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METABOLISM

Transcriptional networks in at-risk individuals identify
signatures of type 1 diabetes progression
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Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic
islet B cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from
weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The num-
ber, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and
robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of
Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and envi-
ronmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from
400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted
age-associated gene expression changes in healthy infancy and age-independent changes tracking with progres-
sion to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We
combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and
validated the association of a natural killer cell signature with progression and the model’s predictive performance
on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention
study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expres-
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sion, informing the immunopathology of disease progression and facilitating prediction of its course.

INTRODUCTION

An autoimmune pathogenesis for type 1 diabetes (T1D) is indicated
by strong genetic association of Human leukocyte antigen (HLA) and
other immune variants (1) along with progressive development of
pancreatic islet f cell autoantibodies (IAbs) (2), although metabolic,
microbial, and dietary factors also contribute (3). Genetic risk scores
can identify those at highest risk of developing disease (4) in whom
peak onset occurs in early childhood, around 1 to 2 years of age (5).
Studying early events associated with T1D progression is challenging
given the need to identify at-risk individuals and to sample before
evidence of autoreactivity begins. Previous studies have typically been
cross-sectional investigations of small numbers of individuals after
the onset of islet autoimmunity or T1D. Expansions of islet antigen-
reactive T cells have been documented in the blood of both T1D
cases and healthy controls (6), whereas age-dependent changes in
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immune phenotype at diagnosis (7) have underlined the complexity
of studying disease in the context of a developing immune system.
Within the pancreas, longitudinal single-cell RN A sequencing analysis
has indicated complex, dynamic changes in infiltrating immune cell
populations (8). Although comparable study of human tissue is not
possible, pseudotime mass cytometry of pancreatic tissue from
T1D-diagnosed donors has illustrated an influx of cytotoxic and
T helper cells associated with reductions in B cell mass (9).
Longitudinal metabolomic (10) and microbiomic (11, 12) analy-
ses before onset of autoimmunity or T1D diagnosis have indicated
marked age-dependent effects but not a clean association with auto-
immunity or disease progression. A viral trigger for pancreatic
autoimmunity has long been proposed (13) and has been supported
by both early transcriptional signatures of type 1 interferon (IFN1)
response (14) and prolonged enteroviral shedding (15) before islet
autoimmunity. Enteroviruses can directly infect pancreatic B cells
and have been linked to a natural killer (NK) cell insulitis (16). Early
changes in blood gene expression (17, 18) before islet autoimmunity
are likely to be driven by changes in relative proportions of constituent
blood cells (19), although their interpretation is confounded by a
lack of data describing how such changes develop in healthy infancy.
T1D onset occurs in the dynamic context of a maturing immune
system: Changes observed in children developing autoimmunity
must be carefully related to healthy developmental changes to focus
our attention on factors that initiate and propagate autoreactive re-
sponses. Recently, systems immunology studies of immune devel-
opment during infancy have indicated early, stereotyped changes in
blood cell and protein composition (20) and dynamic changes in
the gut microbiome related to breastfeeding patterns, islet auto-
immunity (11, 12), and onset of childhood inflammatory disease (21).
Such high-throughput analyses create the potential for identifica-
tion of previously unsuspected pathways associated with disease
initiation and progression to improve understanding of disease biology
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and aid the building of predictive models to suggest targeted
therapies (22).

The Environmental Determinants of Diabetes in the Young
(TEDDY) study aims to identify gene-environment interactions
causing T1D in high-risk infants participating in serial prospective
sample collection and monitoring every 3 to 6 months from birth to
age 15 years (23). By combining genetic risk stratification and pro-
spective follow-up, it has been possible to collect samples and data
from infants before development of both islet autoimmunity and
T1D onset, facilitating systematic analysis of early and longitudinal
changes associated with the later development of disease. This can
facilitate both an improved understanding of the pathogenetic
mechanism of human islet autoimmunity and early prediction of its
subsequent course. Although the presence of IAbs indicates the de-
velopment of islet autoimmunity and hence long-term risk of T1D
development (2), validated predictive markers have not been able to
report serial, individual risk over a near-term horizon such as is
necessary to inform clinical decision-making (24).

Here, we undertook transcriptional network analysis of gene ex-
pression microarray data using a nested case:control cohort (25) from
the TEDDY study to identify early longitudinal changes in whole
blood gene expression in healthy infancy or tracking with progres-
sion to both islet autoimmunity and T1D. We also built a predictive
model incorporating multivariate longitudinal features including
gene expression and islet autoantibodies to estimate individual risk
of T1D progression.

RESULTS

A dynamic landscape of whole-blood gene expression
during infancy

We analyzed data from nested, matched case control cohorts (25)
comprising 2013 whole blood transcriptomes sampled longitudinally
from 401 individuals, divided into those developing islet auto-
immunity or T1D (Fig. 1, A and B, and figs. S1 to S2). We applied
transcriptional network analysis (26) to identify groups of co-
expressed genes (modules) based solely on patterns of transcription
in the data (Fig. 1, C and D, and fig. S1B). We first constructed
independent transcriptional networks for both cases and controls,
observing closely matched coexpression patterns in each with no
evidence of disease-specific modules (fig. S1B): Genes coexpressed
in cases were found to be similarly coexpressed in the control co-
hort and vice versa (Fig. 1, C and D). As genes in a module are by
definition coexpressed, they can be summarized by a single profile
known as an eigengene (27). As coexpression patterns were pre-
served in disease and control groups, we constructed a coexpression
network based on all samples considered together (fig. S1B) and
applied linear mixed modeling (Imm) to whole blood modular
eigengenes from this combined network (table S1). We found that a
substantial proportion of modules (23 of 85, 27%) demonstrated
significant temporal changes during infancy [false discovery rate
(FDR) < 5%; Fig. 1E]. Patterns of gene coexpression are highly con-
served (28), and modular signatures can be interpreted by screening
their composite genes for enrichment of well-defined gene expres-
sion signatures in external relational databanks and public reposito-
ries (fig. S1) (29, 30). In this way, the biological meaning of the
identified patterns of gene coexpression can be interpreted, with the
caveat that repositories typically include samples and data from adults
rather than infants. We compared each age-associated module
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(Fig. 1E) to the largest compendium of cell- and tissue-specific tran-
scriptomic signatures [ARCHS® repository (30)], identifying fre-
quent modular enrichment for cell type-specific transcripts (17 of
23, 74%), upstream kinases (22 of 23, 96%), and transcription factors
(22 of 23, 96%) (fig. S3) including progressive reductions in stem
cell-specific transcripts (Fig. 1F) along with B cell- and neutrophil-
specific transcripts and associated transcription factors (fig. S3).

We also undertook “digital cytometry” using a deconvolution
approach comparing whole blood transcriptional profiles to immune
cell-specific transcripts to estimate cell type frequencies (Fig. 1G)
(31). This confirmed the association of the majority of modular sig-
natures identified with the frequency of circulating immune cell
phenotypes (Fig. 1G). Individual modular signatures correlated
with multiple deconvoluted cell frequencies as expected, as cell per-
centages often vary together during an immune response.

Multiple modular signatures mapped to the same cell type de-
spite showing distinct longitudinal trajectories, suggesting that they
cannot be explained by changes in the proportion of circulating cell
types in blood alone and likely reflect more subtle phenotypic dif-
ferences than can currently be mapped by deconvolution or enrich-
ment strategies. Together, these data show marked gene expression
changes during healthy infancy, highlighting the dynamic context
in which autoimmune diseases such as T1D occur.

Distinct disease-specific transcriptional signatures

in T1D subgroups

We next asked whether longitudinal changes in modular patterns of
gene expression tracked with progression toward T1D onset. As
children get older, they inevitably approach the time of disease on-
set. Consequently, it is necessary to ensure that the longitudinal
changes seen in cases are not simply age-associated changes expected
to occur in healthy children. To overcome this, we identified
modular eigengenes correlating with time to T1D in cases and, as
the study design included age-matched healthy samples, compared
these to the longitudinal changes seen in infants who did not prog-
ress to disease (Fig. 1, H and I). Although 35 modular signatures
significantly correlated with T1D progression (FDR < 5%), none
were specific to T1D cases and all showed stronger association with
healthy aging in matched controls (Fig. 11), highlighting the impor-
tance of placing longitudinal changes into the dynamic immune
context of early infancy.

T1D is thought to be a heterogeneous condition; however,
evidence supporting the existence of disease subgroups has proven
elusive (32, 33). Those developing autoantibodies to insulin (IAAs)
show earlier and more rapid progression to both additional IAbs and
to T1D than those initially developing IAbs to the other major pan-
creatic autoantigen, GAD (glutamic acid decarboxylase) (2). How-
ever, it remains unclear whether this observation reflects a distinct
immunopathology, or simply autoimmunity occurring at younger
age. We next stratified the T1D cohort by target of first appearing
autoantibody, comparing modular gene expression changes in IAAs-
firstand GADA (GAD antibody)-first subgroups with their matched
controls as before. Whereas disease-specific longitudinal changes
were not apparent in T1D on the whole (Fig. 1I), distinct gene ex-
pression signatures showed clear age-independent association with
time to T1D onset in IAbs subgroups (Fig. 2, A and B). Among IAAs
cases, one dominant signature (IAAsig) showed an early increase in
expression with a later secondary increase before diagnosis (Fig. 2C),
a pattern not seen in most matched controls. The nested study
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Fig. 1. Dynamic changes in the infant blood transcriptome. (A and B) Schematic illustration of the (A) TEDDY cohort (B) sampling from birth, through IAbs seroconver-
sion to T1D diagnosis illustrating population-level risFk of T1D. 1Ab* samples may appear in both case:control cohorts hence subgroups do not add up to the total. Ab,
antibody. (C) tSNE plot illustrating the dissimilarity matrix of gene coexpression networks in T1D (left) and matched controls (right). Each dot represents a distinct gene
(n=15,000). Genes in both plots are colored by modular assignment in the T1D coexpression network. (D) Scatterplot showing strength of T1D module preservation
(y axis, Zsummary Score) in matched control data (red dashed line = strong preservation threshold, Zsummary = 10). (E) Line and scatterplots showing Imm effects [red, £95%
confidence interval (Cl)] and gene expression eigenvalues (black dots) for 23 modular eigengenes showing significant (FDR < 5%) age association in infancy. Colors are
matched to (C to E). (F) Example module enrichment: Line and scatterplot (left) showing Imm effects (red line, £95% Cl) for the “yellow” module alongside radar plot (right)
showing module enrichment (radial axis, —log1oFDR) for cell type-specific transcripts. (G) Clustered heatmap illustrating significance (—log1oFDR) of correlation (Pearson)
of deconvolved cell subset proportions (y axis) against modular eigengene values (x axis). (H) Schematic line and scatterplot illustrating the use of Imm to compare mod-
ular gene expression signatures in matched cases and controls. (I) Radar plots showing all modules (arranged around plot circumference) associated with time to T1D
onset (FDR < 5%, left), association of the same modules with sampling age in matched controls (center) and the ratio of observed significance in each (FDR11p:FDRcontrols
right). For radar plots, radial distance from the center =—logoFDR, red line = threshold FDR < 5%.
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design allowed for IAbs seroconversion to occur in the T1D control
group (25), provided that T1D progression did not occur. Closer
analysis of the control group demonstrated that IAAsig expression
showed a similar early rise in seroconverting controls, falling off
with advancing age where they were maintained in those progress-
ing to T1D (IAbP*T1D"*® versus IAb"*®T1D"%; Fig. 2C, inset). By
contrast, seronegative controls showed no comparable rise in early
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IAAsig expression (Fig. 2C, inset). In GADA cases, a group of four
closely correlated signatures termed together as GADAsig (Fig. 2B)
showed an age-independent decrease toward T1D onset, a pattern
absent from matched controls and occurring closer to diagnosis in
contrast to the earlier increases in the IAAsig (Fig. 2, C and D). We
compared mixed models to ensure that observed gene expression
changes were independent of additional clinical covariates including
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sex, ethnicity, and HLA risk group (table S2) alongside mode of
birth delivery and patterns of maternal breastfeeding (fig. S4, C to F).
This analysis indicated an independent and significant association
of both gene expression signatures and sex, but not the other vari-
ables, to the models (table S3). We therefore took these covariates
forward into predictive model building as described below.

Biological interpretation of T1D-specific signatures

We next performed enrichment analysis of both TAAsig and
GADAsig (table S4) against relational databases [ARCHS® (30) and
Database of Immune Cell eQTLs (DICE) (34)] providing the largest
and most granular coverage of immune cell-specific gene expression
and also correlated each module’s eigengene against cell subset fre-
quencies estimated through deconvolution analysis (31). IAAsig
genes showed strong, specific enrichment for NK cell-specific tran-
scripts (Fig. 2, E and F), transcription factors, and kinases (fig. S5)
and correlated with deconvoluted percentage of NK cells, and to a
lesser but still significant extent with CD4" memory T cells (Fig. 2G).
Genes comprising GADA-specific modules were enriched for tran-
scripts shared by both blood and brain tissue but not clearly with a
single cell type (Fig. 2, H and I, and fig. S5). However, comparison
with deconvolved cell type frequencies indicated strongest associa-
tions with reduced percentage of CD4" memory T cells and NK
cells, with a relative increase in an activated NK phenotype (Fig. 2]).
This observation suggests that the early stages of T1D pathogenesis
are associated with different immune cell trajectories that involve
similar immune cell types, namely, NK and CD4" memory T cells,
depending on the pattern of initial IAbs seroconversion.

To investigate potential means of therapeutically modulating
IA Asigs and GADAsigs, we compared each to an integrated reposi-
tory of drug response data [the Harmonizome (35, 36)] that links
functional associations between genes and proteins based on collated
genomic data including physical associations, knockout or knock-
down phenotypes, and response to drug treatment. We screened
TAAsig genes against all 352 “druggable” targets (30) linked to
20,883 genes and identified a single candidate G protein-coupled
receptor (GPR171; Fig. 2K) as a potential controller of IAAsig
genes. That is, GPR171 was not itself part of the modular signature
but instead predicted to be functionally associated with genes com-
prising it. We confirmed NK cell expression of IAAsig and GPR171
at both mRNA (Fig. 2L) and protein abundance (Fig. 2M) and
demonstrated that a specific inhibitor of its signaling (Inh) could
attenuate both GPR171 expression and NK cytotoxicity in an in vi-
tro killing assay (Fig. 2N). Together, these data demonstrate that
distinct cell-specific gene expression changes characterize progres-
sion to disease onset in subgroups of patients with T1D defined by
their sequence of IAbs seroconversion.

Transcriptional signatures associated with

islet autoimmunity

Next, we asked whether specific changes in gene expression occur
around the onset of islet autoimmunity (IAbs seroconversion), rather
than tracking with progression to disease onset (Fig. 3A). Among
50 modular signatures showing significant association with islet
autoimmunity onset (Fig. 3, B and C), a dominant signature is asso-
ciated with seroconversion in both subgroups. This signature (IAsig)
was common to both GADA and IAAs subgroups and, although it
showed significant dynamic changes in matched healthy controls,
there were more marked and sustained reductions in infants
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progressing to IAbs seroconversion (Fig. 3, D and E). Interrogation
of this islet autoimmunity signature (table S5) revealed strong en-
richment for B cell-specific transcripts, kinases, and transcription
factors (Fig. 3F). Six additional signatures (Fig. 3, B and C) showed
a weaker but still significant age-independent association with islet
autoimmunity onset, again in both GADA and IAAs subgroups.
The second most strongly associated signature was the same
NK-enriched signature that associated with T1D onset in IAAs,
which here increased toward islet autoimmunity onset but showed
no change over time in the control group (Fig. 3, G and H). Togeth-
er, these data indicate that longitudinal changes in NK- and B
cell-associated gene expression track with progression toward the
onset of islet autoimmunity, with NK-associated changes also track-
ing with progression to disease in the IAAs subgroup.

Validation of T1D-specific longitudinal gene

expression changes

We next sought to validate our findings in an independent cohort of
IAbs and T1D cases. The Type 1 Diabetes Prediction and Prevention
(DIPP) cohort (37) is a prospective, population study of incident
islet autoimmunity and T1D with a comparable nested case:control
design, although with sampling commencing in slightly older chil-
dren (18). We undertook an independent network transcriptomic
analysis of 356 DIPP samples from 58 individuals, again comparing
dynamic changes in modular gene expression to both islet autoim-
munity (Fig. 3I) and T1D onset (Fig. 3]). In this smaller cohort, an
NK cell-enriched signature (directly comparable to that identified
in TEDDY; fig. S6 and table S6) was the only gene expression pattern
that showed a significant association with both IAbs seroconversion
and T1D progression, which did not similarly change in matched
controls (Fig. 3, I and J). A B cell signature comparable to the IAsig
seen in TEDDY (Fig. 3, G and H) was significantly associated with
both clinical end points but, in the DIPP cohort, showed a compa-
rable association with sampling age. Similar to what was observed
in the TEDDY cohort, the NK signature increased toward T1D onset
with a later decline in matched controls who did not go on to devel-
op disease (Fig. 3, I and J).

Together, these data confirm an independent association of an
NK cell-enriched transcriptional signature with both IAbs serocon-
version and rate of progression to T1D, validating the finding in the
larger TEDDY discovery cohort.

Gene expression in early infancy associates with rate

of disease progression

We next sought to investigate whether whole blood gene expression
changes in early infancy, before demonstrable evidence of islet au-
toimmunity, were related to later risk of progression toward T1D.
For this “snapshot” of early risk, we identified the earliest samples
available within the case:control cohorts, comprising 288 samples
from 288 individuals, all taken before seroconversion and with
>85% taken within the first 12 months of life (Fig. 4, A and B). In
this cross-sectional analysis, we constructed a gene coexpression
network and looked for evidence of association with both disease
risk (outcome T1D" versus T1D") and rate of subsequent progres-
sion toward T1D. As longitudinal changes were not being consid-
ered, we used regression analysis to adjust for variable sampling age
and sex. At this early time point, four modules were associated with
the rate of subsequent progression toward T1D (Fig. 4, C and D).
Both enrichment and deconvolution correlation analyses of these
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modules indicated specific excess of B
lymphoblast and monocyte expressed
transcripts respectively with the latter
also enriched for tumor necrosis factor
(TNF) and complement pathway sig-
naling (Fig. 4E, table S7, and fig. S6, H
and I). These data indicate that early high
expression of a TNF-enriched mono-
cyte signature and early low expression
of a B lymphoblast signature were asso-
ciated with slower progression to T1D
onset (Fig. 4, C and D). No modular
signatures were significantly different
between T1D and healthy control groups,
although the TNF-enriched monocyte
signature that associated with protec-
tion against T1D was markedly higher
in infants who later seroconverted without
developing T1D (IA"T1D; Fig. 4F). We
also observed that the same pattern of
monocyte/TNF-associated transcripts
showed significantly lower expression in
children within a window of 12 months
before diagnosis of T1D (Fig. 4G), a
finding that was also validated in the
DIPP cohort (Fig. 4H).

Previous analyses have identified a
IFN1 response signature expressed in
at-risk children before antibody sero-
conversion and associated with previ-
ous respiratory infections (14). Such a
signature was clearly visible in the TEDDY
cohort (Fig. 41), although it was not as-
sociated with risk of T1D (Fig. 4C) or
rate of progression to T1D (Fig. 4]).
However, the IFN response signature
conformed to a pattern of transient “spikes”
of expression, likely after infectious trig-
gers, most frequently observed in the
12 monthsbefore disease onset (Fig. 4, J and K)
and to an extent that exceeded those seen
in age-matched control samples (Fig. 4L).

Prediction of individual T1D risk
using longitudinal data

Recently, statistical learning methods have
improved our ability to integrate base-
line covariates, longitudinal data, and
clinical end points to estimate instanta-
neous event hazards (38). Current T1D
prediction methods stratify disease risk
by number of IAbs present, indicating
cohort level risk over a horizon of many
years, making it difficult to incorporate
this information into treatment path-
ways or to enable recruitment into clinical
trials of targeted therapy (Fig. 1B). Indi-
vidual risk prediction over a short time
horizon is necessary to guide clinical
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decisions and preventive therapy trials (24). We therefore aimed to
build a predictive model that could estimate, with an indication of
uncertainty, the near-term hazard of T1D for an individual, dynam-
ically updating that prediction as additional data become available.
We used a multivariate Bayesian joint model (39) to combine base-
line stratification (using a Cox proportional hazards model) with
longitudinal variables such as IAbs type, status, timing, and gene ex-
pression, returning an event hazard with associated confidence bounds.
As our earlier analysis of comparative mixed models had demon-
strated independent association of both gene expression signatures
and sex (table S3) with gene expression signatures depending on the
sequence of serial IAbs seroconversion, we incorporated these co-
variates into a joint model (Fig. 5A). We chose to build and test the
performance of three distinct models in each of two clinical scenarios.
Predictive performance [area under the receiver operator character-
istic curve (AUC ROC) and prediction error (PE)] was estimated
using 10-fold cross-validation on the discovery cohort (TEDDY;
Fig. 5B) and on an independent validation dataset (DIPP). The three
models each included baseline stratification by sex and (i) IAbs status
over time (IAb*7), (ii) maximal IAbs information (IAbs specificity [IAAs,
GADA, IA-2A], timing of IAbs seroconversion, sequence of IAbs
seroconversion specificity and associated interaction effects), or (iii)
maximal IAbs information along with longitudinal gene expression
data (the eigenvalues of the A As or GADA signatures). The two clinical
scenarios tested were serial prediction over a fixed future horizon of
12 months using all cumulative data available at each time point (mim-
icking a child being followed up over time; Fig. 5, C to F) and prediction
at 1.5 years of age over a serially increasing future horizon (mimick-
ing prediction with early limited data; Fig. 5, C to F).

Using islet autoimmunity status alone—the scenario most com-
parable to current methods (24)—had modest predictive accuracy
in both clinical scenarios (model i, Fig. 5C). The inclusion of maxi-
mal IAbs information (model ii) allowed for robust prediction in
the first clinical scenario (serial prediction over a fixed horizon of
12 months; Fig. 5D, left: AUC ROC > 0.9, PE < 10%) with only modest
improvement by inclusion of longitudinal gene expression signa-
tures (model iii, Fig. 5E). Although the performance of serial IAbs in
this scenario is an improvement in T1D prediction, it is also appar-
ent that making predictions close to diagnosis (in this scenario pre-
dicting 12 months ahead) is supported by using IAbs data. By contrast,
and consistent with the importance of early gene expression measures,
gene expression signatures supported model performance (model
iil) more strongly in the second clinical scenario, where predictions
were made early over a serially extending time horizon. This was
particularly apparent with prediction over the first few years of life,
when the majority of infant T1D cases occurred (Fig. 5, D and E).
These data show that, although the presence of islet autoantibodies
is associated with disease risk (40), incorporating information on
serial changes in the type, number, and timing of seroconversion
can facilitate T1D risk prediction at an individual level over a time
horizon short enough to facilitate changes in clinical monitoring or
therapeutic trials. Gene expression measures provided greatest support
for prediction when measured early (up to 18 months) to predict
T1D risk over a longer time horizon (up to 5 years in this dataset).

DISCUSSION
Together, our data describe dynamic changes in the infant blood
transcriptome and show that patterns of islet antibody seroconversion

Xhonneux et al., Sci. Transl. Med. 13, eabd5666 (2021) 31 March 2021

define subgroups of T1D with both distinct rates of progression and
distinct age-independent gene expression signatures associated with
time to disease onset. Among healthy infants, we observed exten-
sive longitudinal changes in gene expression over the first 5 years of
life, highlighting the dynamic immune context in which early islet
autoimmunity develops. This observation reinforces the impor-
tance of taking such changes into account when seeking to differen-
tiate disease-specific changes from those reflecting “healthy”
immune development.

On taking age-associated changes into account, we observed
specific, longitudinal changes in gene expression tracking with pro-
gression toward both islet autoimmunity and T1D onset. Distinct
changes were associated with T1D progression in subgroups de-
fined by the target of initial seroconversion. The two dominant
serospecificities at onset of islet autoimmunity (IAAs and GADA)
have been proposed as distinct disease “endotypes,” with the former
developing earlier and showing faster progression toward T1D on-
set (41). Consistent with a distinct pathogenetic mechanism under-
pinning this stratification, we observed that distinct transcriptional
signatures tracked with progression to T1D onset in subgroups
defined by the specificity of the first appearing islet autoantibody
(IAAs or GADA). Earlier changes tracking progression to onset of
islet autoimmunity were similar in both groups, however. We iden-
tified an NK cell-based signature that increased in expression with
progression toward both islet autoimmunity and T1D in IAAs-first
individuals. The same signature was similarly seen to associate with
time to islet autoimmunity but not T1D onset in GADA-first individ-
uals. Association of a very similar NK cell signature was validated in
an independent analysis of longitudinal samples from the DIPP
study. However, further work is required to understand the mecha-
nism underlying this association. NK cells have a complex relation-
ship to autoimmunity and may function as either effector cells
contributing to tissue damage, or as regulators of immunopatholo-
gy (42). Differences in NK cell phenotype have been described after
T1D diagnosis (43)—although accompanied by many other late dif-
ferences (44)—whereas changes in their number and phenotype have
been variably linked to either aggressive insulitis (45) or protection
from it (46) in animal models. Our data indicate a prominent and
specific role for NK cells in the development and progression of
autoimmunity and T1D in humans, beginning at the earliest stages
and tracking longitudinally with rate of progression rather than
simply differentiating those who already have disease from those
who do not. Although it is difficult to further refine the source of
the NK-specific transcriptional signature using whole blood data, it
is unlikely that it simply reflects a relative expansion of peripheral
NK cells, as evidenced by our identification of other NK cell-enriched
modular signatures that did not associate with disease progression.
Perhaps the most likely explanation for the observed NK associa-
tion with T1D progression is that a viral trigger results in altered
NK cell phenotype that tracks with progressive insulitis. Persisting
enteroviral infection has been associated with T1D progression (15)
and enteroviruses are known to infect pancreatic B cells, inducing
early NK infiltration and cytolysis in animal models (47, 48). An
NK-predominant insulitis has also been observed in pancreas from
diabetic organ donors with Coxsackie B4 enteroviral infection (16)
and is consistent with an autoreactive effector role for NK in T1D
pathogenesis. However, NK cells may also function to regulate
T cell-mediated immunity during persistent viral infection (49).
A limitation of the current study is that, while the association of an
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Fig. 5. Validated prediction of T1D hazard in at-risk infants. (A) Schematic of multivariate Bayesian joint model data input (top), model building (middle), and model
performance assessment (bottom). (B) lllustration of cross-validation method used on discovery TEDDY cohort. (C to F) Line and scatterplots showing predictive accuracy
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NK transcriptional signature is validated and may be used for pre-
dicting progression, the mechanism linking NK cells to insulitis
requires further investigation.

Despite these limitations, we also demonstrate that a disease-
relevant transcriptional signature can serve as the starting point
for further mechanistic understanding and previously unidentified
therapeutic approaches. By screening the NK-enriched T1D progression—
associated signature against collated genomic information from
many sources, we predicted and confirmed in vitro that inhibition
of a poorly characterized G protein-coupled receptor [GPR171,
previously known for its role in controlling satiety signaling in the
hypothalamus (50)] was capable of suppressing NK cytolytic pro-
tein expression.

We also undertook a systematic network analysis of age-independent
blood transcription, before IAbs emergence with the large majority
of samples taken during the first year of life. In these earliest sam-
ples, we observed reciprocal association of B lymphoblastic and
TNF-enriched monocytic signatures that associated with the sub-
sequent rate of progression to T1D. Although these signatures were
not different between those later developing T1D and matched
controls, they were specifically increased in individuals who progressed
later to islet autoimmunity without developing T1D (IAb"T1D").
Although it is tempting to speculate that this evidence supports a
protective role for early inflammatory signals—such as proposed
by proponents of the “hygiene hypothesis” (51)—studies in animal
models have highlighted the complexity of altered TNF signaling
with evidence for distinct roles at different disease stages (52, 53).
However, the validated association of increased expression of this
signature in T1D-protected individuals despite islet autoimmunity
may help inform interventional study design (54).

Previous hypothesis-driven analyses of early gene expression
changes identified an increase in IFN1 signaling in pre-T1D chil-
dren linked to history of recent infection (14). A comparable signa-
ture was apparent in the TEDDY cohort and showed transient
elevation in spikes consistent with response to an infectious stimu-
lus (and quite different to the chronic, progressive increase seen in
the NK signature). Greater IFN1-induced gene expression was ob-
served during the 12-month preceding T1D onset compared with
age-matched controls but was not associated with the rate of pro-
gression to islet autoimmunity or T1D. This is consistent with a role
for IFN1 signaling—and perhaps viral infections that provoke tran-
sient IFN1 elevations—in modifying disease progression. However,
as with NK cells, evidence from animal models shows that IFN sig-
naling may play either a role in promoting T cell-mediated insulitis
(55) or in protecting B cells from NK cell-mediated attack (48).

Last, we sought to incorporate the longitudinal measurement of
immune traits—both gene expression and IAbs—into a predictive
model that could provide an estimate of an individual’s T1D risk
and the confidence of that estimate. Long-term risk of T1D (over
the subsequent 10 to 15 years) can currently be informed by the
extent of IAbs seropositivity. However, for a predictive model to affect
on clinical decision-making—whether by altering the frequency of
clinical review to monitor for severe complications such as diabetic
ketoacidosis (56) or by facilitating early intervention studies (24)—
it is necessary to obtain a robust estimate of near-term risk of T1D
onset. We therefore sought to build a predictive model that could
estimate individual T1D risk in two specific scenarios: either by
making an early prediction (at 18 months) over a longer horizon
(5 years) or by using cumulative data to make serial predictions over

Xhonneux et al., Sci. Transl. Med. 13, eabd5666 (2021) 31 March 2021

the subsequent 12 months. To test the ability of both baseline and
longitudinal measures to inform this prediction, we built a Bayesian
joint model incorporating either Ab status alone, or with more ex-
tensive IAbs features (serospecificity, timing, and interaction of
IAbs development) with or without gene expression signatures. We
included stratification by sex (as this was the only other covariate
demonstrating independent association with progression rate)
but intentionally excluded HLA stratification (despite a demon-
strated association with progression (57)) to facilitate extrapola-
tion between global populations with distinct HLA distributions.
This approach allowed direct comparison between both simple and
more complex models, aiming to establish optimal prediction with
the simplest approach requiring as few measurements as possible.
With predictions made over a short horizon of 12 months, the mod-
el with extensive IAbs features outperformed standard prediction
using IAbs status alone and gained little support from including
gene expression data: This is consistent with observations that IAbs
are often positive within 12 months of diagnosis (58) and that our
model supported robust prediction of T1D progression in this sce-
nario. However, it is an onerous task to repeatedly sample children
at such an early age to obtain longitudinal data on timing and se-
quence of seroconversion specificities. We therefore tested a second
scenario using data only from the first 18 months and making pre-
dictions progressively further ahead. Predicting from this earlier
time point—arguably a more feasible clinical scenario given the re-
duced sampling requirement—showed a benefit of gene expression
signatures in addition to IAbs measures with robust performance
on both cross-validation and independent validation cohort testing.

The current study identified extensive, longitudinal changes in
the whole blood transcriptome occurring during both healthy in-
fancy and progression to T1D. This finding has been made possible
through assiduous prospective collection of samples by the TEDDY
consortium. We show here that these changes can be both inter-
preted and used to inform prediction of T1D risk from an early age.
Extensive sampling at an early age is facilitated by the simplicity of
whole blood collection. However, this method also limits the bio-
logical interpretation of modular signatures identified. The modu-
lar signatures identified here are dominated by cell-subset specific
transcripts, with both module enrichment and deconvolution methods
in broad agreement. Each method can identify the likely cellular
source of a transcriptional signature but, when that signal is derived
from a mixed cell population like peripheral blood, it is more diffi-
cult to pin down the cell-intrinsic pathways responsible for that
change in gene expression. Improved methods for deconvolution
may help to address this problem (59) but require robust validation
against concurrently sampled cell-intrinsic transcriptomes. Tran-
scriptional profiling of sorted cell populations (60) or single-cell
profiling (61) methods can similarly overcome this limitation, but
they inevitably result in sampling of a much smaller cohorts. It is
clear from our analyses that enrichment and deconvolution approaches
can be complementary. As deconvoluted cell subset proportions
may vary together, for example, increasing together during an in-
flammatory response, it is expected that a transcriptional signature
may correlate with multiple cell subset proportions, making it hard-
er to define the source of that signal through deconvolution alone.
Enrichment is not similarly encumbered by this problem, relying
instead on coexpressed features within the module itself for inter-
pretation, although it is inevitably constrained by the availability of
external signatures for enrichment analysis.
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We have demonstrated and validated an association of NK cell
gene expression signature with T1D progression. It remains to be
determined whether this change reflects a causal contribution to
T1D related immunopathology, a host response to an infectious
trigger, or both. An answer to this fundamental question will re-
quire further analyses and more detailed investigation of prospec-
tive data and samples.

Longitudinal measurement of gene expression patterns in infan-
cy is dynamic, but accounting for these changes allows identifica-
tion of an age-independent NK gene expression signature that
tracks with rate of progression to T1D. Incorporating gene expres-
sion signatures alongside patterns of islet autoimmunity serocon-
version facilitates robust prediction of individual risk, validated in
an independent cohort. This creates the potential for early monitor-
ing of at-risk infants for T1D onset, facilitating the prevention of
severe complications such as ketoacidosis (62), effective trialing of
preventive therapies, or the identification of targets for immuno-
modulation (63).

MATERIALS AND METHODS

Study design

The current study was designed to identify transcriptional coex-
pression networks in longitudinal whole blood transcriptomes in
the TEDDY nested case:control study. Independent transcriptional
networks were identified in and compared between individuals pro-
gressing to T1D or islet autoimmunity and age-matched controls
(fig. S1). Eigengenes summarizing coexpressed gene modules were
then generated and modeled against the principal end points of the
TEDDY study, namely, the onset of islet autoimmunity and diagno-
sis of T1D. Association of early coexpression networks (measured
in the earliest sampling time point for each individual) with later
progression to either T1D or islet autoimmunity was also undertak-
en. For validation purposes, independent network analysis was un-
dertaken of whole blood gene expression data from the publicly
available DIPP cohort (GSE30211).

TEDDY and nested case:control study design

Enrolment to the TEDDY study and design of the nested case-
control biomarker discovery study is described in full elsewhere (25)
and summarized here (fig. S2). In brief, the TEDDY study enrolled
children <4.5 months of age from December 2004 to July 2010
through newborn screening for high-risk HLA-DR-DQ genotypes
at six international centers (three in United States and three in
European Union). Written consent was obtained from primary car-
ers for all participants, ethical approval was obtained from local in-
stitutional review boards, and the study is monitored by an external
evaluation committee formed by the National Institutes of Health.
Blood samples were prospectively collected from 3 months of age,
continuing at 3 monthly intervals until age 4, and then every 6 months
until age 15 unless seroconversion to persistent islet autoimmunity
has occurred when they continued every 3 months until age 15. The
primary end points of the TEDDY study are (i) the appearance of
persistent, confirmed islet autoimmunity, defined as the presence of
one confirmed islet autoantibody (IAAs, GAD65A, or IA-2A) on at
least two consecutive samples. Islet autoimmunity result confirma-
tion was obtained through reciprocal sample testing at two labora-
tories with the date of persistent seroconversion being the date of
first detection of islet autoimmunity that was subsequently shown
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to be persistent and (ii) the clinical appearance of T1D, as defined
by the American Diabetes Association diagnostic criteria (64).
Samples used for genomic analysis within the nested case:control
study design used here were identified by risk set sampling in
which islet autoimmunity and T1D controls were randomly se-
lected from individuals who were free of the relevant event within
45 days of the case’s event time using best available sample matching
for clinical center, sex, family history of T1D, and age (fig. S7). This
identified two separate nested, matched cohorts each relating to one
of the primary end points of the TEDDY study, namely, T1D onset,
and onset of islet autoimmunity (Fig. 1A, fig. S2, and table S2) (25).

RNA extraction and microarray hybridization

The TEDDY study collected 2.5 ml of peripheral blood to extract
total RNA from enrolled children. Total RNA was extracted using a
high throughput 96-well format extraction protocol using magnetic
(MagMax) beads technology at the TEDDY RNA Laboratory,
Jinfiniti Biosciences. Purified RNA (200 ng) was further used for
complementary RNA (cRNA) amplification and labeling with bio-
tin using the Target Amp cDNA Synthesis Kit (Epicenter). About
750 ng of labeled cCRNA was hybridized to the Illumina HumanHT-12
Expression BeadChips as per the manufacturer’s instructions. The
HumanHT-12 Expression BeadChip provides coverage for more
than 47,000 transcripts and known splice variants across the human
transcriptome. After hybridization, arrays were washed, stained with
Cy3-conjugated streptavidin, and scanned.

Microarray data preprocessing and normalization

The BeadArray and lumi Bioconductor packages were used for pre-
processing microarray data including image analysis, quality con-
trol (QC), variance stabilization transformation, normalization,
and gene annotation. The MedianBackground method was used for
local background correction. In addition, the BeadArray Subver-
sion of Harshlight (BASH) method was used for beads artifact de-
tection, which takes local spatial information into account when
determining outliers. Each probe is replicated a varying number of
times on each array; the summarization procedure produces a bead
summary data in the form of a single signal intensity value for each
probe. Illumina’s default outlier function and modified mean and
SD were used to obtain a bead summary data. Variance-stabilizing
transformation (65) and robust spline normalization (66) method
which combines the features of quantile and loess normalization
were used for generating between-array normalization data. QC
was performed by excluding arrays from further analysis with the
corrupted image files, high gradient effects on the probe intensities,
high percentage of beads that were masked by the BASH method
(67), low mean or median number of beads used to create the sum-
mary values for each probe on each array after outliers removal, low
proportion of detected probes, low percentage of housekeeping
genes expressed above the background level of the array, gender
discrepancies using massiR package, and poor pairwise array cor-
relations. Transcriptional data from the DIPP cohort (GSE302011)
was accessed from the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (GEO) repository using the GEO-
query package from Bioconductor in RStudio (version 3.5.1).

Transcriptomic QC and batch correction
All the nested case-control pairs for the longitudinal transcriptome
data were assigned to the same batch to constrain batchwise
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variation. In total, 2013 TEDDY samples were processed in 31
batches with a median batch size of 74 samples per batch (range: 18
to 86 samples per batch). In addition, two external QC samples (do-
nor 1 and donor 2) were included in each batch to estimation of
batch-to-batch variations. The MedianBackground method was
used for local background correction. In addition, the BASH meth-
od was used for beads artifact detection (67), which takes local spa-
tial information into account when determining outliers. The first
two principal components of the gene expression data before and
after normalization, respectively, are shown in fig. S8. The mean
pairwise Pearson correlation coefficients after normalization were
0.97 (SD = 0.04) for donor 1 and 0.99 (SD = 0.01) for donor 2.

Statistical analysis

Transcriptional network analysis

After data processing and QC, 2013 samples from 401 individuals
were included in the current analysis, representing 1698 samples
from 342 individuals in the islet autoimmunity case:control study
and 795 samples from 125 individuals in the T1D case:control study
(fig. S2). For islet autoimmunity analyses, samples taken before on-
set of islet autoimmunity from both T1D and IA case:control co-
horts were included along with their respective matched controls,
stratified by the specificity of the first seroconversion as indicated.
Transcriptional data were variance filtered (using the inflection
point of cumulative median absolute deviation distribution) with
data from 15,000 probes included in modular network analyses.
The weighted gene coexpression networks (WGCNA) Bioconduc-
tor package in RStudio (version 3.5.1) was used to identify networks
of coexpressed transcripts with scaled eigenvalues taken forward for
Imm modeling. Scale-free topology was confirmed, and a soft thresh-
olding power was selected by serial modeling of mean connectivity
and adjacency functions. The network was constructed with a spec-
ified minimum module size of n = 30 and medium sensitivity to cluster
splitting (deepsplit = 2). Independent networks were generated on
cases and controls with comparison of network structure undertaken
using WGCNA in RStudio applying a composite preservation sta-
tistic as described (fig. S1B) (68). Modular structure in selected
subgroups was visualized using t-distributed stochastic neighbor
embedding (t-SNE) plots using the Rtsne package from CRAN. As
equivalent modular structure was identified in cases and controls,
network analysis was repeated using the full cohort of 2013 samples
to identify “universal” modular eigengenes applicable to the entire
cohort (rather than define them separately; fig. S1B).

For the DIPP cohort, the public dataset (GSE30211) was downloaded
from GEO into R followed by filtering to retain unique genes, selecting
those with the largest interquartile range per gene resulting in n = 18,469
features. This was mapped against the Refseq identifiers in the TEDDY
dataset to identify a matching set of n = 9313 unique features that were
used for modular network analyses as for the TEDDY dataset.
Longitudinal modeling
Longitudinal changes in gene expression were modeled by applying
Imm to scaled modular eigenvalues using the lme4 package from
CRAN in RStudio (version 3.5.1). To identify changes in gene ex-
pression of cases that were not seen in matched controls, models
were fitted for each modular eigenvector against either time to
event (for cases, T1D diagnosis, or islet autoimmunity onset) or to
chronological age (matched controls) and the observed fit com-
pared between cases and matched controls. Significance of effects
was determined using a likelihood ratio test against a null model in
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the absence of that effect. This was repeated for additional covari-
ates to test their independent association with progression rate in-
cluding HLA subgroup, ethnicity, and sex. For effects deemed
significant (FDR < 5%), specificity of association was determined by
comparing observed significance in cases to that in controls in the
form of a ratio of FDR values (FDRt11p/1a:FDRcontrol). Imm was fit-
ted including fixed terms (modular eigengene values and sex) and
both random intercept and random slope terms for individuals. All
identified modular signatures were iteratively tested with the extracted
significance corrected for multiple testing using the Benjamini-
Hochberg FDR method with a threshold for significance set at FDR
of 5%. Where indicated, for modular signatures of interest, model-
ing was repeated incorporating a natural cubic spline, implemented
using the splines package in RStudio (version 3.5.1). Case:control
Imm FDR ratios were visualized as radarcharts including all mod-
ules significantly associated with time to event, using the package
radarchart from CRAN in RStudio (version 3.5.1). Individual fits
from Imm models were visualized using the ggplot2, sme, and ef-
fects packages from CRAN in RStudio (version 3.5.1).

Early and pre-T1D cohorts

For the TEDDY cohort, earliest available samples were identified
from each individual and these were filtered for those obtained be-
fore IAbs seroconversion (TEDDY preAb cohort, Fig. 4A). For the
peri-T1D cohort, individuals were identified from whom a sample
was taken within 365 days of diagnosis (serial IFN analysis) or the
sample closest to diagnosis used (peri-T1D). The closest matched sample
from the paired, matched control subject was used for comparative
purposes. Gene expression modular signatures in these cross-sectional
analyses were adjusted for sampling age, taking the residuals of a
linear model including the relevant eigenvector and sampling age.
Module enrichment analysis

Module interpretation was performed using enrichment analysis
against public repositories of defined transcriptional signatures as
described in the text. Genes comprising selected modules were
compared to reference signature repositories as indicated including
ARCHS*, DICE, and Gene Ontology (GO) with a corrected Fisher’s
exact test computed using Enrichr and visualized as the —log trans-
formed adjusted value in a radar chart. Deconvolution analysis was
undertaken using the CIBERSORT method against the LM22 data-
set (31), with imputed cell proportions being correlated against module-
specific eigenvectors. GPR171 was identified through a systematic
screen against a relational database (36)) linking candidate drugga-
ble targets (35) to associated transcriptional changes and other
genomic data. T1D-associated signatures were screened against the
existing Illuminating the Druggable Genome (IDG) library in the
ARCHS* dataset comprising 352 druggable targets linked to 20,883
genes. All targets showing any overlap with T1D signature genes
were included in the radar plot visualization (Fig. 2I), with only
GPR171 achieving significant overlap.

NK cell analysis

Primary human NK cells obtained from healthy volunteers and
stained with an excess of recombinantly engineered FcR-defective
antibodies (CD3 clone REA641 and CD56 clone REA196, Miltenyi
Biosciences) to avoid preactivation. Flow sorting of NK cells
(CD37CD56") was performed using an Arialll sorter (BD) in the
Cambridge BRC flow phenotyping hub. Purified NK cells were cul-
tured for 48 hours in complete RPMI 1640 in the presence of target
K562 cells and either a GPR171 inhibitor (MS21570, Tocris Bio-
Techne) or vehicle (phosphate-buffered saline) and stained with an
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excess of antibodies against GPR171 (polyclonal rabbit anti-human
GPR171, Abcam), CD71 (clone CY1G4, BioLegend), and Gran-
zyme B (clone GB11, BioLegend).

Bayesian joint modeling

For prediction, we sought a method that could incorporate both
baseline risk stratification and multiple longitudinal covariates to
provide an estimate of event hazard with associated uncertainty.
Joint models applied to longitudinal and survival data allow model-
ing of the error-free biomarker trajectories and disease process si-
multaneously and have several advantages over similar alternatives.
Joint models have been shown to provide unbiased estimates of
hazard ratios, unlike models using time-dependent covariates with
increased performance compared to either baseline-only or
time-dependent Cox models (39, 69). Joint modeling (jm) was per-
formed using the mvjmbayes, jmbayes, and coxph packages (70)
from Bioconductor and CRAN in RStudio (version 3.5.1) to esti-
mate the probability of getting disease at a given point in time given
the data available. Let S(¢) denotes the survival function, which we
define to be Pr(T}e > t), where T; is the true time of getting disease
for the jth patient. S(¢) is estimated using the hazard function h(t),
the instantaneous risk of getting disease

Pr(t < T, < t+8t|T; > 1)
5t

h(t) = lim, € [0,e)

Whereas standard approaches to survival analysis model and es-
timate the hazard function given the survival data at hand, Bayesian
joint models allow hazard function estimation using both baseline
covariates and longitudinal data in a proportional hazard model,
using the predicted value from the Imm in the hazard model. This
at once aims to reduce noise inherent in sparse biological data while
not relying on assumptions that observations remain unchanged
between measurements. The Bayesian methodology to compute the
parameters allows for uncertainty estimates on predictions, achieved
through Monte Carlo Markov chain sampling. We used the JMbayes
package (70) from CRAN in RStudio (version 3.5.1).

The complete model including all covariates considered is
given below

hi(t) = ho(t) exp{y Sex; + a,(t) iaa_sig; + a,(t) gad_sig} + as(t) miaa_ab;
+ay(t)gad_ab; + a(t)ia2a_ab; + o[ miaa_sig; x miaa_ab;]
+ay[gad_sigi x gad_ab;]+ag[ miaa_ab; x gad_ab;]

+0g9[gad_ab; x ia2a_ab;]+ ayg[ia2a_ab; x miaa_ab;]}

Not all covariates were included in all model scenarios as an un-
derlying goal was a sparse model incorporating covariates that can
be measured in a simple, robust, and cost-effective manner and
which are likely to withstand later extension of the model into addi-
tional populations. Covariates used were factors that are known or
suspected to correlate with progression to disease onset (IA) or pro-
gression (T'1D diagnosis) and included whole blood transcriptional
signatures and serial IAbs data with time-varying effects (the hazard
ratio was allowed to vary with time) and interaction effects between
covariates (the type, number, and sequence of IAbs seroconversion
were accounted for). Sex is included in our model as it has shown to
correlate with T1D progression (table S3) (71) and is simple to ob-
tain. HLA risk category is collected in the TEDDY study but was
excluded to facilitate extension of the model between populations
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and ethnicities and because HLA risk groups also did not contribute
to model performance on testing in the TEDDY discovery cohort
(table S3). Longitudinal data were fitted with a natural cubic spline—
fitted Imm from the JMbayes library using the mvglmer function,
and survival predictions were made using survFitJM function. The
input features to predict longitudinal outcome include the natural
spline with three degrees of freedom fitted to time.

Predictive model performance estimates

When building any predictive model, it is imperative to balance
predictive performance against the risk of “overfitting,” whereby
the model performs well on a training dataset but fails to predict on
unseen data. Predictive performance was first estimated using 10-
fold cross-validation on the TEDDY discovery dataset. Application
in a clinical context was simulated by first making predictions on
data collected up to 1 year of age and then serially increasing the
amount of data available in steps of 0.15 years (mimicking clinical
follow up), making disease predictions at each step over a constant
time horizon of 1 year ahead. Model performance was evaluated
using metrics addressing two key parameters, again using the JM-
bayes package: model discrimination (how well the model differ-
entiates between individuals who do/do not reach an end point)
and model calibration (how well the model predicts the ob-
served data).

For discrimination, AUC ROC was selected to reflect both sensi-
tivity and specificity of predictive accuracy. For calibration, PE was
used as defined below. Each metric was applied to both cross-
validated performance estimates on the discovery TEDDY cohort
and after application of a “fixed,” optimal model from the discovery
set to the independent validation DIPP cohort (which played no
part in model training).

AUC is defined for a prediction horizon of At as follows

AUC(1,A1) :Pr[fcj(t+ At|t) <m(t+ At| t){]je (te+ At]} n {Tji‘ >t At}]

where mj(u | t) is the probability that patient j will survive up to time
u given that they are alive at time ¢ and T is the true event time
(T1D onset or IAbs seroconversion). PE is defined as the expected
loss given the difference between the predicted N;(u) and the true
value m;(u | t) as given below

PE(u|t)=E[L{Ni(u) - mj(u[t)}]
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Tracking transcripts through to T1D

Type 1 diabetes (T1D) results from insufficient insulin production and is thought to result from an immune
reaction against the body's own pancreatic f cells. Xhonneux et al. analyzed transcriptome patterns in blood
samples longitudinally collected from 400 children at high risk for islet autoimmunity and T1D. They detected gene
expression changes that tracked with progression to disease onset, including a pre-islet autoimmunity natural killer
cell —specific gene signature that was validated in an independent cohort. The microarray data along with
covariates such as islet antibody status predicted childhood T1D risk in two independent cohorts, demonstrating
the relevance of this dataset to T1D pathobiology.
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