampling age in matched controls (center) and the ratio of observed significance in each (FDRT1D:FDRcontrol, 
right). For radar plots, radial distance from the center = −log10FDR, red line = threshold FDR < 5%.
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design allowed for IAbs seroconversion to occur in the T1D control 
group (25), provided that T1D progression did not occur. Closer 
analysis of the control group demonstrated that IAAsig expression 
showed a similar early rise in seroconverting controls, falling off 
with advancing age where they were maintained in those progress-
ing to T1D (IAbposT1Dneg versus IAbnegT1Dneg; Fig. 2C, inset). By 
contrast, seronegative controls showed no comparable rise in early 

IAAsig expression (Fig. 2C, inset). In GADA cases, a group of four 
closely correlated signatures termed together as GADAsig (Fig. 2B) 
showed an age-independent decrease toward T1D onset, a pattern 
absent from matched controls and occurring closer to diagnosis in 
contrast to the earlier increases in the IAAsig (Fig. 2, C and D). We 
compared mixed models to ensure that observed gene expression 
changes were independent of additional clinical covariates including 
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Fig. 2. Age-independent changes in gene 
expression accompany T1D progression 
in subgroups defined by first IAbs speci-
ficity. (A and B) Radar plots showing age-
corrected associations (lmm FDRT1D:FDRcontrol) 
of all module eigengenes (shown around 
plot circumference) with time to T1D onset 
in IAAs-first (A) and GADA-first (B) cases. Dis-
ease specificity indicated by a T1D:control 
significance ratio > 1 (−log10FDR) = red line. 
(C and D) Line plots showing individual and 
summary (inset) effects of natural cubic 
spline–fitted lmm (±95% CI) fitted to IAAsig 
(C) or GADAsig (D) eigenvalues in cases (left) 
and matched controls (right). (E and F) Radar 
plot (E) and barplot (F) showing IAAs module 
enrichment for cell type–specific transcripts 
compared to ARCHS4 (E) and DICE (F) rela-
tional databanks. (G) Volcano plot (left) and 
line plots (right) showing all (left) and selected 
(right) correlations (Pearson) of IAAsig eigen-
genes against deconvoluted cell proportions. 
Significance threshold (FDR < 5%) = red dashed 
line. (H to J) Radar plot (H) and barplot (I) 
showing IAAs module enrichment for cell 
type–specific transcripts compared to ARCHS4 
(H) and DICE (I) relational databanks. (J) Vol-
cano plot (left) and line plots (right) show-
ing all (left) and selected (right) correlations 
(Pearson) of GADAsig eigengenes against 
deconvoluted cell proportions. Significance 
threshold (FDR < 5%) = red dashed line. For 
barplots (F and I), TPM, transcripts per million 
reads; expression (means ± SEM) of IAAsig 
(F) and GADAsig (I) per cell type is shown. 
(K) Radar plot showing enrichment (−log10FDR) 
of IAAsig genes against 352 druggable tar-
gets linked to 20,883 genes from the IDG 
repository. Drug targets showing any over-
lap with IAAsig genes are included around 
the radar plot circumference. (L) Barplot 
(means ± SEM, n = 3 to 12 per group) showing 
IAAsig eigengene expression and (M) rep-
resentative histograms showing GPR171 
surface protein expression in circulating 
immune cell subsets (GSE22886). (N) Repre-
sentative contour plot (top) and scatterplot 
(bottom) showing GPR171 surface protein 
expression (y axis, log10 MFI) and Granzyme 
B (GZMB) protein expression (x axis) after 
coculture of purified primary human NK cells 
with K562 target cells along with vehicle 
(left) or a titrated dose range of specific 
GPR171 inhibitor (Inh; right). *P < 0.05, MFI,  
median fluorescence index; Treg, regulatory T cell.
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sex, ethnicity, and HLA risk group (table S2) alongside mode of 
birth delivery and patterns of maternal breastfeeding (fig. S4, C to F). 
This analysis indicated an independent and significant association 
of both gene expression signatures and sex, but not the other vari-
ables, to the models (table S3). We therefore took these covariates 
forward into predictive model building as described below.

Biological interpretation of T1D-specific signatures
We next performed enrichment analysis of both IAAsig and 
GADAsig (table S4) against relational databases [ARCHS4 (30) and 
Database of Immune Cell eQTLs (DICE) (34)] providing the largest 
and most granular coverage of immune cell–specific gene expression 
and also correlated each module’s eigengene against cell subset fre-
quencies estimated through deconvolution analysis (31). IAAsig 
genes showed strong, specific enrichment for NK cell–specific tran-
scripts (Fig. 2, E and F), transcription factors, and kinases (fig. S5) 
and correlated with deconvoluted percentage of NK cells, and to a 
lesser but still significant extent with CD4+ memory T cells (Fig. 2G). 
Genes comprising GADA-specific modules were enriched for tran-
scripts shared by both blood and brain tissue but not clearly with a 
single cell type (Fig. 2, H and I, and fig. S5). However, comparison 
with deconvolved cell type frequencies indicated strongest associa-
tions with reduced percentage of CD4+ memory T cells and NK 
cells, with a relative increase in an activated NK phenotype (Fig. 2J). 
This observation suggests that the early stages of T1D pathogenesis 
are associated with different immune cell trajectories that involve 
similar immune cell types, namely, NK and CD4+ memory T cells, 
depending on the pattern of initial IAbs seroconversion.

To investigate potential means of therapeutically modulating 
IAAsigs and GADAsigs, we compared each to an integrated reposi-
tory of drug response data [the Harmonizome (35, 36)] that links 
functional associations between genes and proteins based on collated 
genomic data including physical associations, knockout or knock-
down phenotypes, and response to drug treatment. We screened 
IAAsig genes against all 352 “druggable” targets (30) linked to 
20,883 genes and identified a single candidate G protein–coupled 
receptor (GPR171; Fig.  2K) as a potential controller of IAAsig 
genes. That is, GPR171 was not itself part of the modular signature 
but instead predicted to be functionally associated with genes com-
prising it. We confirmed NK cell expression of IAAsig and GPR171 
at both mRNA (Fig.  2L) and protein abundance (Fig.  2M) and 
demonstrated that a specific inhibitor of its signaling (Inh) could 
attenuate both GPR171 expression and NK cytotoxicity in an in vi-
tro killing assay (Fig.  2N). Together, these data demonstrate that 
distinct cell-specific gene expression changes characterize progres-
sion to disease onset in subgroups of patients with T1D defined by 
their sequence of IAbs seroconversion.

Transcriptional signatures associated with  
islet autoimmunity
Next, we asked whether specific changes in gene expression occur 
around the onset of islet autoimmunity (IAbs seroconversion), rather 
than tracking with progression to disease onset (Fig. 3A). Among 
50 modular signatures showing significant association with islet 
autoimmunity onset (Fig. 3, B and C), a dominant signature is asso-
ciated with seroconversion in both subgroups. This signature (IAsig) 
was common to both GADA and IAAs subgroups and, although it 
showed significant dynamic changes in matched healthy controls, 
there were more marked and sustained reductions in infants 

progressing to IAbs seroconversion (Fig. 3, D and E). Interrogation 
of this islet autoimmunity signature (table S5) revealed strong en-
richment for B cell–specific transcripts, kinases, and transcription 
factors (Fig. 3F). Six additional signatures (Fig. 3, B and C) showed 
a weaker but still significant age-independent association with islet 
autoimmunity onset, again in both GADA and IAAs subgroups. 
The second most strongly associated signature was the same 
NK-enriched signature that associated with T1D onset in IAAs, 
which here increased toward islet autoimmunity onset but showed 
no change over time in the control group (Fig. 3, G and H). Togeth-
er, these data indicate that longitudinal changes in NK- and B 
cell–associated gene expression track with progression toward the 
onset of islet autoimmunity, with NK-associated changes also track-
ing with progression to disease in the IAAs subgroup.

Validation of T1D-specific longitudinal gene 
expression changes
We next sought to validate our findings in an independent cohort of 
IAbs and T1D cases. The Type 1 Diabetes Prediction and Prevention 
(DIPP) cohort (37) is a prospective, population study of incident 
islet autoimmunity and T1D with a comparable nested case:control 
design, although with sampling commencing in slightly older chil-
dren (18). We undertook an independent network transcriptomic 
analysis of 356 DIPP samples from 58 individuals, again comparing 
dynamic changes in modular gene expression to both islet autoim-
munity (Fig. 3I) and T1D onset (Fig. 3J). In this smaller cohort, an 
NK cell–enriched signature (directly comparable to that identified 
in TEDDY; fig. S6 and table S6) was the only gene expression pattern 
that showed a significant association with both IAbs seroconversion 
and T1D progression, which did not similarly change in matched 
controls (Fig. 3, I and J). A B cell signature comparable to the IAsig 
seen in TEDDY (Fig. 3, G and H) was significantly associated with 
both clinical end points but, in the DIPP cohort, showed a compa-
rable association with sampling age. Similar to what was observed 
in the TEDDY cohort, the NK signature increased toward T1D onset 
with a later decline in matched controls who did not go on to devel-
op disease (Fig. 3, I and J).

Together, these data confirm an independent association of an 
NK cell–enriched transcriptional signature with both IAbs serocon-
version and rate of progression to T1D, validating the finding in the 
larger TEDDY discovery cohort.

Gene expression in early infancy associates with rate 
of disease progression
We next sought to investigate whether whole blood gene expression 
changes in early infancy, before demonstrable evidence of islet au-
toimmunity, were related to later risk of progression toward T1D. 
For this “snapshot” of early risk, we identified the earliest samples 
available within the case:control cohorts, comprising 288 samples 
from 288 individuals, all taken before seroconversion and with 
>85% taken within the first 12 months of life (Fig. 4, A and B). In 
this cross-sectional analysis, we constructed a gene coexpression 
network and looked for evidence of association with both disease 
risk (outcome T1D+ versus T1D−) and rate of subsequent progres-
sion toward T1D. As longitudinal changes were not being consid-
ered, we used regression analysis to adjust for variable sampling age 
and sex. At this early time point, four modules were associated with 
the rate of subsequent progression toward T1D (Fig. 4, C and D). 
Both enrichment and deconvolution correlation analyses of these 
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Fig. 3. Age-independent changes 
in longitudinal gene expression 
accompany islet autoimmunity. 
(A) Schematic line and scatterplot 
illustrating the use of a lmm to com-
pare modular gene expression sig-
natures in matched islet autoimmunity 
cases and healthy controls. (B and C) 
Radar plots showing age-independent 
associations (FDRIA:FDRcontrol) of 
all gene expression modules signifi-
cantly associated (FDR < 5%) with 
time to islet autoimmunity onset in 
either IAAs-first (B) or GADA-first (C) 
cases. Disease specificity indicated by 
a T1D:control significance ratio > 1 
(−log10FDR) = red line. (D) Line plots 
showing individual and summary (inset) 
effects of a natural cubic spline–fitted 
lmm (±95% CI) fitted to IAsig eigen-
values in IAAs-first individuals (left, 
n = 82 versus time to islet autoimmu-
nity) and matched controls (right, 
n = 63 versus age). (E) Line plots show-
ing individual and summary (inset) 
effects of a natural cubic spline–fitted 
lmm (±95% CI) fitted to IAsig eigen-
values in GADA-first cases (left, n = 54 
versus time to islet autoimmunity) 
and matched controls (right, n = 49 
versus age). (F) Radar plots showing 
IAsig module enrichment for cell 
type–specific transcripts, kinase tar-
gets, and transcription factor targets 
from the ARCHS4 dataset and bar-
plot (right) showing cell specific ex-
pression of IAsig genes in the DICE 
dataset. TPM with expression (means ± 
SEM) per cell type is shown. (G) Line 
plots showing individual and sum-
mary (inset) effects of natural cubic 
spline–fitted lmm (±95% CI) fitted to 
the NK cell–enriched module eigen-
values (from Fig. 2B) in IAAs first cases 
(left, n = 82 versus time to islet auto-
immunity) and matched controls (right, 
n = 63 versus age). (H) Line plots show-
ing individual and summary (inset) 
effects of natural cubic spline–fitted 
lmm (±95% CI) fitted to the NK cell-
enriched module eigenvalues (from 
Fig. 2B) in GADA first cases (left, n = 54 
versus time to islet autoimmunity) 
and matched controls (right, n = 49 
versus age). (I and J) Line plots show-
ing individual and summary (inset) 
effects of natural cubic spline–fitted 
lmm (±95% CI) fitted to the DIPP NK 
module in IApos cases [(I, left) n = 26 
versus time to islet autoimmunity] and matched IAneg controls [(I, right) n = 32 versus sampling age] and in T1D cases [(J, left) n = 24 versus time to T1D] and matched 
controls [(J), right, n = 34 versus sampling age]. For radar plots (F and J), radial distance = –log10FDR with threshold FDR (5%) in red.
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modules indicated specific excess of B 
lymphoblast and monocyte expressed 
transcripts respectively with the latter 
also enriched for tumor necrosis factor 
(TNF) and complement pathway sig-
naling (Fig. 4E, table S7, and fig. S6, H 
and I). These data indicate that early high 
expression of a TNF-enriched mono-
cyte signature and early low expression 
of a B lymphoblast signature were asso-
ciated with slower progression to T1D 
onset (Fig.  4,  C  and  D). No modular 
signatures were significantly different 
between T1D and healthy control groups, 
although the TNF-enriched monocyte 
signature that associated with protec-
tion against T1D was markedly higher 
in infants who later seroconverted without 
developing T1D (IA+T1D−; Fig. 4F). We 
also observed that the same pattern of 
monocyte/TNF-associated transcripts 
showed significantly lower expression in 
children within a window of 12 months 
before diagnosis of T1D (Fig.  4G), a 
finding that was also validated in the 
DIPP cohort (Fig. 4H).

Previous analyses have identified a 
IFN1 response signature expressed in 
at-risk children before antibody sero-
conversion and associated with previ-
ous respiratory infections (14). Such a 
signature was clearly visible in the TEDDY 
cohort (Fig. 4I), although it was not as-
sociated with risk of T1D (Fig.  4C) or 
rate of progression to T1D (Fig. 4J). 
However, the IFN response signature 
conformed to a pattern of transient “spikes” 
of expression, likely after infectious trig-
gers, most frequently observed in the 
12 months before disease onset (Fig. 4, J and K) 
and to an extent that exceeded those seen 
in age-matched control samples (Fig. 4L).

Prediction of individual T1D risk 
using longitudinal data
Recently, statistical learning methods have 
improved our ability to integrate base-
line covariates, longitudinal data, and 
clinical end points to estimate instanta-
neous event hazards (38). Current T1D 
prediction methods stratify disease risk 
by number of IAbs present, indicating 
cohort level risk over a horizon of many 
years, making it difficult to incorporate 
this information into treatment path-
ways or to enable recruitment into clinical 
trials of targeted therapy (Fig. 1B). Indi-
vidual risk prediction over a short time 
horizon is necessary to guide clinical 
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Fig. 4. Preseroconversion gene expression changes associate with rate of T1D progression. (A) Schematic illus-
tration and (B) density plot showing age distribution of earliest preseroconversion samples taken in the TEDDY tran-
scriptomic study (TEDDY preAb). “Outcome” indicates later progression rather than state at time of sampling. 
(C) Volcano plot showing correlation of all network modules (x axis, r) against adjusted significance (−log10FDR, 
y axis). (D) Scatterplot illustrating inverse correlation of B lymphoblast (orange) and monocyte (black) modular signa-
tures and their association with rate of T1D progression. (E) Radar plots illustrating enrichment of the orange and 
blue (top) and black and pink (bottom) modules against the human cell atlas (left) and hallmark signature sets (right). 
Radial axis = −log10FDR, red line = significance threshold FDR (5%). (F) Scatterplot illustrating expression (means ± 
SEM) of black, pink, orange, and blue, and IFN response signatures by outcome group in the TEDDY preAb cohort, 
* = Mann Whitney P < 0.05. Outcome group reflects final clinical status rather than status at the time of sampling. 
(G) Scatterplot showing age-corrected eigengene expression of the “black” monocyte/TNF-enriched signature in 
pre-T1D samples from TEDDY (n = 54 samples within 12 months before diagnosis). (H) Scatterplot showing age-
corrected eigengene expression of the black monocyte/TNF-enriched signature in pre-T1D samples from the DIPP 
cohort (n = 18 samples within 3 months before diagnosis) and their matched controls (n = 18). (I) Radar plot showing 
modular enrichment for interferon (IFN) response transcripts. (J) Scatterplot and line plot showing lmm summary of 
longitudinal type1 IFN module expression (red line, ± 95% CI shaded) in pre-T1D children (right, n = 62) and matched 
controls (left, n = 62). (K) Scatter and line plot illustrating spikes of type 1 IFN response module and (L) age-matched 
peak expression in pre-T1D (red, n = 57) and age-matched control samples (black, n = 57) in the 12-month preceding 
T1D onset.
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decisions and preventive therapy trials (24). We therefore aimed to 
build a predictive model that could estimate, with an indication of 
uncertainty, the near-term hazard of T1D for an individual, dynam-
ically updating that prediction as additional data become available. 
We used a multivariate Bayesian joint model (39) to combine base-
line stratification (using a Cox proportional hazards model) with 
longitudinal variables such as IAbs type, status, timing, and gene ex-
pression, returning an event hazard with associated confidence bounds. 
As our earlier analysis of comparative mixed models had demon-
strated independent association of both gene expression signatures 
and sex (table S3) with gene expression signatures depending on the 
sequence of serial IAbs seroconversion, we incorporated these co-
variates into a joint model (Fig. 5A). We chose to build and test the 
performance of three distinct models in each of two clinical scenarios. 
Predictive performance [area under the receiver operator character-
istic curve (AUC ROC) and prediction error (PE)] was estimated 
using 10-fold cross-validation on the discovery cohort (TEDDY; 
Fig. 5B) and on an independent validation dataset (DIPP). The three 
models each included baseline stratification by sex and (i) IAbs status 
over time (IAb+/−), (ii) maximal IAbs information (IAbs specificity [IAAs, 
GADA, IA-2A], timing of IAbs seroconversion, sequence of IAbs 
seroconversion specificity and associated interaction effects), or (iii) 
maximal IAbs information along with longitudinal gene expression 
data (the eigenvalues of the IAAs or GADA signatures). The two clinical 
scenarios tested were serial prediction over a fixed future horizon of 
12 months using all cumulative data available at each time point (mim-
icking a child being followed up over time; Fig. 5, C to F) and prediction 
at 1.5 years of age over a serially increasing future horizon (mimick-
ing prediction with early limited data; Fig. 5, C to F).

Using islet autoimmunity status alone—the scenario most com-
parable to current methods (24)—had modest predictive accuracy 
in both clinical scenarios (model i, Fig. 5C). The inclusion of maxi-
mal IAbs information (model ii) allowed for robust prediction in 
the first clinical scenario (serial prediction over a fixed horizon of 
12 months; Fig. 5D, left: AUC ROC > 0.9, PE < 10%) with only modest 
improvement by inclusion of longitudinal gene expression signa-
tures (model iii, Fig. 5E). Although the performance of serial IAbs in 
this scenario is an improvement in T1D prediction, it is also appar-
ent that making predictions close to diagnosis (in this scenario pre-
dicting 12 months ahead) is supported by using IAbs data. By contrast, 
and consistent with the importance of early gene expression measures, 
gene expression signatures supported model performance (model 
iii) more strongly in the second clinical scenario, where predictions 
were made early over a serially extending time horizon. This was 
particularly apparent with prediction over the first few years of life, 
when the majority of infant T1D cases occurred (Fig. 5, D and E). 
These data show that, although the presence of islet autoantibodies 
is associated with disease risk (40), incorporating information on 
serial changes in the type, number, and timing of seroconversion 
can facilitate T1D risk prediction at an individual level over a time 
horizon short enough to facilitate changes in clinical monitoring or 
therapeutic trials. Gene expression measures provided greatest support 
for prediction when measured early (up to 18 months) to predict 
T1D risk over a longer time horizon (up to 5 years in this dataset).

DISCUSSION
Together, our data describe dynamic changes in the infant blood 
transcriptome and show that patterns of islet antibody seroconversion 

define subgroups of T1D with both distinct rates of progression and 
distinct age-independent gene expression signatures associated with 
time to disease onset. Among healthy infants, we observed exten-
sive longitudinal changes in gene expression over the first 5 years of 
life, highlighting the dynamic immune context in which early islet 
autoimmunity develops. This observation reinforces the impor-
tance of taking such changes into account when seeking to differen-
tiate disease-specific changes from those reflecting “healthy” 
immune development.

On taking age-associated changes into account, we observed 
specific, longitudinal changes in gene expression tracking with pro-
gression toward both islet autoimmunity and T1D onset. Distinct 
changes were associated with T1D progression in subgroups de-
fined by the target of initial seroconversion. The two dominant 
serospecificities at onset of islet autoimmunity (IAAs and GADA) 
have been proposed as distinct disease “endotypes,” with the former 
developing earlier and showing faster progression toward T1D on-
set (41). Consistent with a distinct pathogenetic mechanism under-
pinning this stratification, we observed that distinct transcriptional 
signatures tracked with progression to T1D onset in subgroups 
defined by the specificity of the first appearing islet autoantibody 
(IAAs or GADA). Earlier changes tracking progression to onset of 
islet autoimmunity were similar in both groups, however. We iden-
tified an NK cell–based signature that increased in expression with 
progression toward both islet autoimmunity and T1D in IAAs-first 
individuals. The same signature was similarly seen to associate with 
time to islet autoimmunity but not T1D onset in GADA-first individ-
uals. Association of a very similar NK cell signature was validated in 
an independent analysis of longitudinal samples from the DIPP 
study. However, further work is required to understand the mecha-
nism underlying this association. NK cells have a complex relation-
ship to autoimmunity and may function as either effector cells 
contributing to tissue damage, or as regulators of immunopatholo-
gy (42). Differences in NK cell phenotype have been described after 
T1D diagnosis (43)—although accompanied by many other late dif-
ferences (44)—whereas changes in their number and phenotype have 
been variably linked to either aggressive insulitis (45) or protection 
from it (46) in animal models. Our data indicate a prominent and 
specific role for NK cells in the development and progression of 
autoimmunity and T1D in humans, beginning at the earliest stages 
and tracking longitudinally with rate of progression rather than 
simply differentiating those who already have disease from those 
who do not. Although it is difficult to further refine the source of 
the NK-specific transcriptional signature using whole blood data, it 
is unlikely that it simply reflects a relative expansion of peripheral 
NK cells, as evidenced by our identification of other NK cell–enriched 
modular signatures that did not associate with disease progression. 
Perhaps the most likely explanation for the observed NK associa-
tion with T1D progression is that a viral trigger results in altered 
NK cell phenotype that tracks with progressive insulitis. Persisting 
enteroviral infection has been associated with T1D progression (15) 
and enteroviruses are known to infect pancreatic  cells, inducing 
early NK infiltration and cytolysis in animal models (47, 48). An 
NK-predominant insulitis has also been observed in pancreas from 
diabetic organ donors with Coxsackie B4 enteroviral infection (16) 
and is consistent with an autoreactive effector role for NK in T1D 
pathogenesis. However, NK cells may also function to regulate 
T cell–mediated immunity during persistent viral infection (49). 
A limitation of the current study is that, while the association of an 
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Fig. 5. Validated prediction of T1D hazard in at-risk infants. (A) Schematic of multivariate Bayesian joint model data input (top), model building (middle), and model 
performance assessment (bottom). (B) Illustration of cross-validation method used on discovery TEDDY cohort. (C to F) Line and scatterplots showing predictive accuracy 
of models applied to each of two clinical scenarios (schematically illustrated above plots in red). Left: Serial prediction over future 12-month horizon using cumulative 
data. Right: Serial prediction over extended future horizon using fixed data. (C) Model i incorporating IAbs status (IAb+/−) only. (D) Model ii incorporating longitudinal IAbs 
type, status, timing, and interaction effects. (E) Model iii incorporating model ii plus IAAsig/GADAsig and interaction effects. Predictive accuracy (AUC ROC) determined 
through 10-fold cross-validation on the discovery TEDDY dataset as illustrated in (B). (F) Predictive accuracy (AUC ROC) of independent validation of model iii on the DIPP 
dataset. (G and H) Representative line and scatterplots illustrating serial prediction of individual T1D risk for a T1D case (G) and matched control (H) with predictions every 
6 months, made over a horizon of 1 year. Error bars represent means ± SEM. Arrows indicate timing of seroconversion events.
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NK transcriptional signature is validated and may be used for pre-
dicting progression, the mechanism linking NK cells to insulitis 
requires further investigation.

Despite these limitations, we also demonstrate that a disease-
relevant transcriptional signature can serve as the starting point 
for further mechanistic understanding and previously unidentified 
therapeutic approaches. By screening the NK-enriched T1D progression–
associated signature against collated genomic information from 
many sources, we predicted and confirmed in vitro that inhibition 
of a poorly characterized G protein–coupled receptor [GPR171, 
previously known for its role in controlling satiety signaling in the 
hypothalamus (50)] was capable of suppressing NK cytolytic pro-
tein expression.

We also undertook a systematic network analysis of age-independent 
blood transcription, before IAbs emergence with the large majority 
of samples taken during the first year of life. In these earliest sam-
ples, we observed reciprocal association of B lymphoblastic and 
TNF-enriched monocytic signatures that associated with the sub-
sequent rate of progression to T1D. Although these signatures were 
not different between those later developing T1D and matched 
controls, they were specifically increased in individuals who progressed 
later to islet autoimmunity without developing T1D (IAb+T1D−). 
Although it is tempting to speculate that this evidence supports a 
protective role for early inflammatory signals—such as proposed 
by proponents of the “hygiene hypothesis” (51)—studies in animal 
models have highlighted the complexity of altered TNF signaling 
with evidence for distinct roles at different disease stages (52, 53). 
However, the validated association of increased expression of this 
signature in T1D-protected individuals despite islet autoimmunity 
may help inform interventional study design (54).

Previous hypothesis-driven analyses of early gene expression 
changes identified an increase in IFN1 signaling in pre-T1D chil-
dren linked to history of recent infection (14). A comparable signa-
ture was apparent in the TEDDY cohort and showed transient 
elevation in spikes consistent with response to an infectious stimu-
lus (and quite different to the chronic, progressive increase seen in 
the NK signature). Greater IFN1-induced gene expression was ob-
served during the 12-month preceding T1D onset compared with 
age-matched controls but was not associated with the rate of pro-
gression to islet autoimmunity or T1D. This is consistent with a role 
for IFN1 signaling—and perhaps viral infections that provoke tran-
sient IFN1 elevations—in modifying disease progression. However, 
as with NK cells, evidence from animal models shows that IFN sig-
naling may play either a role in promoting T cell–mediated insulitis 
(55) or in protecting  cells from NK cell–mediated attack (48).

Last, we sought to incorporate the longitudinal measurement of 
immune traits—both gene expression and IAbs—into a predictive 
model that could provide an estimate of an individual’s T1D risk 
and the confidence of that estimate. Long-term risk of T1D (over 
the subsequent 10 to 15 years) can currently be informed by the 
extent of IAbs seropositivity. However, for a predictive model to affect 
on clinical decision-making—whether by altering the frequency of 
clinical review to monitor for severe complications such as diabetic 
ketoacidosis (56) or by facilitating early intervention studies (24)—
it is necessary to obtain a robust estimate of near-term risk of T1D 
onset. We therefore sought to build a predictive model that could 
estimate individual T1D risk in two specific scenarios: either by 
making an early prediction (at 18 months) over a longer horizon 
(5 years) or by using cumulative data to make serial predictions over 

the subsequent 12 months. To test the ability of both baseline and 
longitudinal measures to inform this prediction, we built a Bayesian 
joint model incorporating either Ab status alone, or with more ex-
tensive IAbs features (serospecificity, timing, and interaction of 
IAbs development) with or without gene expression signatures. We 
included stratification by sex (as this was the only other covariate 
demonstrating independent association with progression rate) 
but intentionally excluded HLA stratification (despite a demon-
strated association with progression (57)) to facilitate extrapola-
tion between global populations with distinct HLA distributions. 
This approach allowed direct comparison between both simple and 
more complex models, aiming to establish optimal prediction with 
the simplest approach requiring as few measurements as possible. 
With predictions made over a short horizon of 12 months, the mod-
el with extensive IAbs features outperformed standard prediction 
using IAbs status alone and gained little support from including 
gene expression data: This is consistent with observations that IAbs 
are often positive within 12 months of diagnosis (58) and that our 
model supported robust prediction of T1D progression in this sce-
nario. However, it is an onerous task to repeatedly sample children 
at such an early age to obtain longitudinal data on timing and se-
quence of seroconversion specificities. We therefore tested a second 
scenario using data only from the first 18 months and making pre-
dictions progressively further ahead. Predicting from this earlier 
time point—arguably a more feasible clinical scenario given the re-
duced sampling requirement—showed a benefit of gene expression 
signatures in addition to IAbs measures with robust performance 
on both cross-validation and independent validation cohort testing.

The current study identified extensive, longitudinal changes in 
the whole blood transcriptome occurring during both healthy in-
fancy and progression to T1D. This finding has been made possible 
through assiduous prospective collection of samples by the TEDDY 
consortium. We show here that these changes can be both inter-
preted and used to inform prediction of T1D risk from an early age. 
Extensive sampling at an early age is facilitated by the simplicity of 
whole blood collection. However, this method also limits the bio-
logical interpretation of modular signatures identified. The modu-
lar signatures identified here are dominated by cell-subset specific 
transcripts, with both module enrichment and deconvolution methods 
in broad agreement. Each method can identify the likely cellular 
source of a transcriptional signature but, when that signal is derived 
from a mixed cell population like peripheral blood, it is more diffi-
cult to pin down the cell-intrinsic pathways responsible for that 
change in gene expression. Improved methods for deconvolution 
may help to address this problem (59) but require robust validation 
against concurrently sampled cell-intrinsic transcriptomes. Tran-
scriptional profiling of sorted cell populations (60) or single-cell 
profiling (61) methods can similarly overcome this limitation, but 
they inevitably result in sampling of a much smaller cohorts. It is 
clear from our analyses that enrichment and deconvolution approaches 
can be complementary. As deconvoluted cell subset proportions 
may vary together, for example, increasing together during an in-
flammatory response, it is expected that a transcriptional signature 
may correlate with multiple cell subset proportions, making it hard-
er to define the source of that signal through deconvolution alone. 
Enrichment is not similarly encumbered by this problem, relying 
instead on coexpressed features within the module itself for inter-
pretation, although it is inevitably constrained by the availability of 
external signatures for enrichment analysis.
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We have demonstrated and validated an association of NK cell 
gene expression signature with T1D progression. It remains to be 
determined whether this change reflects a causal contribution to 
T1D related immunopathology, a host response to an infectious 
trigger, or both. An answer to this fundamental question will re-
quire further analyses and more detailed investigation of prospec-
tive data and samples.

Longitudinal measurement of gene expression patterns in infan-
cy is dynamic, but accounting for these changes allows identifica-
tion of an age-independent NK gene expression signature that 
tracks with rate of progression to T1D. Incorporating gene expres-
sion signatures alongside patterns of islet autoimmunity serocon-
version facilitates robust prediction of individual risk, validated in 
an independent cohort. This creates the potential for early monitor-
ing of at-risk infants for T1D onset, facilitating the prevention of 
severe complications such as ketoacidosis (62), effective trialing of 
preventive therapies, or the identification of targets for immuno-
modulation (63).

MATERIALS AND METHODS
Study design
The current study was designed to identify transcriptional coex-
pression networks in longitudinal whole blood transcriptomes in 
the TEDDY nested case:control study. Independent transcriptional 
networks were identified in and compared between individuals pro-
gressing to T1D or islet autoimmunity and age-matched controls 
(fig. S1). Eigengenes summarizing coexpressed gene modules were 
then generated and modeled against the principal end points of the 
TEDDY study, namely, the onset of islet autoimmunity and diagno-
sis of T1D. Association of early coexpression networks (measured 
in the earliest sampling time point for each individual) with later 
progression to either T1D or islet autoimmunity was also undertak-
en. For validation purposes, independent network analysis was un-
dertaken of whole blood gene expression data from the publicly 
available DIPP cohort (GSE30211).

TEDDY and nested case:control study design
Enrolment to the TEDDY study and design of the nested case-
control biomarker discovery study is described in full elsewhere (25) 
and summarized here (fig. S2). In brief, the TEDDY study enrolled 
children <4.5 months of age from December 2004 to July 2010 
through newborn screening for high-risk HLA-DR-DQ genotypes 
at six international centers (three in United States and three in 
European Union). Written consent was obtained from primary car-
ers for all participants, ethical approval was obtained from local in-
stitutional review boards, and the study is monitored by an external 
evaluation committee formed by the National Institutes of Health. 
Blood samples were prospectively collected from 3 months of age, 
continuing at 3 monthly intervals until age 4, and then every 6 months 
until age 15 unless seroconversion to persistent islet autoimmunity 
has occurred when they continued every 3 months until age 15. The 
primary end points of the TEDDY study are (i) the appearance of 
persistent, confirmed islet autoimmunity, defined as the presence of 
one confirmed islet autoantibody (IAAs, GAD65A, or IA-2A) on at 
least two consecutive samples. Islet autoimmunity result confirma-
tion was obtained through reciprocal sample testing at two labora-
tories with the date of persistent seroconversion being the date of 
first detection of islet autoimmunity that was subsequently shown 

to be persistent and (ii) the clinical appearance of T1D, as defined 
by the American Diabetes Association diagnostic criteria (64).

Samples used for genomic analysis within the nested case:control 
study design used here were identified by risk set sampling in 
which islet autoimmunity and T1D controls were randomly se-
lected from individuals who were free of the relevant event within 
45 days of the case’s event time using best available sample matching 
for clinical center, sex, family history of T1D, and age (fig. S7). This 
identified two separate nested, matched cohorts each relating to one 
of the primary end points of the TEDDY study, namely, T1D onset, 
and onset of islet autoimmunity (Fig. 1A, fig. S2, and table S2) (25).

RNA extraction and microarray hybridization
The TEDDY study collected 2.5 ml of peripheral blood to extract 
total RNA from enrolled children. Total RNA was extracted using a 
high throughput 96-well format extraction protocol using magnetic 
(MagMax) beads technology at the TEDDY RNA Laboratory, 
Jinfiniti Biosciences. Purified RNA (200 ng) was further used for 
complementary RNA (cRNA) amplification and labeling with bio-
tin using the Target Amp cDNA Synthesis Kit (Epicenter). About 
750 ng of labeled cRNA was hybridized to the Illumina HumanHT-12 
Expression BeadChips as per the manufacturer’s instructions. The 
HumanHT-12 Expression BeadChip provides coverage for more 
than 47,000 transcripts and known splice variants across the human 
transcriptome. After hybridization, arrays were washed, stained with 
Cy3-conjugated streptavidin, and scanned.

Microarray data preprocessing and normalization
The BeadArray and lumi Bioconductor packages were used for pre-
processing microarray data including image analysis, quality con-
trol (QC), variance stabilization transformation, normalization, 
and gene annotation. The MedianBackground method was used for 
local background correction. In addition, the BeadArray Subver-
sion of Harshlight (BASH) method was used for beads artifact de-
tection, which takes local spatial information into account when 
determining outliers. Each probe is replicated a varying number of 
times on each array; the summarization procedure produces a bead 
summary data in the form of a single signal intensity value for each 
probe. Illumina’s default outlier function and modified mean and 
SD were used to obtain a bead summary data. Variance-stabilizing 
transformation (65) and robust spline normalization (66) method 
which combines the features of quantile and loess normalization 
were used for generating between-array normalization data. QC 
was performed by excluding arrays from further analysis with the 
corrupted image files, high gradient effects on the probe intensities, 
high percentage of beads that were masked by the BASH method 
(67), low mean or median number of beads used to create the sum-
mary values for each probe on each array after outliers removal, low 
proportion of detected probes, low percentage of housekeeping 
genes expressed above the background level of the array, gender 
discrepancies using massiR package, and poor pairwise array cor-
relations. Transcriptional data from the DIPP cohort (GSE302011) 
was accessed from the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (GEO) repository using the GEO-
query package from Bioconductor in RStudio (version 3.5.1).

Transcriptomic QC and batch correction
All the nested case-control pairs for the longitudinal transcriptome 
data were assigned to the same batch to constrain batchwise 
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variation. In total, 2013 TEDDY samples were processed in 31 
batches with a median batch size of 74 samples per batch (range: 18 
to 86 samples per batch). In addition, two external QC samples (do-
nor 1 and donor 2) were included in each batch to estimation of 
batch-to-batch variations. The MedianBackground method was 
used for local background correction. In addition, the BASH meth-
od was used for beads artifact detection (67), which takes local spa-
tial information into account when determining outliers. The first 
two principal components of the gene expression data before and 
after normalization, respectively, are shown in fig. S8. The mean 
pairwise Pearson correlation coefficients after normalization were 
0.97 (SD = 0.04) for donor 1 and 0.99 (SD = 0.01) for donor 2.

Statistical analysis
Transcriptional network analysis
After data processing and QC, 2013 samples from 401 individuals 
were included in the current analysis, representing 1698 samples 
from 342 individuals in the islet autoimmunity case:control study 
and 795 samples from 125 individuals in the T1D case:control study 
(fig. S2). For islet autoimmunity analyses, samples taken before on-
set of islet autoimmunity from both T1D and IA case:control co-
horts were included along with their respective matched controls, 
stratified by the specificity of the first seroconversion as indicated. 
Transcriptional data were variance filtered (using the inflection 
point of cumulative median absolute deviation distribution) with 
data from 15,000 probes included in modular network analyses. 
The weighted gene coexpression networks (WGCNA) Bioconduc-
tor package in RStudio (version 3.5.1) was used to identify networks 
of coexpressed transcripts with scaled eigenvalues taken forward for 
lmm modeling. Scale-free topology was confirmed, and a soft thresh-
olding power was selected by serial modeling of mean connectivity 
and adjacency functions. The network was constructed with a spec-
ified minimum module size of n = 30 and medium sensitivity to cluster 
splitting (deepsplit = 2). Independent networks were generated on 
cases and controls with comparison of network structure undertaken 
using WGCNA in RStudio applying a composite preservation sta-
tistic as described (fig. S1B) (68). Modular structure in selected 
subgroups was visualized using t-distributed stochastic neighbor 
embedding (t-SNE) plots using the Rtsne package from CRAN. As 
equivalent modular structure was identified in cases and controls, 
network analysis was repeated using the full cohort of 2013 samples 
to identify “universal” modular eigengenes applicable to the entire 
cohort (rather than define them separately; fig. S1B).

For the DIPP cohort, the public dataset (GSE30211) was downloaded 
from GEO into R followed by filtering to retain unique genes, selecting 
those with the largest interquartile range per gene resulting in n = 18,469 
features. This was mapped against the Refseq identifiers in the TEDDY 
dataset to identify a matching set of n = 9313 unique features that were 
used for modular network analyses as for the TEDDY dataset.
Longitudinal modeling
Longitudinal changes in gene expression were modeled by applying 
lmm to scaled modular eigenvalues using the lme4 package from 
CRAN in RStudio (version 3.5.1). To identify changes in gene ex-
pression of cases that were not seen in matched controls, models 
were fitted for each modular eigenvector against either time to 
event (for cases, T1D diagnosis, or islet autoimmunity onset) or to 
chronological age (matched controls) and the observed fit com-
pared between cases and matched controls. Significance of effects 
was determined using a likelihood ratio test against a null model in 

the absence of that effect. This was repeated for additional covari-
ates to test their independent association with progression rate in-
cluding HLA subgroup, ethnicity, and sex. For effects deemed 
significant (FDR < 5%), specificity of association was determined by 
comparing observed significance in cases to that in controls in the 
form of a ratio of FDR values (FDRT1D/IA:FDRcontrol). lmm was fit-
ted including fixed terms (modular eigengene values and sex) and 
both random intercept and random slope terms for individuals. All 
identified modular signatures were iteratively tested with the extracted 
significance corrected for multiple testing using the Benjamini-
Hochberg FDR method with a threshold for significance set at FDR 
of 5%. Where indicated, for modular signatures of interest, model-
ing was repeated incorporating a natural cubic spline, implemented 
using the splines package in RStudio (version 3.5.1). Case:control 
lmm FDR ratios were visualized as radarcharts including all mod-
ules significantly associated with time to event, using the package 
radarchart from CRAN in RStudio (version 3.5.1). Individual fits 
from lmm models were visualized using the ggplot2, sme, and ef-
fects packages from CRAN in RStudio (version 3.5.1).
Early and pre-T1D cohorts
For the TEDDY cohort, earliest available samples were identified 
from each individual and these were filtered for those obtained be-
fore IAbs seroconversion (TEDDY preAb cohort, Fig. 4A). For the 
peri-T1D cohort, individuals were identified from whom a sample 
was taken within 365 days of diagnosis (serial IFN analysis) or the 
sample closest to diagnosis used (peri-T1D). The closest matched sample 
from the paired, matched control subject was used for comparative 
purposes. Gene expression modular signatures in these cross-sectional 
analyses were adjusted for sampling age, taking the residuals of a 
linear model including the relevant eigenvector and sampling age.
Module enrichment analysis
Module interpretation was performed using enrichment analysis 
against public repositories of defined transcriptional signatures as 
described in the text. Genes comprising selected modules were 
compared to reference signature repositories as indicated including 
ARCHS4, DICE, and Gene Ontology (GO) with a corrected Fisher’s 
exact test computed using Enrichr and visualized as the −log10 trans-
formed adjusted value in a radar chart. Deconvolution analysis was 
undertaken using the CIBERSORT method against the LM22 data-
set (31), with imputed cell proportions being correlated against module-
specific eigenvectors. GPR171 was identified through a systematic 
screen against a relational database (36)) linking candidate drugga-
ble targets (35) to associated transcriptional changes and other 
genomic data. T1D-associated signatures were screened against the 
existing Illuminating the Druggable Genome (IDG) library in the 
ARCHS4 dataset comprising 352 druggable targets linked to 20,883 
genes. All targets showing any overlap with T1D signature genes 
were included in the radar plot visualization (Fig.  2I), with only 
GPR171 achieving significant overlap.
NK cell analysis
Primary human NK cells obtained from healthy volunteers and 
stained with an excess of recombinantly engineered FcR-defective 
antibodies (CD3 clone REA641 and CD56 clone REA196, Miltenyi 
Biosciences) to avoid preactivation. Flow sorting of NK cells 
(CD3−CD56+) was performed using an AriaIII sorter (BD) in the 
Cambridge BRC flow phenotyping hub. Purified NK cells were cul-
tured for 48 hours in complete RPMI 1640 in the presence of target 
K562 cells and either a GPR171 inhibitor (MS21570, Tocris Bio-
Techne) or vehicle (phosphate-buffered saline) and stained with an 
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excess of antibodies against GPR171 (polyclonal rabbit anti-human 
GPR171, Abcam), CD71 (clone CY1G4, BioLegend), and Gran-
zyme B (clone GB11, BioLegend).
Bayesian joint modeling
For prediction, we sought a method that could incorporate both 
baseline risk stratification and multiple longitudinal covariates to 
provide an estimate of event hazard with associated uncertainty. 
Joint models applied to longitudinal and survival data allow model-
ing of the error-free biomarker trajectories and disease process si-
multaneously and have several advantages over similar alternatives. 
Joint models have been shown to provide unbiased estimates of 
hazard ratios, unlike models using time-dependent covariates with 
increased performance compared to either baseline-only or 
time-dependent Cox models (39, 69). Joint modeling (jm) was per-
formed using the mvjmbayes, jmbayes, and coxph packages (70) 
from Bioconductor and CRAN in RStudio (version 3.5.1) to esti-
mate the probability of getting disease at a given point in time given 
the data available. Let S(t) denotes the survival function, which we 
define to be ​Pr(​T​j​ *​  >  t)​, where ​​T​j​ *​​ is the true time of getting disease 
for the jth patient. S(t) is estimated using the hazard function h(t), 
the instantaneous risk of getting disease

	      ​h(t ) = ​ lim​ 
t→0

​​ ​
Pr(t  ≤ ​ T​j​ *​  <  t + t∣​T​j​ *​  ≥  t)

  __________________ t  ​  ∈  [0, ∞  ) ​

Whereas standard approaches to survival analysis model and es-
timate the hazard function given the survival data at hand, Bayesian 
joint models allow hazard function estimation using both baseline 
covariates and longitudinal data in a proportional hazard model, 
using the predicted value from the lmm in the hazard model. This 
at once aims to reduce noise inherent in sparse biological data while 
not relying on assumptions that observations remain unchanged 
between measurements. The Bayesian methodology to compute the 
parameters allows for uncertainty estimates on predictions, achieved 
through Monte Carlo Markov chain sampling. We used the JMbayes 
package (70) from CRAN in RStudio (version 3.5.1).

The complete model including all covariates considered is 
given below

​​

​​h​ i​​(t ) = ​h​ 0​​(t ) exp​{​​ ​Sex​ i​​ + ​​ 1​​(t ) iaa_ ​sig​ i​​ + ​​ 2​​(t ) gad_si ​g​ i​ ′​ + ​​ 3​​(t ) miaa_ ​ab​ i​​​

​      
+ ​​ 4​​(t ) gad_ ​ab​ i​​ + ​​ 4​​(t ) ia2a_ ​ab​ i​​ + ​​ 6​​ [ miaa_ ​sig​ i​​ × miaa_ ​ab​ i​​]

​     
+ ​​ 7​​ [ gad_si ​g​ i​ ′​ × gad_ ​ab​ i​​ ] + ​​ 8​​ [ miaa_ ​ab​ i​​ × gad_ ​ab​ i​​]

​    

​+ ​​ 9​​ [ gad_ ​ab​ i​​ × ia2a_ ​ab​ i​​ ] + ​​ 10​​ [ ia2a_ ​ab​ i​​ × miaa_ ​ab​ i​​ ] ​}​​​

 ​​

Not all covariates were included in all model scenarios as an un-
derlying goal was a sparse model incorporating covariates that can 
be measured in a simple, robust, and cost-effective manner and 
which are likely to withstand later extension of the model into addi-
tional populations. Covariates used were factors that are known or 
suspected to correlate with progression to disease onset (IA) or pro-
gression (T1D diagnosis) and included whole blood transcriptional 
signatures and serial IAbs data with time-varying effects (the hazard 
ratio was allowed to vary with time) and interaction effects between 
covariates (the type, number, and sequence of IAbs seroconversion 
were accounted for). Sex is included in our model as it has shown to 
correlate with T1D progression (table S3) (71) and is simple to ob-
tain. HLA risk category is collected in the TEDDY study but was 
excluded to facilitate extension of the model between populations 

and ethnicities and because HLA risk groups also did not contribute 
to model performance on testing in the TEDDY discovery cohort 
(table S3). Longitudinal data were fitted with a natural cubic spline–
fitted lmm from the JMbayes library using the mvglmer function, 
and survival predictions were made using survFitJM function. The 
input features to predict longitudinal outcome include the natural 
spline with three degrees of freedom fitted to time.
Predictive model performance estimates
When building any predictive model, it is imperative to balance 
predictive performance against the risk of “overfitting,” whereby 
the model performs well on a training dataset but fails to predict on 
unseen data. Predictive performance was first estimated using 10-
fold cross-validation on the TEDDY discovery dataset. Application 
in a clinical context was simulated by first making predictions on 
data collected up to 1 year of age and then serially increasing the 
amount of data available in steps of 0.15 years (mimicking clinical 
follow up), making disease predictions at each step over a constant 
time horizon of 1 year ahead. Model performance was evaluated 
using metrics addressing two key parameters, again using the JM-
bayes package: model discrimination (how well the model differ-
entiates between individuals who do/do not reach an end point) 
and model calibration (how well the model predicts the ob-
served data).

For discrimination, AUC ROC was selected to reflect both sensi-
tivity and specificity of predictive accuracy. For calibration, PE was 
used as defined below. Each metric was applied to both cross-
validated performance estimates on the discovery TEDDY cohort 
and after application of a “fixed,” optimal model from the discovery 
set to the independent validation DIPP cohort (which played no 
part in model training).

AUC is defined for a prediction horizon of t as follows

​​AUC​(​​t, Δt​)​​ = Pr​[​​ ​π​ j​​​(​​t + Δt∣t​)​​ < ​π​ ​j ′ ​​​​(​​t + Δt∣t​)​​​{​​ ​T​j​ *​ ∈ ​(​​t, t + Δt​]​​​}​​ ∩ ​{​​ ​T​j′​ * ​ > t + Δt​}​​​]​​​​

where j(u∣t) is the probability that patient j will survive up to time 
u given that they are alive at time t and ​​T​j​ *​​ is the true event time 
(T1D onset or IAbs seroconversion). PE is defined as the expected 
loss given the difference between the predicted Ni(u) and the true 
value j(u∣t) as given below

	​ PE(u∣t ) = E [ L { ​N​ i​​(u ) −  ​​ j​​(u∣t ) }]​	
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the relevance of this dataset to T1D pathobiology.
covariates such as islet antibody status predicted childhood T1D risk in two independent cohorts, demonstrating 

specific gene signature that was validated in an independent cohort. The microarray data along with−cell
illerexpression changes that tracked with progression to disease onset, including a pre-islet autoimmunity natural k

samples longitudinally collected from 400 children at high risk for islet autoimmunity and T1D. They detected gene
 . analyzed transcriptome patterns in bloodet al cells. Xhonneux βreaction against the body's own pancreatic 

Type 1 diabetes (T1D) results from insufficient insulin production and is thought to result from an immune
Tracking transcripts through to T1D
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