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ABSTRACT
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic
action that goes far beyond its classical role to increase blood glucose. Albeit best known for its
ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen
breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic
rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and
inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renais-
sance of glucagon’s biology with the acknowledgment that glucagon has pharmacological value
beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we
summarize the multifaceted nature of glucagon with a special focus on its hepatic action and
discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor
for health and disease. © 2021 American Physiological Society. Compr Physiol vol number:
page range, year.

Introduction
Seeking to develop a rapid and inexpensive method to purify
insulin from pancreatic homogenates, Charles Kimball and
John Murlin in 1923 identified a pancreatic factor that
opposes the hypoglycemic effect of insulin (203). Due to
its ability to increase blood glucose, the factor was named
“the glucose agonist,” or shortly glucagon. Subsequent
studies by Earl Sutherland and Christian deDuve then iden-
tified the pancreatic α-cells as the origin of glucagon (101,
396). The hyperglycemic effect of glucagon resides in its
ability to directly act on the liver where it stimulates de
novo glucose production and glycogen breakdown (36–38,
91, 115, 357, 382). Studies by Roger Unger then showed
in 1970 that glucose inhibition of glucagon secretion is
diminished in patients with type-2 diabetes, suggesting that
postprandial hyperglucagonemia plays a causal role in the
development of type-2 diabetes (271, 386). Several clinical
studies subsequently assessed the pharmacological potential
of suppressing glucagon action for the treatment of type-2
diabetes, revealing that postprandial levels of glucagon are
increased in patients with type-2 diabetes (5, 6, 39, 93,
122, 192, 261, 271, 281, 282, 313, 371) and that blocking
of glucagon action improves glucose handling in patients
with type-2 diabetes (5, 6, 189, 193). For decades, these
liver-mediated hyperglycemic effects of glucagon overshad-
owed that glucagon is a pleiotropic hormone with metabolic
effects beyond its role to buffer against hypoglycemia. In
line with this notion, glucagon stimulates insulin secretion
(329), lowers body weight by decreasing food intake and
by enhancing energy expenditure (23, 68, 326), stimulates
lipolysis, while inhibiting lipid synthesis (4, 43, 71, 86,

286, 326), slows down gastric emptying (262, 345, 401),
increases cardiac output (131, 188, 224, 241, 413), and
stimulates autophagy and renal glomerular filtration (270).
Recent years have witnessed a remarkable renaissance of
glucagon’s multifaceted biology (as reviewed elsewhere (95,
270)) with therapeutic implications not only as a life-saving
rescue medication to treat severe hypoglycemia but also
when combined with glucagon-like peptide-1 (GLP-1) to
treat obesity and type-2 diabetes (5, 6, 53, 66, 159, 299,
377) and nonalcoholic steatohepatitis (NASH) (27). In this
article, we summarize glucagon’s role in regulating systemic
energy balance with a special focus on its hepatic action and
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highlight its multifaceted nature that led to its use to develop
drugs to treat obesity and type-2 diabetes.

Transcriptional and Translational Control
of Glucagon
In rodents, glucagon is the first hormone found in the develop-
ing endocrine pancreas (135, 179, 294), with detectable levels
as early as embryonic (E) day E9.5. In contrast, in the human
pancreas, detection of insulin-expressing cells by week 8 of
gestational age precedes the detection of glucagon-positive
cells by approximately one week (175). Glucagon is derived
from the cleavage of proglucagon, a 160-amino acid (AA)
precursor protein originating from the preproglucagon (Gcg)
gene. Proglucagon gives in a tissue-selective manner rise to
several other peptides, including glicentin, glicentin-related
pancreatic polypeptide (GRPP), oxyntomodulin (OXM),
GLP-1 and -2 (GLP-2), and the major proglucagon frag-
ment (MGPF) (18, 82, 265). Proglucagon processing into
these smaller peptide fragments is cell-type specific. While
glucagon, MPGF, and GRPP are mainly produced in the
pancreatic α-cells, GLP-1, GLP-2, OXM, and glicentin are
the main proglucagon cleavage products of the enteroen-
docrine L-cells, which are predominantly located in the large
intestine. Tissue specificity in preproglucagon expression is
achieved by binding of specific transcription factors (TFs)
to distinct DNA control elements in the preproglucagon
promoter region to initiate or inhibit preproglucagon expres-
sion (135, 179) (Figure 1). The rat preproglucagon promoter
includes at least six DNA control elements positioned within
a 0.3 kb region upstream of the ATG start codon of Gcg (179,
294). The control elements can be separated into a critical
promoter, encompassing the TATA box and the G1 and G4

elements. These are pivotal for α-cell-specific expression of
preproglucagon (127, 162, 179, 296) (Figure 1).

The preproglucagon DNA control elements are targeted
by several homeodomain proteins, which either activate
or repress preproglucagon expression (179, 180, 206). In
α-cells, Pax6 heterodimerizes with cMaf or MafB and
induces preproglucagon expression through binding to the
G1 element (117, 134). In β-cells, Pdx1, Pax4, and Nkx6.1
bind to G1 and competitively inhibit preproglucagon expres-
sion through blocking the binding of the preproglucagon
activating Pax6/Maf heterodimer to the G1 element (116,
135, 316) (Figure 1). Adenoviral overexpression of Pdx1
alone, however, is not sufficient to suppress Gcg expression
in α-cells (100). Pax6 stimulates preproglucagon expres-
sion through binding of Pax6 to the G3 element of the
preproglucagon promoter (135). Mice devoid of Pax6 have
markedly reduced levels of preproglucagon mRNA (356). In
addition, Foxa1 (HNF-3α) and Foxa2 (HNF-3β) stimulate
Gcg expression through binding to the G1 and G2 elements
of the preproglucagon promoter (135). Mice lacking either
Foxa1 or Foxa2 have a 70–90% reduction in preproglucagon
mRNA levels and are hypoglycemic (85, 185).

In addition to the cell-type-specific expression of prepro-
glucagon through direct interactions of selective TFs in the
preproglucagon promotor region, preproglucagon expres-
sion is also controlled by increased levels of cAMP via the
cAMP-response element (CRE) and the respective CRE-
binding protein (CREB) (229), as well as the exchange
protein activated by cAMP signaling pathways (Epac) (84,
127, 179, 206). Insulin inhibits preproglucagon expression
in α-cells (293–295), while stimulating preproglucagon
mRNA levels in the intestine (427). Finally, specific effectors
of the Wnt signaling pathway have been shown to pro-
mote preproglucagon expression in the intestine but not the
pancreas (275, 426, 427).
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Figure 1 Schematic on the transcriptional regulation of preproglucagon in the pancreatic α- and β-cells. The expression of
preproglucagon is regulated through interaction of home domain proteins that bind to the preproglucagon promoter region,
which comprises a minimal promoter region and an enhancer region. For further explanations please see text.
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The majority of glucagon is produced in the pancreatic
α-cells, with small amounts also being synthesized in a subset
of neurons in the brain stem (83, 148, 178) and seemingly
also in the gut (242). The latter has been subject of debate
for several decades since the measurement of glucagon is
challenging due to its low abundance in the circulation and
cross-reactivity of glucagon detecting antibodies with oxm
and glicentin, which both contain the full AA sequence
of glucagon. However, more recently developed enzyme-
linked immunosorbent assays (ELISAs) show reduced
cross-reactivity to oxm (<5%) and glicentin (<2%) (407).
Their use in combination with mass-spectrometry-based
proteomics revealed that a 29 AA molecule indistinguishable
from glucagon is detectable in the circulation of pancrea-
tectomized patients and circulating levels of this molecule
increase in response to oral but not intravenous adminis-
tration of glucose (242). These data collectively suggest
that extrahepatic glucagon secretion can, at least under
conditions of α-cell dysfunction, contribute to postprandial
hyperglucagonemia. Future studies need to clarify if and to
which extent extrapancreatic glucagon is also produced in
humans without disturbed α-cell function.

Specific prohormone convertase (PC) enzymes are respon-
sible for tissue-specific proglucagon cleavage. In α-cells, the
prohormone convertase 2 (PC2; also called PCSK2) cleaves
the proglucagon protein to produce glucagon, GRPP, and
MPGF. In contrast, prohormone convertase 1 (PC1; also
called PCSK1)-mediated cleavage of proglucagon yields
GLP-1, GLP-2, OXM, and glicentin in the brain and the
intestine (12, 225, 379, 395). Consistent with the crucial role
of PC2 in proglucagon cleavage, PC2 knockout (KO) mice
have lower circulating glucagon levels, are hypoglycemic and
display signs of α-cell hyperplasia. The latter can however
be corrected by continuous intraperitoneal supplementa-
tion of glucagon (108, 402). The chaperone protein 7B2 is
responsible for the maturation of PC2 as well as its enzy-
matic activity and thus helps to facilitate the αcell-specific
processing of proglucagon to glucagon (319). While cell-
specific expression of PC2 ensures that glucagon is the main
proglucagon cleavage product in the α-cells, STZ-induced
β-cell destruction increases PC1 expression in rat α-cells,
resulting in concomitant production of Glp-1 in the islets,
and plausibly in the α-cells itself (276). In line with these
data, overexpression of PC1/3 in α-cells increases islet Glp-1
secretion and leads to improved glucose-stimulated insulin
secretion (414). Collectively, these data suggest a potential
role of the α-cells to produce Glp-1 under conditions of
impaired β-cell function. The PC enzymes might thus play
an important, yet underappreciated role in regulating this
plasticity in islet function.

Regulation of Glucagon Secretion
Glucagon secretion is similar to insulin secretion intimately
tied to circulating levels of blood glucose (318). In the β-cell,

high levels of blood glucose increase the ATP over ADP
ratio with the result that ATP-sensitive potassium (KATP)
channels close and depolarize the cell membrane. This leads
to opening of voltage-dependent Ca2+ channels (VDCC),
influx of Ca2+, and exocytosis of the insulin granules (136).
In the α-cells, low glucose levels lead via moderate activation
of the KATP channels to a membrane potential of about
∼60 mV, which entails opening of T-type Ca2+ channels,
followed by depolarization of the cell membrane and opening
of voltage-dependent Ca2+ and Na+ channels. The influx of
Ca2+ and Na+ then triggers release of glucagon into the cir-
culation (305). An increase in extracellular glucose increases
the cytosolic ATP over ADP ratio with the result that KATP
channels close and depolarize the cell membrane to level
where the voltage-dependent Ca2+ and Na+ channels are
inactive. The resulting lack of Ca2+ and Na+ influx then shuts
down glucagon secretion (305). In support of this model,
sulfonylurea-induced blockage of KATP channels mimics
high glucose-mediated inhibition of glucagon secretion in
isolated α-cells (137) and islets independent of changes in
insulin secretion (245). In addition to glucose-dependent
mechanisms, AAs and free fatty acids (FFAs) also regulate
glucagon secretion. Individual intravenous administration of
20 natural AAs in dogs identified that 17 out of 20 natural
AAs increase glucagon secretion (317). The branched-chain
AA’s were the only ones that failed to stimulate glucagon
secretion, while arginine produced the greatest stimulation
(317). Consistently, high protein meals (113, 236, 248)
also stimulate glucagon secretion in humans. However,
hyperglycemia attenuates (309, 386) or abolishes (309) the
increase in plasma glucagon following intravenous arginine
or a high protein meal, suggesting AA-mediated regulation
of glucagon secretion is dependent on glycemic status.

Early studies in dogs (246, 338) and humans (123) revealed
that FFA inhibit glucagon secretion; however, more recent in
vitro studies in isolated rodent islets suggest that palmitate
increases glucagon secretion in euglycemic but not hyper-
glycemic conditions (28, 167). These seemingly contradictory
findings may depend on the type of FFA administered, or
whether exogenous or endogenous FFAs were studied. Hong
et al. (167) observed that FA chain length, spatial configu-
ration, and degree of saturation influence glucagon secretion
independent of glucose concentration. These data suggest
that FFA may affect glucagon secretion differently depending
on the source (exogenous vs. endogenous) and the FFA
characteristics. Another recent study suggests that glucagon
secretion is also triggered by enhanced fatty acid oxidation
since loss of CPT1a lowers glucagon secretion by decreasing
the pool of ATP supply for the Na+/K+ ATPase (32).

Also, paracrine factors affect glucagon secretion. Insulin
receptors are present on α-cells (74) and insulin inhibits
glucagon secretion under hypoglycemic conditions (58)
through modulating KATP channel activity (102) in a phos-
phoinositide 3 kinase-dependent manner (186). Additionally,
insulin may indirectly suppress glucagon secretion through
increasing translocation of α-cell GABA-A receptors (420).
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Inhibition of GABA receptors increases glucagon secre-
tion (404) and GABA released from β-cells (103, 367)
is postulated to mediate glucose-facilitated inhibition of
glucagon secretion (404). Further, zinc (Zn2+) is co-secreted
with insulin (102, 231) and inhibits glucagon secretion (102).
Also, somatostatin, which is secreted from δ-cells, inhibits
both insulin and glucagon secretion (107, 204, 322, 353),
suggesting that glucagon is tightly controlled by pancre-
atic factors. However, glucose is still sufficient to suppress
glucagon secretion independently of insulin (143, 310, 397),
Zn2+96, GABA (245), or somatostatin (393), indicating a
dominant regulatory function of glucose on glucagon action,
most likely via its ability to modulate KATP channel activity.
Nonetheless, GABA- or somatostatin-receptor antagonism
at low glucose levels increased basal glucagon secretion,
suggesting a paracrine role for GABA in the regulation of
glucagon release independent of glucose levels (245). These
observations collectively highlight the complex interaction
of glycemia and paracrine signaling in regulating glucagon
secretion. It is likely that all factors play a complemen-
tary role in inhibiting glucagon secretion, thereby ensuring
compensation across multiple physiological conditions.

Also, gut hormones regulate glucagon secretion. GLP-1
(60, 153, 184) and glucose-dependent insulinotropic polypep-
tide (GIP) (49, 96) both indirectly inhibit glucagon secretion,
presumably via their ability to stimulate the secretion of
insulin and Zn2+. Importantly, while GIP stimulates insulin
secretion under hyperglycemic conditions, it stimulates
glucagon secretion in hypoglycemic or euglycemic states
(51, 254, 288), suggesting a bi-functional role to main-
tain euglycemia. In line with these data, GIP inhibition of
glucagon secretion seems to be mediated indirectly rather than
directly, since GIP treatment of αTC1 cells does not decrease
(but rather increases) glucagon secretion (49). In the isolated
perfused rat pancreas, GIP affects glucagon (and insulin)
secretion in a glucose-dependent manner with stimulation of
insulin secretion under glucose concentrations >5.5 mM and
stimulating of glucagon secretion at glucose concentrations
<5.5 mM (288). These data align with studies in humans in
which GIP increases postprandial glucagon levels (49, 243)
and ameliorates insulin-induced hypoglycemia (52).

The pancreas is highly innervated by both the sympa-
thetic (splanchnic) and parasympathetic (vagus) nervous
system (283). Vagal stimulation increases insulin secretion
(106), whereas splanchnic stimulation decreases insulin and
increases glucagon secretion (26, 214, 283, 364). While
central regulation of glucose homeostasis has been appreci-
ated since the mid-1800s (298, 380), it was not until 1971
that the ventromedial hypothalamus (VMH) was implicated
in regulating glucagon secretion (105) and that neuronal
activation of glucagon correlates with rises in blood glucose
levels (249). Further, glucagon secretion has been implicated
in the cephalic phase (335, 369) of feeding. Intriguingly,
this regulation is observed in healthy controls but not
individuals with a kidney and pancreas transplant (335),
suggesting functional pancreatic innervation is necessary to

mediate cephalic-induced glucagon secretion. The relative
contributions of direct and/or indirect neuronal efferents to
glucagon secretion, however, remain unclear. Centrally regu-
lated glucagon secretion could be mediated via direct sympa-
thetic innervation on the α-cell, indirectly via the sympathetic
tone and signaling through the hypothalamic-adrenal-
pancreas signaling axis, and/or potential indirect parasympa-
thetic signaling (283, 363). Altogether, glucagon secretion is
a complex process regulated by multiple interactions between
glycemic, paracrine, endocrine, and neural factors.

α-Cell Regulation of β-Cell Function
While PCSK2 is under nonpathological conditions the pre-
dominant PC in the α-cells, PCSK1/3 expression/activity
increases in α-cells under pregnancy and under conditions
of metabolic stress such as insulin resistance and diabetes
(198, 276, 372, 415). Increased PCSK1/3 expression with
concomitant GLP-1 production has also been demonstrated
in α-cell lines and in isolated islets that have been cultured
at conditions of high glucose (251, 412). The production
of GLP-1 in the α-cells has been linked to the action of
interleukin 6 (IL-6). The IL-6 receptor is highly expressed
in murine α-cells (88) and administration of IL-6 increases
expression of preproglucagon and of PCSK1/3 and accel-
erates the production of GLP-1 in the intestinal L-cells
and the α-cells (89). Consistent with these data, adenoviral
overexpression of PCSK1/3 in the α-cells enhances GLP-1
production and improves glucose-stimulation of insulin
secretion and islet survival in mice (414). Collectively, there
is growing evidence indicating that α-cells produce GLP-1
under conditions of higher β-cell demand to improve islet
function in a paracrine fashion (47, 234, 264, 374, 391).
Notably, intraislet paracrine signaling also plays a role in
β-cell function under nonpathological conditions. In line with
this notion, glucagon stimulation of insulin secretion was
already described by Ellis Samols and Vincent Marks in 1965
(329) and was later confirmed in numerous other studies
(263, 269, 270). β-Cells with contact to α-cells also secrete
more insulin when challenged with glucose relative to β-cells
without α-cell contact (416). Glucagon amplifies glucose-
stimulated insulin secretion through direct action (169) and
the receptors for glucagon and insulin are expressed on both
α- and β-cells (190, 196). Glucagon was also recently shown
to cross-react with GLP-1R in the β-cells and interaction of
glucagon with GLP-1R has been demonstrated to enhance
insulin secretion (360). Other factors potentially playing a
paracrine role in α-cell regulation of β-cell function include
glutamate and acetylcholine (263).

Glucagon Receptor Signaling
Once glucagon is secreted into the circulation, it elicits its
function intracellularly by binding to its cell surface recep-
tor, a seven-transmembrane protein belonging to the large
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superfamily of G protein-coupled receptors (GPCRs) (69).
The glucagon receptor (Gcgr) belongs to the class B family of
GPCRs, which are peptide hormone receptors of the secretin
family that are widely used drug targets for many human
diseases, including diabetes, cancer, neurodegeneration,
cardiovascular diseases, and others (285). Gcgr is mainly
expressed in the liver. Only traces of Gcgr are found outside
the liver such as in the kidney, adipose tissue, pancreas,
spleen, lymphoblasts, brain, the gastrointestinal tract, and
the adrenal gland (361). In the liver, Gcgr expression is
zonated and occurs only at the periportal area, where also the
metabolic effects of glucagon occur (213).

In liver cells, the Gcgr as a dimer induces the activation
of two signaling cascades mediated by two classes of G pro-
teins, a cAMP stimulatory G protein (Gs) and a Gq protein
that signals via Ca2+ through the inositol 1,4,5-trisphosphate
(IP3) pathway (174, 260). Production of IP3 is mediated by
Gq-dependent activation of phospholipase C (PLC) and con-
comitant Ca2+ release from the endoplasmic reticulum (ER)
to the cytosol and into the mitochondria. Increase of cellu-
lar calcium activates downstream signaling cascades and con-
tributes to enhanced mitochondrial respiration observed under
elevated glucagon levels (15, 34, 94). Interestingly, recent data
highlight the role of the mitochondrial IP3R1 receptor in Ca2+

dependent activation of mitochondrial β-oxidation (422). The
interaction between the mitochondria and the ER has received
a lot of attention due to membrane contact site formation and
their function in calcium flux and signaling (315). However,
the effects of glucagon on this cellular interaction have not
been elucidated and might represent an underappreciated site
of glucagon action.

Glucagon signaling via Gs represents the canonical Gcgr
signaling pathway. Here, glucagon-induced Gs activation
leads to the dissociation of the Gsα subunit from the G pro-
tein α/β/γ heterotrimer and its subsequent interaction with
adenylate cyclase. Activated adenylate cyclase enhances
its production of cAMP and consequently activates pro-
tein kinase A (PKA), enhances signaling via Rap guanine
nucleotide exchange factor 3 (RAPGEF3, also known as
Epac1) and the cAMP response element-binding protein
(Creb)-regulated transcription coactivator 2 (Crtc2, also
called Torc2) (144, 173). Stimulated PKA translocates to the
nucleus, where it initiates the nuclear localization and phos-
phorylation of Creb at the serine-133 residue (Ser133) (174,
208). Once phosphorylated, Creb binds to the CRE elements
located in the promoter region of downstream target genes and
induces their transcription. This signaling cascade causes the
expression of gluconeogenic and glycogenolytic genes, such
as glucose-6-phosphatase (G6Pase), phosphoenolpyruvate
kinase (Pepck), Pc, and peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (Pgc-1𝛼) (3, 163, 208,
306, 418). The activation of the transcriptional co-activator
Crtc2 is regulated by fasting-feeding cycles and changes in
ATP levels. Underfeeding conditions, when ATP is high,
salt-inducible kinase 2 (Sik2) and AMP-activated protein
kinase (AMPK) phosphorylate Crtc2 on Ser171 and Ser307,

respectively, causing its localization in the cytosol (3, 208,
381). Upon fasting, Sik2 is inhibited causing Crtc2 dephos-
phorylation by calcineurin in response to elevated cAMP
and calcium levels, leading to its nuclear translocation (3,
30). In the nucleus, Crtc2 binds along with Creb to the CRE
element in the promoter region of target genes and thereby,
for example, enhances the expression of gluconeogenic and
glycogenolytic gene programs in the liver (3, 208, 323).

Glucagon Receptor Trafficking
GPCR signaling is regulated by endosomal membrane traf-
ficking, where rapid internalization of the ligand-receptor
complex contributes to signal termination and receptor
desensitization (150). GPCRs are mainly internalized via
clathrin-mediated endocytosis involving the β-arrestin family
(14, 266). Here, arrestins are recruited to the activated GPCR,
upon phosphorylation via the G protein-coupled receptor
kinase (GRK) family, which results in uncoupling the GPCR
from its corresponding G protein (244). Arrestins then con-
nect the GPCR to the clathrin coat due to its dual binding
function and facilitate internalization (244, 297). Importantly,
GPCRs differ substantially in their way in which they engage
with the GRK/arrestin/clathrin machinery. This helps to
provide GPCR diversity in signaling, as only limited amounts
of G protein pathways exist. In fact, class B receptors have
been shown to recruit both β-arrestin-1 and 2 equally well
and co-internalize with them, whereas class A receptors
(e.g. β2-adrenergic receptors, β2AR) preferentially recruit
arrestin-2 and co-localize only transiently on the plasma
membrane with clathrin and arrestin (150). An alternative
way of internalization involves caveolin-mediated endocyto-
sis, where mainly GPCRs with primary signaling pathways
via Gq are internalized (50, 279). In fact, GPCRs, G proteins,
as well as arrestins, have been shown to sequester in caveolae,
mediated through direct interaction of Caveolin 1 (Cav1) with
Gq leading to internalization and initiation of Ca2+ signaling
(50, 279, 337). These data suggest that Gq signaling is mainly
mediated via caveolin-mediated endocytosis.

The Gcgr, a prototypical class B receptor, has been shown
selectively interact with β-arrestin-2, and not β-arrestin-1,
as only the knock-down of β-arrestin-2 lead to an impaired
glucose tolerance as consequence to enhanced GPCR cell sur-
face signaling (433). However, other in vitro overexpression
studies reported the importance of both β-arrestins for Gcgr
trafficking, emphasizing the differences between endoge-
nous and exogenously overexpressed receptors (211) and
the requirement for research in appropriate cell types. Gcgr
has been shown to be internalized into endosomal fractions
within 30 min after glucagon stimulation in vitro (Figure 1)
(33, 212) and in vivo (255), causing a relatively mild decrease
in membrane-localized Gcgr (8, 255, 387). Short-term acti-
vation leads to its phosphorylation through GRKs, both at
the cell surface and after internalization into endosomes
(255), highlighting the importance of phosphorylation for
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Figure 2 Proposed model of Gcgr trafficking and signaling. Stimulations with glucagon induce glucagon receptor recruitment into clathrin-coated
vesicles on the plasma membrane through the interaction of β-arrestins with the cytoplasmic tail of the receptor and subsequent interaction with the
clathrin coat. Short-term stimulations with glucagon increase glucagon receptor presence in early endosomes and enhanced signaling, followed
by receptor recycling. Upon long-term treatments, reoccurrence of the receptor on the membrane is reduced, and its lysosomal degradation
increases. Regulators of these sorting mechanisms on early and late endosomes, such as retromer and WASH complex for recycling and ESCRTs
for degradation have been shown to be involved in other GPCR trafficking, however, the knowledge on Gcgr is still very limited and represented
by question marks.

internalization and a potential endosomal contribution to
signaling. In fact, endo-lysosomal transfer of Gαs subunit
but not β-arrestins have been observed upon glucagon stim-
ulation, together with increased adenylate cyclase activity,
suggesting sustained Gcgr signaling at the level of endosomes
(8, 255, 390). This can be achieved through the different bind-
ing properties of β-arrestins in class B versus class A GPCRs.
While β-arrestins bind to the common binding pocket in the
transmembrane core of the receptor in class A GPCRs, they
bind class B GPCRs in the C-terminal tail, leaving the binding
site for G proteins free for interactions in endosomes. In fact,
a second wave of G protein-induced and β-arrestin-mediated
signalling from endosomal membranes has been reported
(87, 210, 378). Why β-arrestins have not been shown to

traffic to endosomes upon glucagon treatment is puzzling
in this regard, however, limitation of antibody sensitivity
and resolution of the subcellular fractionation could have
influenced this study (255).

The fate of the GPCRs is decided at the level of the
endosomes, which determine their re-usage or disposal.
Internalized GPCRs can be either recycled back to the plasma
membrane via the recycling endosomes for re-sensitization
and continued signaling or can be degraded through the lyso-
somal system for a transient response (Figure 2) (150). These
fates are determined by multiple mechanisms in the endoso-
mal system. Targeting GPCRs to recycling usually requires
sequence-directed mechanisms involving the cis-sorting
sequence in their C-terminal tails (151, 375). These are
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recognized by multiple sorting complexes in the endosomal
network, including the retromer and WASH (Wiskott-Aldrich
syndrome protein and SCAR homolog) complexes (62, 252),
highlighting the complexity of the recycling system. Inter-
estingly, the recycling kinetics can be altered depending on
the extracellular environment, suggesting sensitivity in the
sorting machinery to external nutritional cues (151, 405).

The fate of the Gcgr is dependent upon the duration of
glucagon stimulation. Acute glucagon injections have no
effect on Gcgr protein levels, leading to Gcgr internalization
and reoccurrence after 2 h (8), suggesting activated recycling
(Figure 2, right side). As for other GPCRs, this is dependent
on the C-terminus of Gcgr, as its truncation causes reduced
internalization, phosphorylation of the receptor, and a com-
plete block on recycling (33, 212), resulting in presumably
enhanced Gcgr localization to endosomes. Although the
concept of sustained endosomal signaling of Gcgr has been
proposed (8, 255, 390), the resulting consequences on sig-
naling under these conditions have not been investigated.
This would be of interest also in comparison to the fact
that GPCRs can couple to G proteins even without inducing
G protein signaling (150), which has also been shown for
the Gcgr, as its antagonist (des-His1-[Glu9]glucagon) also
induces detectable internalization of Gcgr (255).

GPCR internalization can be regulated by additional
posttranslational modifications, such as palmitoylation and
ubiquitination (150). Ubiquitination is a strong signal for
receptor downregulation through the endo-lysosomal system
(160). Lysosomal targeting is especially important for chron-
ically activated receptors to downregulate their activity. In
addition, it is also thought to play a role in drug tachyphy-
laxis or tolerance (411), which is particularly relevant for
class B receptors that are used as drug targets. Indeed, the
use of the pharmacological inhibitor, the receptor activity
modifying protein (RAMP2), has been shown to co-localize
with Gcgr and induces a reduction in cell surface-bound Gcgr
(46). Whether enhanced degradation is achieved under these
conditions need to be elucidated.

Receptor downregulation involves the trafficking through
Rab7 positive late endosomes, multivesicular body forma-
tion, and concomitantly fusion with lysosomes (62, 128,
399). Membrane receptors designed for degradation are
ubiquitinated at lysine residues that are recognized by the
endosomal sorting complex required for transport (ESCRT)
machinery, which binds ubiquitinated cargo and sequester
those into intraluminal vesicles in multivesicular bodies/late
endosomes, leading to receptor downregulation (160, 362).
Activation of this process has been shown to be beneficial
for degrading toll-like receptor 4 (TLR4) thus reducing its
signaling in nonalcoholic fatty liver disease (NAFLD) to
NASH progression (432). Although investigated for other
GPCRs, such as chemokine receptor CXCR4 and β2AR (194,
392), this cellular mechanism has not been shown for Gcgr.
In fact, some GPCRs are not ubiquitinated (80), however,
arrestins are known to recruit E3 ligases to GPCRs (130,
342, 343), thereby inducing ubiquitination and potentially

thereby marking the bound GPCR for downregulation. As for
the Gcgr, prolonged and chronicle treatment with glucagon
results in a net decrease of glucagon binding efficiency and
colocalization with lysosomes (Figure 2, left side) (7, 212),
suggesting receptor downregulation under these conditions.
Whether chronic glucagon treatment enhances arrestin-2
ubiquitination and thus Gcgr trafficking to lysosomes has
not been investigated but would be an interesting concept
that could be exploited to downregulate Gcgr in conditions
of type-2 diabetes, where the overactivation of glucagon
signaling is contributing to enhanced glucose output.

In fact, many of the studies on GPCRs have been performed
on other members of the family, hampering our knowledge of
Gcgr trafficking and its connection to signaling. Most of the
studies on Gcgr were performed 20-30 years ago, where the
detection techniques were less developed and subcellular frac-
tionation or overexpression studies in cell lines, which do not
endogenously express the Gcgr, were used. Given the fact that
a complex trafficking machinery is involved in GPCR sorting,
tissues with endogenous levels of Gcgr might engage other
regulatory trafficking proteins than cell lines with an over-
expression of nonendogenous Gcgr. In addition, studies with
iodinated glucagon might have given misleading results, as
iodoglucagons have been reported to alter adenylate cyclase
activity in vitro and exhibit hyperglycemia in vivo (73, 235).
Thus, further studies are needed to shed light into the regu-
lation of Gcgr trafficking and signaling under physiological
conditions and to connect this to its function as a fasting-
induced receptor.

Glucagon Effects on Food Intake
Albeit its classical function to increase blood glucose under
conditions of hypoglycemia, glucagon also lowers food intake
and body weight in rodents (23, 68, 326) and humans (118,
289, 327, 333, 359) (Figure 3). Glucagon’s anorexigenic
effect is driven by the liver-vagus-hypothalamus axis and is
achieved via a decrease in meal size without affecting meal
frequency (119, 227), taste aversion, or postprandial behavior
(120). Consistent with its role as a meal terminating factor,
circulating levels of glucagon rise during food intake (70, 221,
385) and preprandial inhibition of glucagon signaling (222,
227), or antibody-based blocking of glucagon action (222),
increase meal size, while stimulation of glucagon signaling
during a meal terminates food intake (118). Glucagon’s role
in satiety is substantiated by increases in glucagon secretion
following ingestion of high carbohydrate, high protein, and
high-fat meals (70, 221), while antagonism of endogenous
glucagon via hepatic-infused glucagon antibodies increases
spontaneous meal size (119). Early studies observed that
glucagon reduces meal size in humans (333), rodents (119),
and sheep (215) independent of meal frequency (119, 227).
Moreover, glucagon infused directly into the hepatic portal
vein of rats reduces food intake and this effect is lost in
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Figure 3 Schematic on the direct and indirect metabolic effects of glucagon.

hepatic-vagotomized rats (119), suggesting liver glucagon
signaling mediates satiety via vagal afferents to the brain.

While the liver-hypothalamus axis regulates this pro-
cess, direct neuronal glucagon signaling may also play
a role. Acute intracerebroventricular (ICV) administra-
tion of glucagon decreases food intake acutely (1-4 h) in
male mice in a dose-dependent manner and this effect was
lost >6 h postadministration (307). Inhibition of PKA,
the main downstream mediator of glucagon signaling,
blunted glucagon’s hypophagic effects, by decreasing
Ca2+-calmodulin-dependent protein kinase β (CaMKKβ)
levels and AMPK activity (307). Further, ICV glucagon
decreased expression of Agouti-related protein (AgRP) with-
out changes in POMC, NPY, and CART; suggesting glucagon
may decrease food intake via modulation of AgRP levels
(307).

Genetically modified mice deficient for whole body Gcgr
(Gcgr−/−) also support glucagon’s regulation of food intake.
Gcgr−/− mice are resistant to diet-induced obesity (DIO),
most likely due to a decrease in food intake compared
to control animals (56). Interestingly, mice deficient for
hepatic Gcgr (Gcgrliver) are not resistant to DIO. Chronic
Gcgr agonism via the long-acting Gcgr agonist, IUB288,
in DIO mice reduces food intake (201, 274) in addition to
increasing energy expenditure (201). However, the same
glucagon-receptor agonism stimulates a similar suppression
of food intake in Gcgrliver mice as compared to littermate
controls (201), further supporting hepatocyte-independent

regulation and potentially implicating central Gcgr signaling
in regulating HFD-food intake. Interestingly, chronic Gcgr
agonism in lean male mice stimulates hyperphagia and a
defense of their body weight (145), most likely to offset the
increase in energy expenditure. Together these data suggest
differential effects of glucagon on food intake depending on
energy balance status.

While there is convincing data to support that central and
liver-specific glucagon signaling both act to regulate food
intake, the respective contributions of each pathway remain
unclear. It is likely that both pathways work in concert with
each other or selective pathways may dominate in a specific
nutrient milieu. Regardless, further studies are needed to
tease apart the contributions of central glucagon versus
liver-mediated reductions in food intake.

CNS Regulation of Glucagon Action
While liver-regulated glucose homeostasis is well established
(344), the hypothalamus likewise comprises a glucose-
sensing network that is sensitive to hormonal signaling and
known to modify peripheral glucose homeostasis (320, 347).
Shimazu et al. (346) were the first to uncover that electrical
stimulation, specifically in the VMH, resulted in an increase
in blood glucose levels, accompanied by a decrease in liver
glycogen. It is now appreciated that within the VMH there are
both glucose excitatory (GE) neurons, which control periph-
eral glucose utilization, and glucose inhibitory (GI) neurons,
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which control hepatic glucose production (347). Insulin and
glucagon are well characterized in targeting peripheral tissues
to mediate glucose homeostasis. However, there is a growing
body of evidence that insulin is an important neuroregulatory
peptide, involved in energy balance and glucose homeostasis
(76). Despite greater appreciation for glucagon in energy
balance beyond glucose metabolism, little attention has been
given to its central actions.

Historically considered a diabetogenic hormone, glucagon
signaling increases blood glucose levels via PKA-dependent
signaling in the liver. However, this glycemic effect is tran-
sient, despite continuous intravenous glucagon infusion and
lack of insulin (29, 92). This suggests an insulin-independent
compensatory mechanism may be triggered to restore glu-
cose homeostasis. A possible explanation for this effect
may involve a negative feedback loop involving glucagon.
Glucagon crosses the blood-brain barrier (13) and glucagon
immunoreactivity has been identified in the hypothalamus
(332), suggesting a potential physiological role for central
glucagon signaling. Consistently, administration of glucagon
to the mediobasal hypothalamus (MBH) decreases hepatic
glucose production in clamped rats and improves glucose
tolerance in nonclamped rats mediated via PKA-dependent
signaling and hepatic vagal efferents (256). Similarly, central
glucagon infusion also decreases hepatic glucose production
in control, but not Gcgr−/− mice (256). While these data
support that central glucagon signaling is sufficient to reg-
ulate hepatic glucose production, the physiological role of
endogenous central glucagon signaling remains unclear.

Intriguingly, a high protein meal (65.4% protein) improves
glucose tolerance, despite increasing glucagon signaling in
the dorsal vagal complex (DVC) of the brainstem (223). DVC
administration of either a Gcgr antagonist or a glucagon mAb
blunts high protein diet-induced improvements in glucose tol-
erance, highlighting a role for endogenous central glucagon
signaling in the regulation of glucose homeostasis. Interest-
ingly, inhibition of Gcgr signaling on a normal protein diet
(21.5% protein) did not alter glucose production, suggesting
that DVC glucagon signaling may be important in specific
nutrient states (e.g. high protein consumption).

Hormone resistance is common in rodents (67, 97) and
humans with obesity (90, 425). Consistently, acute (3d) and
chronic (3w) HFD-feeding resulted in Gcgr resistance in the
MBH (256), indicating that hypothalamic Gcgr resistance
may play a role in diet-induced hyperglycemia. Data support
that the brain is sensitive to glucagon; however, most studies
to date involve central glucagon administration, which may
not reflect endogenous glucagon action. Further studies
utilizing neuronal Gcgr knockout or central Gcgr-antagonist
models will be essential for dissecting the endogenous role
of central glucagon signaling. The focus of these studies will
likely involve both the hypothalamus and the brainstem and
the respective contributions of direct neuronal glucagon sig-
naling versus indirect liver-brain communication. In addition,
further studies are warranted to uncover whether central

glucagon signaling mediates other facets of energy balance
beyond peripheral glucose homeostasis.

Glucagon Effects on Energy Expenditure
Glucagon was first shown to increase energy expenditure
in rats in 1960 (65) and has since then been confirmed in
several human studies (205) (Figure 3). The energy expen-
diture effect in patients is rapid, with oxygen consumption
elevated within minutes after intravenous glucagon infusion
(366). In the fed state, glucagon’s ability to stimulate energy
expenditure is less effective compared to a robust increase
by 100-200 kcal per day when administered in the fasted
state (205). The magnitude of glucagon’s energy expenditure
effect in humans is similar to that of the β3-adrenergic recep-
tor agonist mirabegron, which primarily targets the brown
adipose tissue (BAT) (+203 kcal/day) (63), and to the energy
expenditure increase detected during acute cold exposure
(+193 kcal/day) (325).

Early studies investigating how glucagon leads to rapid
increases in energy expenditure pointed to the BAT as the
main responsible organ; this was based on studies showing
that glucagon increases oxygen consumption in isolated BAT
cells and BAT tissue explants from rats (181, 216), albeit
at supraphysiological doses. In different animal models,
glucagon elevates the temperature over interscapular BAT
and augments blood flow into BAT (54, 157, 421). Moreover,
in cold-adapted mice, which have more BAT glucagon’s
effect on energy expenditure is potentiated (77).

Substantial literature indicating that glucagon affects
energy expenditure via BAT-dependent (181, 216) and -
independent mechanisms. In animals with little (adult dog)
or no functional BAT (pig) glucagon is still able to acutely
increase energy expenditure (172, 403). Moreover, while
BAT thermogenesis relies predominantly on the uncoupling
protein 1 (UCP1), glucagon injection in mice lacking UCP1
increases energy expenditure to similar extent as in wild-type
controls (17). In addition, mice with selective deletion of the
Gcgr in BAT also increase their energy expenditure normally
following glucagon injection (17). Collectively, this suggests
that in vivo neither BAT per se nor Gcgr signaling in BAT are
required for the acute energy expenditure effect of glucagon
in mice. Fittingly, in humans, glucagon was recently shown to
increase energy expenditure without increasing BAT activity
in subjects specifically screened for functional BAT (325). An
alternative, BAT-independent explanation for how glucagon
mediates increased energy expenditure could comprise the
engagement of multiple metabolic (predominantly catabolic)
pathways. For example, liver oxygen consumption has been
shown to increase by up to 20% during glucagon infusion in
rats (57).

In addition to its acute effects, glucagon can also ele-
vate energy expenditure chronically. Notably, glucagon
fails to promote body weight loss in mice lacking liver
glucagon receptor (Gcgrliver) (201), suggesting that liver
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Gcgr-signaling is necessary for the energetic response to
glucagon. In the liver, glucagon stimulates the synthesis and
release of fibroblast growth factor 21 (Fgf21) (64, 145), a
circulating peptide hormone that regulates energy home-
ostasis (99, 129) via centrally mediated mechanisms (81,
284). Chronic glucagon treatment fails to augment energy
expenditure and to prevent HFD-induced obesity in Fgf21
null mice, suggesting that glucagons effect on energy expen-
diture requires Ffg21 signaling (145). Similarly, in obese
liver-specific Fgf21-deficient mice, glucagon-mediated body
weight loss is blunted (201), suggesting that specifically
hepatic Fgf21 secretion contributes to the chronic effects
of glucagon on energy expenditure. In addition to Fgf21,
prolonged glucagon treatment increases circulating levels
of bile acids in DIO mice (201). Bile acids are ligands for
the farnesoid X receptor (FXR) (201) and both, bile acids
and FXR, regulate energy expenditure (370). In liver-specific
FXR knockout mice, the body weight lowering effects of
glucagon is blunted, despite normal Fgf21 secretion (201);
indicating that in addition to Fgf21, a hepatic bile acid—FXR
axis contributes to the chronic effects of glucagon on energy
expenditure.

It remains possible, that other factors that have been
shown to be regulated by glucagon, like epinephrine, cortisol,
and thyroid hormone (205) may play a role in glucagon’s
prolonged thermogenic effect. Also, glucagon can cross the
blood-brain barrier (13) and the Gcgr is expressed in hypotha-
lamus and brainstem regions, two sites known to modulate
energy metabolism (168, 332). However, chronic ICV studies
assessing the role of glucagon on energy expenditure are still
missing.

Glucagon Action in the Heart
Traces of the Gcgr are expressed in the heart (1). Whole-body
knockout of the Gcgr results in a lower intrinsic heart rate
(268), whereas glucagon administration increases heart rate
(chronotropic effect), contraction force (inotropic effect), and
stroke volume in animals and humans (241, 287) (Figure 3).
Glucagon fails to increase heart rate in Gcgr null mice
(268). Mechanistically, glucagon triggers adenylyl cyclase
activation through Gs protein-coupled signaling. Glucagon-
mediated adenylyl cyclase activation occurs independently of
the β-adrenergic system and its activation leads to an increase
in cAMP levels, which engage the cyclic nucleotide-gated
channels to elevate calcium concentrations in cardiac conduc-
tion tissue like the sinoatrial (SA) node (291). These effects
are transient, lasting only several minutes rather than hours
(287), because adenylyl cyclase quickly becomes uncoupled
from the Gcgr (424), cAMP is rapidly broken down by
phosphodiesterase (183), and receptor internalization reduces
the number of available Gcgrs (164).

In the context of cardiac health following injury, like
myocardial infarction, the role of augmenting versus dimin-
ishing cardiac glucagon signaling has been investigated

in several preclinical studies. In mice, glucagon treatment
impairs survival after myocardial infarction, whereas cardiac-
specific deletion of the Gcgr markedly improves survival rates
compared to wild-type mice (1). Similarly, treatment with
monoclonal Gcgr antagonistic antibody ameliorates onset
and progression of heart failure (114, 187, 341). Whether
Gcgr antagonism improves heart health in humans has not
been tested.

Glucagon Regulation of Hepatic
Metabolism
The fundamental aspect of liver glucagon action is its func-
tion on increasing hepatic glucose output (308). Initially
recognized as a hormonal factor that counter-regulates the
hypoglycemic effects of insulin, glucagon was later identified
to increase hepatic glucose production through stimulation of
glycogenolysis and gluconeogenesis, while at the same time
inhibiting glycogenesis and glycolysis (308). Glucagon’s
role on hepatic glucose production is most prominent via
intra-portal injection and is absent in hepatectomized rats
(25). Consistent with this observation, glucagon has been
identified to be secreted into the portal vein from the pancreas
and reaches the liver at a much higher concentration than
the in the systemic circulation (365), indicating an acute and
preferential effect on the liver.

Regulation of glycogenolysis
Upon short-term starvation, glucagon induces rapid mobi-
lization of hepatic glycogen stores leading to an immediate
increase in hepatic glucose output (176). This is achieved
via glucagon signaling through PKA (144) and activation
of glycogen phosphorylase kinase (GPK), which leads to
phosphorylation and activation of glycogen phosphorylase
(GP) initiating glycogen breakdown (Figure 4) (144). Besides
this, glucagon has also been shown to reduce acetylation of
hepatic GP thereby enhancing its activity (430). In addition to
stimulating glycogen breakdown, glucagon also inhibits the
activity of glycogen synthase, causing an overall net increase
in glycogenolysis (292), thereby channeling glucose into
the plasma. Glucagon thus becomes an important counter
regulatory hormone during conditions of hypoglycemia as
a direct access to release hepatic glycogen (352). Thus, the
glucose releasing effect of glucagon is directly proportional
to glycogen levels, as seen in fasted animals or patients with
liver cirrhosis (61).

Regulation of gluconeogenesis
After depletion of glycogen stores upon longer starvation,
glucagon activates gluconeogenesis to increase hepatic glu-
cose output and to maintain blood glucose levels (292).
This is achieved by allosterically modulating the activ-
ity of several enzymes shifting the metabolic flux from
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Figure 4 Glucagon effects on hepatic glucose and lipid metabolism. Activation of glucagon receptor by glucagon in hepatocyte stimulates
adenylate cyclase-/cAMP-/PKA-dependent phosphorylation of Creb and dephosphorylation/nuclear translocation of Crtc2. p-Creb induces tran-
scription of gluconeogenic genes G6Pase and Pck1. PKA activates phosphorylase synthase and inhibits glycogen synthase, thus stimulating
glycogen breakdown. In addition, PKA activates FBPase2 and inhibits PFK-1 and pyruvate kinase, thereby enhancing gluconeogenesis and
inhibiting glycolysis. By AC dependent inhibition of SIK2, glucagon stimulates activation of p300, which facilitates transcription of gluconeogenic
genes. p-CREB induces transcription of Ppar-𝛼 that enhances transcription of β-oxidation genes Cpt1 and Mcad. ATP to cAMP conversion leads
to enhanced AMP/ATP ratio leading to AMPK activation and inhibition of ACC. This results in inhibiting the conversion of acetyl-CoA to malonyl-
CoA by ACC and subsequent decreases the lipid synthesis pathway. As a consequence malonyl-CoA formation is reduced which induces an
accumulation of Cpt1. Cpt1 enhances fatty acyl-CoA transport into mitochondria and induces β-oxidation. In addition, glucagon stimulates
AMPK and mitochondrial IP3R1 further activating β-oxidation. Acetyl-CoA subsequently enters Krebs cycle for ketone body formation during pro-
longed starvation. Abbreviations, AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; Creb, cAMP-responsive
element-binding protein; G6Pase, glucose 6 phosphatase; Pck1, phosphoenol pyruvate carboxykinase 1; FBPase 2, fructose 2,6-bisphosphatase;
PFK-1, phospho-fructokinase 1; Crtc2, Creb-regulated transcription coactivator 2; SIK2, salt-inducible kinase 2; Ppar-α, peroxisome proliferator-
activated receptor alpha; Cpt1, carnitine palmitoyltransferase 1; Mcad, medium-chain acyl-CoA dehydrogenase; ATP, adenosine triphosphate;
AMP, adenosine monophosphate; AMPK, AMP-activated protein kinase; ACC, acetyl-CoA carboxylase; IP3R1, inositol triphosphate receptor 1;
FFA, free fatty acid; TAG, tri-acyl glycerol; VLDL, very low-density-lipoprotein; LCAD, long-chain acyl-CoA dehydrogenase.

glycolysis to gluconeogenesis (176). Glucagon binding
to its receptor induces the production of cAMP causing
PKA activation. Then, PKA phosphorylates and inhibits the
activity of phospho-fructokinase 2 (PFK-2), a bifunctional
enzyme acting on fructose 2,6-bisphosphatase (FBPase 2)
and 6-phosphofructo-2 kinase (409). Inhibition of PFK-2
activates FBPase 2 and inhibits 6-phospho fructo-2-kinase,
causing a rapid reduction in the secondary metabolite
fructose-2,6-bisphosphate [F(2,6)P2], shifting the flux toward
gluconeogenesis (409). PKA also phosphorylates pyruvate
kinase causing a reduction in its activity. This enhances
fructose-1,6-bisphosphate, which lowers pyruvate levels
leading again to reduced glycolysis and redirection of
substrate toward gluconeogenesis (Figure 4) (176, 409).

Activation of PKA strongly depends on maintaining high
cAMP levels. Thus, controlling cAMP amounts is crucial
for downstream signaling. Interestingly, a recent paper has
shown another level of regulation of cAMP-PKA signaling,
through controlling phosphodiesterase 4B (Pde4b) transcrip-
tion (431). Pde4b is responsible for the degradation of cAMP
thereby terminating signaling (182). Glucagon-stimulated
nuclear factor-kappa B2 (NF-κb2) (p52) binding to PDE4B
promotor inhibits its transcription, thus strengthening cAMP
action (431).

Besides direct modulation of enzyme activity by phos-
phorylation, transcriptional regulation by glucagon also
enhances gluconeogenesis. Glucagon signaling increases
phosphorylation of Creb at serine residue 133 and de-
phosphorylation and nuclear translocation of its co-activator,
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Creb-regulated transcription coactivator 2 (Crtc2) (see above)
(237). Phosphorylated Creb binds to DNA and promotes
expression of its target gluconeogenic genes G6Pase, Pepck,
Pgc1𝛼, and hepatocyte nuclear factor 4 (Hnf4), thereby
enhancing glucose output (Figure 4).

In addition to the transcriptional regulation, glucagon has
been shown to facilitate gluconeogenic gene transcription by
regulating histone modifications that alter chromatin envi-
ronment for gene induction. Other than Crtc2, Creb is also
associated with coactivators—histone acyl transferase p300
and Creb-binding protein (Cbp) (237). Glucagon dephospho-
rylates p300 at Ser89, thereby increasing its activity (3). This
is achieved by adenylyl cyclase-mediated inhibition of salt-
inducible kinase 2 (Sik2) (237). p300 in turn, acetylates Crtc2
at Lys628, enhancing the transcription of G6Pase and Pepck
(154, 237). Importantly, Crtc2 interaction with p300/Cbp
is essential for their recruitment to Creb target genes and
subsequent transcription (Figure 4) (312). Cbp and p300
are known to acetylate H3K27 lysine residue at enhancers,
facilitating a chromatin environment more accessible to
TF binding (48) and an enhanced transcript elongation rate
of RNA polymerase 2 (354). Furthermore, p300/Cbp also
directly acetylate lysine residues in TFs such as p53 (314).
Substantiating this, p53 has been shown to promote gluco-
neogenic gene expression (133). Aside from p300, glucagon
stimulation also recruits other histone acyltransferases.
Glucagon induced nuclear translocation of Crtc2 has been
shown to recruit lysine acetyltransferase 2B (Kat2b/Pcaf) to
gluconeogenic genes (311). Kat2b then enhances histone H3
acetylation at Lys9 (H3K9Ac) promoting gene transcription
and further potentiating Crtc2 occupancy at Creb-binding
sites. Along with Kat2b, WD repeat-containing protein 5
(Wdr5), a core subunit of histone methyltransferase (HMT)
is also recruited and exhibits concerted action with Kat2b on
enhancing H3K9Ac (311).

Besides Creb, the Forkhead box protein O1 (Foxo1) is
a major transcriptional regulator of gluconeogenic gene
expression. Foxo1’s nuclear binding activity is modulated by
acetylation/deacetylation cycles, where acetylation reduces
and de-acetylation enhances binding of Foxo1 to gluco-
neogenic gene promoters (303). Inhibition of Foxo1 activity
by E26 oncogene homolog 1 (Ets-1) (230) is attenuated by
glucagon-mediated downregulation of Ets-1, reducing its
acetylation (230). In addition, glucagon rapidly dephospho-
rylates class IIa histone deacetylases (HDACs), facilitating
their translocation to the nucleus and concomitant deacetyla-
tion of Foxo1 (257). Sirtuins, another class of deacetylases
involved in metabolic control, are also regulated by glucagon.
Here, sirtuin 6 (Sirt6) deacetylates and thus activates the gen-
eral control nonrepressed protein 5 (Gcn5/Kat2a), causing
Pgc1α acetylation and reduction of its gluconeogenic gene
transcriptional activity (79). By reducing the expression of
Sirt6, glucagon indirectly enhances the activation of Pgc1α
(78). Altogether, glucagon activates gluconeogenic gene tran-
scription by modulating the deacetylation of transcriptional

co-regulators. For a more detailed description on glucagon-
mediated histone acetylation and its implication in glucagon
biology visit a recent review by Zhang et al. (429).

In addition to acetylation, gluconeogenic gene expres-
sion is enhanced through histone methylation by protein
arginine methyltransferase 5 (Prmt5) (376). Glucagon stim-
ulates Crtc2 interaction with Prmt5 thereby increasing the
methylation (H3R2me2) of gluconeogenic genes, while
the downregulation of Prmt5 reduces gluconeogenic gene
expression and circulating glucose levels (376). Altogether,
these studies show the importance of histone modifications,
chromatin environment, and TF binding/interaction for Creb
activity and adds to the complexity in the regulation of gene
transcription by glucagon (132).

Regulation of amino acid metabolism
Gluconeogenesis is a substrate driven process, wherein sub-
strates from other tissues such as adipose-derived glycerol
or muscle-derived AAs contribute to gluconeogenesis in
the liver, also known as the Cori cycle (161). There is no
indication of Gcgr expression in the skeletal muscle or adi-
pose tissue in humans (238), indicating that glucagon may
not directly mobilize precursors for gluconeogenesis from
these tissues (240). Thus other mechanisms, such as cate-
cholamines and cortisol, participate in precursor mobilization
from muscle and fat.

However, glucagon stimulates AA influx into hepatocytes
providing AA substrates for gluconeogenesis (2). This is
achieved by glucagon-stimulated expression of the AA trans-
porters for alanine (A system) and glutamine, histidine, and
asparagine (N system) in the liver, resulting in increased AA
uptake (197, 233). After influx, these AAs are further pro-
cessed to be used as precursors for gluconeogenesis. Essential
for this is their deamination, after which the amine groups
enter the urea cycle for excretion (334). For this, glucagon
induces the rapid deamination of glutamine, resulting in
an immediate increase in ureagenesis and AA metabolism
(16, 217). How the deamination is acutely regulated is
unclear. The rapid increase in ureagenesis by glucagon is
induced by allosteric activation of Sirt3 and Sirt5, which
in turn increases the activity of ornithine transcarbamylase
(Otc) and carbamoyl phosphate synthetase 1 (Cps1), critical
enzymes in ureagenesis (146, 273). In addition, glucagon
also induces the transcript levels of enzymes involved in the
urea cycle through the cAMP-PKA-Creb mediated pathway
(349). Particularly, enzyme N-acetyl glutamate synthetase
(Nags) transcription is enhanced by glucagon, driving AA
flux toward ureagenesis (156). Altogether, glucagon primes
the hepatocytes for the uptake of AAs from the circulation,
which are used as precursors of gluconeogenesis in periods
of long-term starvation (61, 240).

The importance of hepatic glucagon signaling in AA
metabolism is further supported by studies, where Gcgr
antagonism causes hyper-aminoacidemia, due to reduced
uptake of circulating AAs and decreased ureagenesis (112,
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267). Hyper-aminoacidemia has been suggested to be a factor
for increase in α-cell mass (350). In fact, interfering with liver
glucagon signaling through liver-specific deletion of Gcgr
results in pancreatic α-cell hyperplasia (112), suggesting a
liver to α-cell axis. Importantly, the increase in circulating
AAs upon Gcgr ablation then further stimulates glucagon
secretion from α-cells (410), creating a vicious cycle of
overproduction of glucagon. This partly explains the hyper-
glucagonemia observed after ablation of liver Gcgr signaling.
In particular, arginine, alanine, and proline have been shown
to stimulate the secretion of glucagon from α-cells (110),
while glutamine induces α-cell mass (72). In addition, the
pancreatic amino-acid transporter, Slc38a5 was found to
play a vital role in α-cell hyperplasia induced by liver Gcgr
inhibition in mice and its absence prevented hyperplasia
development (72). The occurrence of hyperglucagonemia and
hyperaminoacidemia is observed in type-2 diabetes patients
(313) and patients with NAFLD (406, 408), underlining
the association between these conditions and metabolic
diseases. These data emphasize the need to further clearly
characterize the role of glucagon on hepatic AA metabolism
and to delineate the underlying mechanisms regulating the
liver-α-cell axis.

Regulation of mitochondrial metabolism and hepatic
calcium signaling
Gluconeogenic flux is deeply linked to respiration rate and
ATP production (302). Indeed, glucagon stimulates mito-
chondrial oxygen consumption correlating well with the
physiological requirement for energy production during
gluconeogenesis (31, 422). Interestingly, glucagon via signal-
ing through Gq and PLC-mediated IP3 formation increases
intracellular and mitochondrial calcium levels as one of
the ways to enhance mitochondrial respiration (55). This
is achieved by release of intracellular calcium stores from
the ER (94), through cAMP-mediated regulation of inositol
triphosphate receptor (IP3R) by several independent mech-
anisms (reviewed in (368)). This includes cAMP-activated
PKA phosphorylation of IP3R2, the major subtype expressed
in hepatocytes, at serine residue 937 resulting in enhanced
burst of IP3R channel gating (21). More importantly, cAMP
directly delivered to IP3R2 signaling junctions on the ER
potentiates its response to IP3 independent of PKA or Epac,
as observed through nuclear patch-clamp recordings (373),
suggesting a direct role for cAMP in sensitizing the IP3R2.
Subsequent increase in cytosolic calcium stimulates gluco-
neogenesis either by directly modulating enzyme activity of
pyruvate carboxylase and Pepck or by modulating the expres-
sion of gluconeogenic genes (3, 278). The later is mediated
by cytosolic calcium sensors such as calmodulin-dependent
kinases and calcineurin, which together increase the nuclear
transcription of Foxo1, Creb, and Crtc2, thereby enhancing
gluconeogenesis (3, 278). Additionally, cytosolic calcium
also regulates glycogenolysis through stimulation of the
phosphorylase kinase and activation of GP (3, 278). Recently,

Perry et al. (290) have shown that glucagon stimulates hepatic
gluconeogenesis through activation of mitochondria localized
IP3R1-mediated stimulation of mitochondrial fat oxidation
and lipolysis, indicating the physiological importance of this
process in glucagon biology.

Calcium release from the ER occurs either directly into
the cytosol, as described above, or can be taken up into
the mitochondria thought mitochondria/ER contact sites
(42). Mitochondrial calcium influx stimulates mitochondrial
oxidative metabolism and electron transport. This is mediated
by increasing the activity of calcium-sensitive dehydroge-
nases of the TCA cycle: pyruvate dehydrogenase, isocitrate
dehydrogenase, and α-ketoglutarate dehydrogenase (258).
Additionally, direct activation of the mitochondrial ATPase
through calcium stimulates ATP synthesis (258). Besides this,
glucagon stimulated mitochondrial calcium influx accumu-
lates adenine nucleotides via the mitochondrial ATP-Mg/Pi
carrier (SCaMC-3/slc25a23), which serve as precursors for
gluconeogenesis (358).

Carbon source for glucose production during gluconeoge-
nesis is provided by pyruvate and acetate as well as alanine,
glutamine, and glycerol. Recently, the carbon share from
glutamine has been shown to be enriched upon glucagon
stimulation in hepatocytes (72). It is proposed that mitochon-
drial calcium influx following glucagon treatment stimulates
the activity of α-ketoglutarate dehydrogenase paving the way
to increased anaplerotic flux from glutamine. Consistent with
this, deletion of glutaminase (Gls2), the enzyme involved
in conversion of glutamine to glutamate, results in reduced
glucagon stimulated glutamine turnover and decreased fast-
ing blood glucose levels in mice (72). Importantly, a mutation
at human GLS2 locus causes enhanced glutaminase activity
stimulating glutamine influx and is connected with higher
fasting blood glucose in humans (259). Altogether, these data
reveal the main function of glucagon on calcium influx and
mitochondrial respiration is to tune the system for maximal
gluconeogenic capacity.

Glucagon action on lipid metabolism in the adipose
tissue and liver
Consistent with glucagon’s main function during fasting,
where lipid mobilization is needed to provide energy through
β-oxidation and production of ketone bodies (321), glucagon
has been connected to lipid metabolism since the 1960s
(44, 286). Subsequently, glucagon has been shown to reduce
plasma cholesterol (43, 141), triglycerides (43, 141, 240),
and esterified fatty acid levels (45). The involvement of the
adipose tissue in these effects has been investigated in mice,
where small amounts of Gcgr are also detectable (35). Here,
glucagon stimulates lipolysis through cAMP-PKA-hormone
sensitive lipase (HSL)-mediated pathway thereby, however,
increasing circulating FFA levels (155, 348, 361). Despite
this, there has been no solid evidence of Gcgr expression
in human adipocytes (417) and glucagon induced lipolysis
was only obtained at supra-physiological concentration in
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human adipocytes (possibly through glucagon stimulated
catecholamine secretion) rather than at physiological levels
(124). Consistent with the fact that Gcgr expression is highest
in the liver, these data indicate hepatic Gcgr signaling to be
the primary regulator of lipid metabolism by glucagon.

Glucagon affects liver lipid metabolism through inhibition
of lipogenesis and stimulation of lipolysis (111). In hepa-
tocytes, glucagon activates AMPK and p38 MAPK which
leads to nuclear translocation and transcriptional activation
of peroxisome proliferator-activated receptor alpha (Ppar-
𝛼) that in turn increases the transcript level of fatty acid
oxidation gene-carnitine palmitoyltransferase-1a (Cpt-1a)
(240, 355). Cpt-1a enables catabolism of long-chain fatty
acids by converting them to acyl-carnitines (240, 355). These
acyl-carnitines are then transported into mitochondria thereby
activating β-oxidation wherein fatty acids are degraded to
acetate. Acetate and CoA combine to form acetyl-CoA,
which then condenses with oxaloacetate to form citrate
ultimately entering citric cycle. This process enhances fatty
acid catabolism and inhibits glycolysis (Figure 4).

Apart from transcriptional activation, glucagon also reg-
ulates lipid metabolism by acetylation and deacetylation,
similar to its control of gluconeogenesis. Here, the activity
of forkhead transcription factor A2 (Foxa2) is increased
upon its acetylation (394) via adenylyl cyclase mediated
inhibition of Sik2 and subsequent enhancement of p300
activity (237). Foxa2 then induces the transcription of β-
oxidation genes such as Cpt-1 and medium-chain acyl-CoA
dehydrogenase (Mcad) (394). Recruitment of Kat2b/Pcaf
by glucagon acetylates cAMP-responsive element-binding
protein H (Crebh) at Lys294 (199), which induces its nuclear
localization and interaction with PPARα, leading to increased
transcription of fibroblast growth factor 21 (Fgf21). Fgf21
then increases energy expenditure and inhibits lipogenesis
(200) as described above. In addition, glucagon induces
the expression of Sirt3 (207), that in-turn deacetylates and
enhances activity of long-chain acyl-CoA dehydrogenase
(Lcad) (166). Lcad, a key mitochondrial fatty acid oxidation
enzyme, reduces triglyceride accumulation and stimulates
fatty acid oxidation.

Glucagon-induced cAMP formation shifts the intracellular
AMP/ATP ratio to an energy-depleted state sufficient to
activate AMPK (19). This leads to phosphorylation and inac-
tivation of acetyl-CoA carboxylase, causing a reduction in
malonyl-CoA formation. As accumulation of Malonyl-CoA
inhibits Cpt-1 induced β-oxidation, reducing its production
will redirect FFAs from re-esterification as triglyceride to
β-oxidation (75). FFAs are either stored as triglycerides or
are processed by lipases to be released as very-low-density-
lipoprotein (VLDL) into circulation. As FFAs are used for
β-oxidation, VLDL secretion is also downregulated in this
process (Figure 4) (22, 24).

Consistent with the allosteric activations, acute and long-
term administration of glucagon in mice in vivo showed
reduced plasma FFA (111), TG (111, 140), and phospho-
lipid (140) concentrations along with decreased hepatic

triglyceride content (111, 158), which is dependent upon
Gcgr, as Gcgr−/− mice and glucagon antagonists do not show
this effect (121, 240). Also, Gcgr knockdown in db/db mice
increases plasma low-density-lipoprotein (LDL) cholesterol,
liver triglycerides, and liver cholesterol, which is accom-
panied by increases in lipogenic genes including fatty acid
synthase, acetyl-CoA carboxylase, stearoyl-CoA desaturase
1, and elongation of very long-chain fatty acids protein (147),
further supporting evidence for a role of glucagon in lipid
metabolism. In fact, humans with hyperglucagonemia exhibit
a decrease in lipoprotein particle turnover and induced β-
oxidation (301, 419), confirming its clinical relevance. These
observations have hampered the pharmacotherapeutic use of
Gcgr antagonists as treatment options for the hyperglycemia
in type-2 diabetic patients (see below) (142, 189, 328). Thus,
there is a pressing need for identification of clear mechanisms
and pathways mediating the glucose and lipid metabolic
effects downstream of Gcgr upon ligand activation.

Regulation of ketone body metabolism
During prolonged starvation, the liver produces ketone bodies
that provide energy fuel for the brain. Glucagon functions to
stimulate ketogenesis, a process occurring in the mitochon-
dria of perivenous hepatocytes, which transforms fatty acids
(FAs) into acetoacetate (AcAc) and 3-hydroxy butyrate (3HB)
(152). FAs shuttled into the mitochondria via Cpt-1 undergo
β-oxidation to form acetyl-CoA, to enter the citric cycle or
for utilization in ketone body formation. Since the activity
of the citric cycle is reduced under long-term starvation, as
all intermediates are used for gluconeogenesis, acetyl-CoA
becomes available for ketone body formation (220). Glucagon
stimulates the activity of hepatic mitochondrial HMG-CoA
synthase, a key rate-limiting enzyme for AcAc formation,
and thereby enhances ketone body production (Figure 4)
(304). This is achieved by lowering the concentration of
succinyl-CoA, which inactivates HMG-CoA synthase, thus
increasing ketogenesis (304). Interestingly, elevated blood
glucagon levels have been shown to contribute to increased
circulating ketone bodies and metabolic acidosis in diabetic
ketoacidosis and alcoholic ketoacidosis, suggesting its human
relevance (220). In fact, in uncontrolled insulin-deficient dia-
betic patients hyperglucagonemia was found to be essential
for ketosis rather than hyperglycemia (191, 253). However,
recent conflicting data implies a limited role for glucagon
in ketogenesis, since interruption of glucagon signaling has
no effect on fasting stimulated ketosis (41), emphasizing the
need to revisit the direct role of glucagon in ketone body
metabolism.

Regulation of bile acid metabolism
Synthesized from cholesterol in hepatocytes, bile acids have
emerged as pivotal modulators of lipid, glucose, and energy
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metabolism in the liver (340). Cyp7a1 is the first and rate-
limiting enzyme in bile acid biosynthetic pathway. Glucagon
represses the gene expression of CYP7A1 in human and rat
hepatocytes, through PKA-dependent phosphorylation and
inactivation of HNF4α (351). Importantly, chronic Gcgr
agonism increases circulating bile acid levels in DIO mice
and induces body weight reduction (140, 201). While bile
acids are ligands for FXR and induce energy expenditure, the
weight lowering effect of chronic Gcgr agonism was reduced
in liver-specific-FXR knockout mice (201). This opens the
possibility for bile acid-FXR axis in hepatocytes mediating
the glucagon-stimulated effects on energy expenditure.

Glucagon and Fgf21
Fibroblast growth factor 21 (Fgf21) was first described in
2000 as a novel FGF with high homology to the endocrine
Fgf19 (277). Fgf21 is secreted via coat protein complex II
vesicles (400) in response to diverse nutritional stressors
including fasting (11, 109, 171), a ketogenic diet (10, 11) a
low protein diet (165, 218, 219), and carbohydrate refeeding
(170, 330). First reported as a novel metabolic regulator
in 2005 (195), Fgf21 has been shown to have pluripotent
effects, including regulating energy expenditure (59, 331),
thermogenesis (98, 398), fatty acid oxidation (300), glu-
cose metabolism (40, 247, 250, 331), and body weight (59)
in rodents. As such, Fgf21 has emerged as an appealing
therapeutic for the metabolic syndrome (9, 171, 177).

Consistent with fasting-induced Fgf21 secretion, acute
glucagon administration increases plasma FGF21 levels in
rodents (64, 145) and humans (145, 149). This is a direct
effect of liver glucagon signaling, as glucagon treatment
in mouse primary hepatocytes increases both Fgf21 gene
expression and Fgf21 in the cultured media (145). Consis-
tently, this effect is lost in hepatocytes isolated from mice
deficient for Gcgrs (Gcgr; Gcgr−/− and Gcgr−liver) (145, 201).
This regulation is consistent and more robust in mice treated
either acutely (145) or chronically with the potent Gcgr ago-
nist IUB288 (145, 201). Fasting-induced Fgf21 is regulated
by Ppar-α (109, 171) and glucagon signaling regulates Ppar-α
transcriptional activity (240). While it is logical to assume
glucagon regulates Fgf21 in a Ppar-α dependent manner, this
has yet to be definitively elucidated. Glucagon also regulates
Fgf21 secretion in rat primary hepatocytes via posttransla-
tional modifications mediated in a PKA and Epac-dependent
manner, with no differences in gene expression (64). This
model-specific difference in glucagon-mediated Fgf21 gene
regulation may be a result of differences in the model organ-
ism, time of treatment, or culture conditions. While Fgf21 is
regulated by multiple factors, Gcgr−/− mice are refractive to
fasting-induced liver Fgf21 expression, suggesting glucagon
is the primary stimulator of Fgf21 in a fasted state (240).

Mice deficient for Fgf21 (Fgf21−/−) are likewise refractive
to Gcgr-mediated increases in EE and prevention of DIO with
no genotypic differences in food intake, suggesting glucagon
regulates energy balance via Fgf21. Further, overexpression

of liver Fgf21 and administration of recombinant Fgf21
increases EE in a brain-dependent manner (331). While
it has yet to be elucidated, it is plausible that glucagon
regulates energy balance via central Fgf21 action. Chronic
Gcgr agonism additionally decreases plasma cholesterol,
liver triglycerides, and increases day-time locomotor activ-
ity (145). Fgf21 likewise regulates plasma cholesterol and
locomotor activity, highlighting Fgf21 as an important medi-
ator of specific glucagon actions. While Fgf21 is sufficient
to mediate Gcgr-prevention of body weight gain on high-fat
diet, hepatic Fgf21 is only partially responsible for the weight
loss effects of Gcgr-agonism in DIO mice (201). These
observations may be due to differential glucagon-mediated
mechanisms regulating obesity prevention versus treatment.

Pharmacological Actions of Glucagon
in Type-1 and Type-2 Diabetes
Insulin deficiency is traditionally viewed as the major cul-
prit in diabetes. In the early 1970s, however, Roger Unger
proposed that elevated postprandial glucagon levels are an
equally critical factor underpinning diabetes (272, 384).
Indeed, postprandial glucagon levels are higher in all forms
of diabetes, including type-1 and type-2 diabetes (383). It is
postulated that in patients with diabetes, a relative excess of
glucagon compared to the decrease in insulin drives excessive
hepatic glucose production, contributing to fasting hyper-
glycemia (313) and greater postprandial glucose excursion
(339). In support, in patients with type-2 diabetes, hepatic
gluconeogenesis is increased compared to age- and BMI-
matched nondiabetic control subjects. Therefore, attenuating
glucagon action has been investigated as a treatment of
diabetes. The first seminal study to explore this concept used
somatostatin to inhibit endogenous glucagon production in
patients with type-1 diabetes and observed a decrease in blood
glucose levels (125). Similarly, somatostatin administration
ameliorated hyperglycemia in dogs rendered diabetic by
either alloxan or by removal of the pancreas (126, 324). Sub-
sequently, genetic mouse models have been used to explore
the metabolic consequences of lack of glucagon signaling.
Glucagon-receptor knock-out mice (Gcgr−/−), in which the
ratio of insulin to glucagon signaling is shifted entirely to the
side of insulin, have lower blood glucose levels, are more
glucose tolerant, and are resistant to HFD-induced insulin
resistance (56, 228). Remarkably, Gcgr-/- mice are even resis-
tant to STZ-induces hyperglycemia and β-cell destruction
(56), without exhibiting signs of hypoglycemia (121).

In light of these observations, strategies to pharmacologi-
cally suppress Gcgr signaling have received a lot of attention
in recent years for the potential treatment of diabetes. In the
preclinical models, Gcgr antagonists improve glucose toler-
ance in mouse models of diabetes (104, 226, 267). Similarly,
Gcgr antibodies decrease glucose levels and improve glucose
tolerance in diabetic rodents and monkeys (138, 202, 280,
423) and anti-sense oligonucleotide-mediated reduction of
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hepatic Gcgr expression similarly ameliorated hyperglycemia
in diabetic mice (232).

In healthy humans, single administration of a Gcgr antag-
onist reduced glucagon-induced glucose production. In
longer-term trials, Gcgr antagonists lower fasting and post-
prandial blood glucose concentrations, as well as HbA1c
levels in patients with type-2 diabetes (63, 189, 388). Sim-
ilarly, antisense oligonucleotides also improve HbA1c in
people with diabetes (389), while monoclonal antibod-
ies against the Gcgr diminish glucagon-induced glucose
excursions (209).

These encouraging clinical data, however, have been asso-
ciated with significant side effects that have thwarted the clin-
ical use of these agents. Increased hepatic transaminases have
been seen with Gcgr antagonists (20, 142, 189, 193, 388) and
humanized monoclonal antibodies (209), suggesting adverse
effects on the liver. Gcgr antagonists increase LDL choles-
terol (20, 139) and liver fat (142). Another concern pertains
to pre-clinical studies showing that Gcgr antibodies cause α-
cell hyperplasia (138, 280), which also has been observed in
global Gcgr−/− mice (121) as well as in liver-specific Gcgr−/−

mice (239). Whether this translates into serious clinical side
effects will have to be determined in longer-term studies, but
the concern that this hyperplasia may become malignant has
to be carefully assessed.

However, in light of the support of glucagon in the regu-
lation of lipid metabolism, Gcgr agonism may be useful for
treatment of hepatic steatosis (336), to which there are no
FDA-approved therapeutics (428). Chronic Gcgr agonism
decreases liver triglycerides and plasma cholesterol in DIO
mice (145, 201, 274). This effect is dependent on liver Gcgr
signaling, as the benefits of Gcgr agonism on dyslipidemia
are lost in mice deficient for hepatic Gcgr (Gcgrliver) (145,
201, 274). These pharmacological effects are consistent
with results from clinical trials utilizing GLP1R and Gcgr
dual agonist. Treatment with the dual agonist reduces liver
triglycerides and plasma cholesterol (6). While glucagon
monotherapy has not been tested directly in clinical trials,
the dual agonists are superior to GLP1 agonism alone in
reducing hepatic steatosis in rodent models (66, 299). These
additional metabolic actions of glucagon warrant further
study as promising avenues for the treatment of obesity and
hepatic steatosis.

Outlook and Future Questions
Identified nearly a century ago in a process to optimize
insulin purification, glucagon has ever since been stigma-
tized for its hepatic effects to increase blood glucose. Long
overshadowed by the monumental importance of insulin,
recent years have witnessed a renaissance of glucagon
pharmacology with acknowledged applications that go far
beyond its initial use as a life-saving rescue medication for
severe hypoglycemia. A plethora of studies nowadays testify
glucagon pharmacological value to improve body weight and

lipid metabolism and dual-agonists targeting the receptors
for glucagon and GLP-1 are in clinical development for the
treatment of type-2 diabetes.
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