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Abstract

The global epidemic of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) and the high prevalence among
individuals with type 2 diabetes has attracted the attention of clinicians specialising in liver disorders. Many drugs are in the
pipeline for the treatment of NAFLD/NASH, and several glucose-lowering drugs are now being tested specifically for the
treatment of liver disease. Among these are nuclear hormone receptor agonists (e.g. peroxisome proliferator-activated receptor
agonists, farnesoid X receptor agonists and liver X receptor agonists), fibroblast growth factor-19 and -21, single, dual or triple
incretins, sodium—glucose cotransporter inhibitors, drugs that modulate lipid or other metabolic pathways (e.g. inhibitors of fatty
acid synthase, diacylglycerol acyltransferase-1, acetyl-CoA carboxylase and 11[3-hydroxysteroid dehydrogenase type-1) or
drugs that target the mitochondrial pyruvate carrier. We have reviewed the metabolic effects of these drugs in relation to
improvement of diabetic hyperglycaemia and fatty liver disease, as well as peripheral metabolism and insulin resistance.
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Abbreviations FXR Farnesoid X receptor
113-HSD  113-Hydroxysteroid dehydrogenase type-1 GIP Glucose-dependent insulinotropic polypeptide
ACC Acetyl-CoA carboxylase GLP-1 Glucagon-like peptide-1
ANGPTL3  Angiopoietin-like protein 3 GLP-1RA  GLP-1 receptor agonist
DGAT-1 Diacylglycerol acyltransferase-1 KHK Ketohexokinase
DNL De novo lipogenesis LOKO LXRo3-deficient ob/ob
DPP-4 Dipeptidyl peptidase-4 LXR Liver X receptor
EGP Endogenous glucose production NAFLD Non-alcoholic fatty liver disease
FAS Fatty acid synthase NASH Non-alcoholic steatohepatitis
FGF Fibroblast growth factor OCA Obeticholic acid
PPAR Peroxisome proliferator-activated receptor
PTP1B Protein tyrosine phosphatase-1B
SCD-1 Stearoyl CoA desaturase-1
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hormones; and (4) the kidney, heart, endothelium, brain
and eye, to prevent or reduce the micro- and
macrovascular complications associated with type 2 diabe-
tes. The liver is often not included among the target
organs, although it is well established that hepatic insulin
resistance is responsible for fasting hyperglycaemia and
contributes to glucose intolerance. The global epidemic
of non-alcoholic fatty liver disease (NAFLD) affects more
than 25% of the general population [1] and more than
55% of individuals with type 2 diabetes [2], while the
prevalence of non-alcoholic steatohepatitis (NASH) has
been estimated to be 1-6% in the general population [1]
and 37% in individuals with type 2 diabetes [2]. This has
focused attention on the liver as a main target to combat
these metabolic disorders as well as type 2 diabetes [3, 4].
It is now evident that it is not only simple steatosis but
also hepatic inflammation that drives NASH and the
progression of liver damage (i.e. fibrosis [3, 4]); however,
the drivers of hepatic inflammation are still unknown.
Tissues other than the liver may be important in the
development and progression of NAFLD/NASH and
should be targeted to treat this disease. The crosstalk
between the liver, intestine and adipose tissue has shown
that alterations in the release of intestinal hormones, such
as incretins [5], or dysregulation of the gut microbiota [6]
play an important role in the development and progression
of NAFLD/NASH. Adipose tissue insulin resistance
resulting in excess release of NEFA is associated with
more severe forms of NAFLD/NASH [7] as well as with
decompensated type 2 diabetes [8]. New drugs that are in
the pipeline, and older drugs already approved for type 2
diabetes (since most individuals with NAFLD have type 2
diabetes or prediabetes), have shown promising effects on
liver metabolism. The aim of this paper is to review the
current literature on the metabolic effects of these drugs in
relation to improvement of diabetic hyperglycaemia and/or
fatty liver disease, as well as peripheral metabolism and
insulin resistance.

Metformin and sulfonylureas

Metformin reduces hepatic glucose production by decreasing
gluconeogenesis [9] and treatment with metformin is possibly
protective against hepatocellular carcinoma, although its
effect on adiponectin levels and hepatic fat oxidation is weak
[10]. However, current guidelines consider the effect of
metformin on NAFLD to be neutral [10]. On the other hand,
sulfonylureas act on hepatic glucose metabolism through the
stimulation of insulin secretion (Fig. 1) and treatment with
sulfonylureas is associated with presence of significant fibro-
sis (OR 2.04, p =0.022) but not NASH [11].
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Nuclear hormone receptor agonists

Peroxisome proliferator-activated receptor agonists Several
peroxisome proliferator-activated receptor (PPAR) agonists
target the liver (see Table 1 for information on specific drugs
and references). PPAR-y is expressed in many tissues, mainly
in adipose tissue, but hepatic effects have been described (Fig.
1). PPAR-y agonists approved for treatment of type 2 diabetes
include the thiazolidinediones pioglitazone and rosiglitazone,
which act by reducing endogenous glucose production (EGP)
and gluconeogenesis [12]. Pioglitazone also improves hepatic
steatosis, hepatic and peripheral inflammation, NASH and
fibrosis, although its effect is more pronounced in individuals
with type 2 diabetes than in those without the disease [13]. Itis
currently the only drug that has been suggested for treatment
of diabetic NAFLD in the guidelines published by the
European Association for the Study of Liver Disease, EASD
and European Association for the Study of Obesity (EASL-
EASD-EASO) [10]. Although the side effects of these drugs
(weight gain, fluid retention, fractures, bladder cancer) must
be considered, these are diminished at lower doses. Moreover,
pioglitazone is a potent insulin sensitiser, retards onset of type
2 diabetes by protecting beta cell function, and reduces CVD,
which is a frequent comorbidity in individuals with type 2
diabetes and/or NAFLD [14].

MSDC-0602 K is a novel thiazolidinedione designed to
minimise binding to PPAR-y, preferentially targeting the
mitochondrial pyruvate carrier while still producing insulin-
sensitising effects [15, 16]. Mitochondrial pyruvate metabo-
lism is essential for the process of gluconeogenesis from pyru-
vate and for the development of NAFLD after a diet high in
fat, fructose and cholesterol. In one study, after 6 months of
treatment with MSDC-0602 K, individuals showed a signifi-
cant reduction in glucose, HbA |, insulin, liver enzymes and
improved liver histology (NAS score [NAFLD activity score])
but no improvement in fibrosis, when compared with placebo
[15].

A new drug class, selective PPAR modulators (SPPARM),
is now under development (e.g. INT-131 besylate [CHS-131
[17]], MK-0533 [18], YR4-42 [19]). Preclinical data have
shown that SPPARM, compared with thiazolidinedione
PPAR-~ full agonists, exert similar effects of glucose and lipid
lowering at smaller doses but without causing weight gain and
fluid retention, thus reducing side effects and serious safety
concerns [18, 19]. However, although promising, the safety
data in humans are still scarce.

PPAR-« is expressed mainly in the liver. PPAR-x agonists
(fibrates, namely fenofibrate [20-22], bezafibrate [23-25] and
pemafibrate [26]) increase hepatic fat oxidation and are used
to decrease triacylglycerol concentrations, although their
effect on NAFLD and hyperglycaemia is limited [21, 22]. In
individuals with biopsy-proven NAFLD, 48 weeks of treat-
ment with 200 mg/day of fenofibrate reduced liver enzymes
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Fig. 1 Pharmacological treatments that directly or indirectly target hepat-
ic glucose and lipid metabolism, inflammation and fibrosis. The arrows
indicate the different actions on insulin exerted by some glucose-lowering
drugs on hepatic metabolism. GLP-1RA, dual GIP/GLP-1 agonists,
DPP4 inhibitors and sulfonylureas increase insulin levels by stimulating

but the grade of steatosis, lobular inflammation, fibrosis or
NAFLD activity score did not change significantly [22].

Dual PPAR-o/y agonists are potent insulin sensitisers that
also act on lipid metabolism. Several compounds have been
tested for treatment of type 2 diabetes but none has yet
received US Food and Drug Administration approval.
Clinical trials with tesaglitazar, aleglitazar and muraglitazar
have been terminated due to side effects such as oedema and
possible renal complications. Saroglitazar has been shown to
significantly decrease both glucose and lipids [27] and has
been approved recently in India for the treatment of NASH
after the Phase III EVIDENCES-II trial showed histological
improvement of NASH using liver biopsy after 52 weeks of
treatment [28, 29]; However, these data were only presented at
conferences and there is only evidence of reduction in liver
stiffness measured using FibroScan [29]. The Phase II
EVIDENCES-IV trial is currently investigating the
effect of saroglitazar in US individuals with NAFLD/
NASH.
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insulin release, while during treatment with SGLT-2 inhibitors the insulin
levels are reduced. GK, glucokinase; GKRP, glucokinase regulatory
protein; MPC, mitochondrial pyruvate carrier. This figure is available as
a downloadable slide

Great interest has been shown in a new class of PPAR
agonists being developed for the treatment of NASH
(comprising the dual PPAR-a/6 agonist elafibranor [30] and
the triple PPAR-o/y/6 agonist lanifibranor [31]). These drugs
improve not only hepatic histology but also diabetic
hyperglycaemia. They are also associated with weight loss,
since PPAR-$ activates fat metabolism and energy expendi-
ture. The results of the Phase IIb NATIVE trial (NAsh Trial to
Validate IVA337 Efficacy; data to be published) showed that
lanifibranor met the primary (decrease of >2 points of SAF
[steatosis, activity, fibrosis] score, combining hepatocellular
inflammation and ballooning) and key secondary endpoints
(NASH resolution without worsening and with improvement
of fibrosis, in both dose groups [800 mg/day and 1200 mg/
day]) [32]. Furthermore, the effect of lanifibranor on diabetic
hyperglycaemia and on body weight are encouraging. On the
contrary, elafibranor did not meet the predefined primary
endpoint of NASH resolution without worsening of fibrosis
in the Phase III RESOLVE-IT trial [33]. Nevertheless,
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Table 1 PPAR agonists that target hepatic lipid and glucose metabolism
Drug Mechanism of action Mode of Regulatory Clinical effect References
administration  status
Steatosis Fibrosis Hepatic HbA;. Insulin
markers  enzymes resistance
Pioglitazone PPAR-y PO Phase IV l l l l [13,151-153]
Rosiglitazone PPAR-y PO Phase [V 1 = ! l l [154, 155]
Lobeglitazone PPAR-y PO Phase 11 | = NA NA l [156]
MSDC-0602 K PPAR-y MPC PO Phase IIb l = l ! ! [15,157]
INT-131 besylate PPAR-y SPPARM PO Phase 11 l = NA l l [17]
(CHS-131)
MK-0533 PPAR-y SPPARM PO Phase IT NA NA NA 1 1 [18]
YR4-42 PPAR-y SPPARM PO Preclinical l NA NA l l [19]
Fenofibrate PPAR-x PO Phase IV = = ! = = [20-22]
Bezafibrate PPAR-x PO Phase IV NA NA ! = = [23-25]
Pemafibrate (K-877)  PPAR-o« SPPARM PO Phase 11 NA NA l NA l [26]
Saroglitazar PPAR-a/y PO Phase Ila ! l ! l l [28, 29, 158]
Aleglitazar PPAR-a/y PO Phase Ill-stop NA NA NA l l [159]
Tesaglitazar PPAR-o/y PO Phase [Ml-stop  |* NA 1? ! ! [160]
Muraglitazar PPAR-a/y PO Phase Ill-stop | NA ! l l [161, 162]
TAK-559 PPAR-o/y PO Phase IlI-stop NA NA = l l [163]
MKO0767 PPAR-a/y PO Phase IlI-stop NA NA NA l l [164]
Lanifibranor PPAR-a/y/d PO Phase Ila l l l l l [31,32]
(IVA337)
Elafibranor (GFT505) PPAR-«/0 PO Phase I ! ! l ! ! [30, 33]

# Preclinical data

MPC, mitochondrial pyruvate carrier; PO, oral

elafibranor’s results in primary biliary cholangitis showed
great promise and were far more convincing than its results
in NASH. The combination of elafibranor with either a
glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-
1RA) or a sodium—glucose cotransporter 2 (SGLT2) inhibitor
is under investigation for NASH.

In summary, single PPAR agonists have been employed
for several years. In clinical practice their beneficial effects
need to be weighed against their side effects, which are well
known. The dual PPARs or pan-PPARs are indeed new but
results from studies are encouraging, especially for those
PPARs that decrease liver fat content and hyperglycaemia
without increasing body weight. However, most of the respec-
tive clinical data have not been published yet and will need
careful evaluation.

Farnesoid X receptor agonists and fibroblast growth factor-19
analogues The farnesoid X receptor (FXR), a bile acid recep-
tor, is a nuclear receptor encoded by the NR/H4 gene in
humans and regulates bile acid synthesis, secretion and trans-
port, and lipid and glucose metabolism (Fig. 1). The FXR
contributes to inter-organ communication, in particular the
enterohepatic signalling pathway, through bile acids and
fibroblast growth factor (FGF)-19, a gastrointestinal growth
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hormone that is stimulated by FXR. Several FXR agonists
have been developed for the treatment of NAFLD (see
Table 2 for specific drugs and further references).
Obeticholic acid (OCA) is the first FXR agonist to reach
Phase III trials after showing promising results in Phase II
trials for the treatment of liver fibrosis in NASH and in prima-
ry biliary cholangitis (25 mg was more effective than 50 mg
dose) [34]. The 18 month interim analysis of the Randomized
Global Phase 3 Study to Evaluate the Impact on NASH With
Fibrosis of Obeticholic Acid Treatment (REGENERATE)
trial showed that fibrosis improvement of at least one stage
(with no worsening of NASH) or NASH resolution (with no
worsening of fibrosis) was obtained in 23% and 12%, respec-
tively, of individuals treated with OCA 25 mg (vs 12% and
8% 1in placebo-treated individuals; p =0.0002 and p =0.13,
respectively) [34-36]. OCA treatment was associated with
an early transient increase in glucose and HbA | in individuals
with type 2 diabetes, with return to levels similar to those seen
with placebo by month 6 [35]. Moreover, OCA induced tran-
sient increase in total cholesterol and LDL-cholesterol and
decrease in HDL-cholesterol, all of which reversed rapidly
on discontinuation [37]. At the end of June 2020, the US
Food and Drug Administration determined that since the inter-
im results of Phase III trials were based on surrogate
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Table2 FXR agonists and FGF-19 analogues that target hepatic lipid and glucose metabolism

Drug Mechanism of Mode of Regulatory  Clinical effect References
action administration ~ status
Steatosis  Fibrosis  Hepatic =~ HbA;. Insulin
markers  enzymes resistance
Obeticholic acid FXR agonist PO Phase 111 |, mild l l = NA [34-36]
(INT-747)
Cilofexor (GS-9674)  FXR agonist PO Phase 11 l = ! NA NA [165, 166]
Nidufexor Non-bile acid FXR PO Phase 11 l l l = = [44, 167]
(LMB763) agonist
Tropifexor (LNJ452)  Non-bile acid FXR PO Phase IIb l l l NA NA [41, 42]
agonist
EDP-305 Non-bile acid FXR PO Phase 11 1* 1* 1* NA NA [43, 168] *
agonist
Aldafermin FGF-19 analogue SC Phase 11 ! l l = = [38-40,
(NGM282) 169-171]

 Preclinical data

PO, oral; SC, subcutaneous injection

histopathological endpoints the predicted benefit of OCA
remains uncertain and does not sufficiently outweigh the
potential risks to support its accelerated approval for the treat-
ment of individuals with liver fibrosis due to NASH.

Other FXR agonists currently under development include
the FGF-19 analogue NGM282 (aldafermin), which in a
Phase II trial reduced hepatic fat and liver enzymes but
increased LDL-cholesterol and total cholesterol; triacylglyc-
erols and weight were slightly decreased at the higher dose
studied (6 mg), while no changes were observed in HbA ;. or
insulin resistance [38]. After administration for 24 weeks,
aldafermin resulted in improvement of fibrosis (>1 stage) with
no worsening of NASH in 38% of participants (vs 18% with
placebo) and produced resolution of NASH with no worsen-
ing of fibrosis in 24% of participants (vs 9% with placebo)
[39]. However, the increase in total and LDL-cholesterol and
the reduction in HDL-cholesterol, which had been observed in
healthy volunteers during administration of FXR agonists and
FGF-19 analogues [37], raises some concern, although this
dyslipidaemia can effectively be managed with statins [40].

New partial FXR agonists (non-bile acids) are currently under
development. These include tropifexor (LNJ452) [41, 42], EDP-
305 [43] and nidufexor (LMB763), of which nidufexor seems the
most potent [44]. However, most of the available data on non-bile
acid FXR agonists are limited to studies in animal models, and
resilient efficacy and safety data in humans are awaited.

Liver X receptor agonists Liver X receptors (LXRs) act as
oxysterol sensors and are involved in the regulation of choles-
terol and lipid metabolism [45]. There are two types of LXR:
LXRo (NR1H3), expressed mostly in the liver and to a lesser
extent in the kidney, small intestine, spleen and adrenal gland;
and LXR3 (NRI1H2), expressed ubiquitously [45]. LXRs
stimulate lipogenesis while suppressing gluconeogenesis
(Fig. 1). It has also been shown that the insulin stimulation

of hepatic lipogenic genes is mediated through LXR activa-
tion [46]. LXR«[3-deficient 0b/ob (LOKO) mice are protected
from hepatic steatosis despite being obese and glucose intol-
erant [47]. Employment of euglycaemic—hyperinsulinaemic
clamp showed that the LOKO mice are insulin sensitive at
the level of both muscle and liver. However, these mice
showed reduced glucose tolerance with low insulin values
and the authors found that the low insulin secretion was due
to reduced beta cell mass rather than beta cell dysfunction
[47]. While LXR agonists may cause hepatic fat accumula-
tion, LXR inverse agonists have the ability to suppress the
expression of the lipogenic LXR target genes Fasn and
Srepbl. Several compounds that bind to both LXRx and
LXR3 (LXR agonists) have been developed [48-55]
(Table 3) and studied for the treatment of NAFLD and athero-
sclerosis, as they have been shown to reduce lipogenesis,
inflammation, insulin resistance and hyperlipidaecmia, but
some like T0901317 and GW3965 are associated to increased
hepatic fat accumulation [53, 54]. Only some LXR agonists
have made it to Phase I clinical trials [50, 52, 56-58], none
have progressed to Phase II studies due to unforeseen adverse
reactions or undisclosed reasons. Among these are LXR-623/
WAY 252623; BMS-779788; BMS-852927 [48, 50-52]. At
the moment there are no indications that these compounds
might be successful for treating metabolic diseases.
However, they are important in the study of LXRx and
LXR}3, leading to better understanding of the receptors’ role
in the deterioration of lipid metabolism.

Incretins
Incretins are gut hormones released in response to food inges-

tion that augment the secretion of insulin released from
pancreatic beta cells. Incretins include GLP-1 and glucose-
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Table 3 LXR agonists that target hepatic lipid and glucose metabolism
Drug Mechanism of Mode of Regulatory  Clinical effect References
action administration ~ status
Steatosis  Fibrosis ~ Hepatic =~ HbA;. Insulin
markers  enzymes resistance
GSK2033 LXRo/LXRfp inverse — Preclinical = NA NA NA NA  [48,
agonist 55]
SR9238 LXRo/LXRf inverse — Preclinical 1? 1? NA NA = [49]
agonist
T0901317 LXRo/LXRf agonist — Preclinical 17 NA NA NA 17 [48,
53]
GW3965 LXRo/LXRf agonist — Preclinical 19 NA NA NA 19 [53]
BMS-852927 LXRf3 agonist PO Phase I = NA NA NA NA  [50]
BMS-779788 LXRo/LXRf agonist PO Phase I 1 NA NA NA NA [50]
LXR-623 LXR ot-partial/ PO Phase [ =1 NA NA NA NA [51,
(WAY LXRB-full agonist 52]
252623)

 Preclinical data
PO, oral

dependent insulinotropic polypeptide (GIP), which are rapidly
degraded by dipeptidyl peptidase 4 [DPP-4]. GLP-1RAs and
DPP-4 inhibitors both target the liver (Fig. 1). Table 4 shows
information on specific drugs with references. GLP-1RAs have
become second-line therapy for individuals with type 2 diabe-
tes; they help to restore normoglycaemia as well as promote
weight loss and ameliorate the risk of CVD. Compared with
native GLP-1, which is rapidly degraded by DPP-4, GLP-1RAs
are resistant to DPP-4, allowing a more prolonged duration of
action. DPP-4 inhibitors decrease hyperglycaemia by reducing
the degradation of endogenous GLP-1 but they only have a
small effect on reducing hepatic fat content [59-62]. On the
other hand, GLP-1RAs have a more potent effect on liver
histology, not only on liver fat but also on hepatic inflammation
and ballooning and in part on fibrosis [63].

In the LEAN (Liraglutide Efficacy and Action in NASH)
trial, 52 participants with NASH were randomised to receive
treatment with the GLP-1RA liraglutide or placebo for
48 weeks [64]. Resolution of NASH was observed in 39%
of the liraglutide-treated participants vs 9% of the placebo-
treated participants, indicating that liraglutide is safe and
should be used to treat diabetic individuals with NAFLD,
although complete resolution of NASH might not be
achieved. In the Phase II trial ‘Investigation of Efficacy and
Safety of Three Dose Levels of Subcutaneous Semaglutide
Once Daily Versus Placebo in Subjects With Non-alcoholic
Steatohepatitis’, 320 individuals with NASH with or without
type 2 diabetes were enrolled and 302 completed the 72 weeks
of treatment [65]. Changes in liver histology were assessed in
277 individuals. The primary aim, NASH resolution without
worsening of fibrosis, was achieved in about 40% of partici-
pants treated with semaglutide 0.1 mg and 0.2 mg and in 59%
of those treated with semaglutide 0.4 mg (vs 17% of those
given placebo) (OR 6.87, p<0.0001). However, the
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percentage of participants with an improvement in fibrosis
stage was similar among groups.

Reduction of both liver fat content and hyperglycaemia in
individuals with NAFLD has also been reported with exenatide
[66-71], lixisenatide [72] and dulaglutide [73, 74]. GLP-1RAs
have several effects on liver function: they decrease liver
enzymes [64, 72, 75-77], EGP [78], lipotoxicity [64, 66, 75,
79, 80] and postprandial triacylglycerol concentrations [81, 82].
Some of these hepatic effects might be mediated by a decrease
in body weight. However, weight loss with GLP-1RAs is 4—
5 kg (higher with semaglutide), which seems insufficient to
explain by itself the improvement in liver histology considering
that a weight loss of 7-10% is necessary to bring about resolu-
tion of NASH [83].

New unimolecular polyagonists based on GLP-1 have been
developed and have shown superior metabolic action
compared with single GLP-1RAs. Among these, one of the
most promising is the GLP-1/GIP receptor agonist tirzepatide,
which has shown better reduction of HbA ., body weight and
liver fat content when compared with placebo or dulaglutide
[84], and better improvement in markers of liver fibrosis
[84-86].

The main effects of dual GLP-1/glucagon receptor
agonists, engineered from the sequence of the gut hormone
oxyntomodulin [87], are reduction of body weight and liver
fat content, and improvement in glycaemic control, lipid
profile and energy expenditure. In this class of drugs
cotadutide showed promising results for weight loss and
glycaemic control [88], while for the other compounds, such
as ZP2929/BI 456906 [87, 89], MK-8521 [87], NN9277 [87]
and efinopegdutide [87], data in humans are lacking.

The triple GLP-1/GIP/glucagon receptor agonist
HM15211 is under development. Preclinical data have shown
that HM 15211 has antifibrotic and anti-inflammatory
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properties [90] while in the Phase Ib/Ila trial in non-diabetic
obese individuals with NAFLD HM15211 significantly
decreased liver fat content and body weight after 8 and
12 weeks of treatment [91].

Given the results of the recent trials (including the data on
semaglutide), it seems that use of incretins should be among
the first-line treatment for individuals with diabetes and
NAFLD. Moreover, these individuals are at higher risk of
cardiovascular and chronic kidney disease even in the absence
of type 2 diabetes [92] and it should be considered that GLP-
1RAs have also shown beneficial effects on cardiovascular
and renal systems.

SGLT2 inhibitors

SGLT?2 inhibitors are among the most widely used drugs for
the treatment of type 2 diabetes, as second-line agents along
with GLP-1RAs. Not only do they reduce hyperglycaemia but
they also promote cardiorenal protection and weight loss [93].
Although SGLT2 inhibitors decrease fasting and postprandial
glucose, they do not suppress EGP, which has been found to
be increased in several studies (Fig. 1). A number of studies
reported significant benefits in individuals with type 2 diabe-
tes, with respect to reversal of liver steatosis and reduction in
plasma aminotransferase levels, following treatment with the
SGLT?2 inhibitors empagliflozin [94, 95], dapagliflozin [96],
canagliflozin [97, 98], luseogliflozin [99, 100], ipragliflozin
[101, 102] and ertugliflozin [103] (see Table 5 for further
information and references). The effect of SGLT2 inhibitors

on hepatocyte necrosis, inflammation and/or fibrosis is less
studied but there are indications that treatment with some
SGLT2 inhibitors, such as dapagliflozin [96], canagliflozin
[98] and ipragliflozin [102] (but not empagliflozin [104] or
ertugliflozin [103]), improves variables of liver fibrosis.
Typically, the reduction in plasma alanine aminotransferase
concentration and liver fat content is proportional to the
magnitude of weight loss and is greater with higher baseline
plasma aminotransferases [70].

Combinations of SGLT2 inhibitors with GLP-1RAs are
now under investigation and have been shown to potentiate
the actions of each of the drugs on glucose metabolism [105],
as well as each drug’s effect of improving liver function and
indices of steatosis and fibrosis [70].

The effects of SGLT2 inhibitors on NAFLD seem to be
related mainly to weight loss [70]. However, their effects of
rapidly lowering blood glucose levels and reducing CVD risk
should make this class of drugs one of the first choices, togeth-
er with GLP-1RAs, for the treatment of type 2 diabetes with
NAFLD/NASH, until new drugs specifically for the treatment
of NASH become available.

Insulin

The effect of insulin treatment on liver fat content and liver
enzymes in individuals with uncontrolled type 2 diabetes and
NAFLD has not been extensively studied and no prospective
trial has examined its effect on liver histology (Table 6). In
one study, the prevalence of NAFLD was low in individuals

Table 5 SGLT?2 inhibitors that target hepatic lipid and glucose metabolism
Drug Mechanism of ~ Mode of Regulatory Clinical effect References
action administration  status
Steatosis Fibrosis Hepatic HbA,. Insulin
markers enzymes resistance

Empagliflozin =~ SGLT 2 PO Phase IV l 1= | ! |Related to [94, 95, 104,
inhibitor weight loss 175]

Canagliflozin SGLT 2 PO Phase IV l NA l ! |Related to [97,
inhibitor weight loss 176-180]

Dapagliflozin ~ SGLT 2 PO Phase IV ! NA ! l |Related to [70, 96,
inhibitor weight loss 181-183]

Ertugliflozin SGLT 2 PO Phase IV NA NA ! ! |Related to [184]
inhibitor weight loss

Ipragliflozin SGLT 2 PO Approved by | |Tendency | l |Related to [62, 101,
inhibitor PMDA weight loss 185-190]

Tofogliflozin SGLT 2 PO Approved by | NA 1 l |Related to [191]
inhibitor PMDA weight loss

Luseogliflozin ~ SGLT 2 PO Approved by | NA ! ! |Related to [99, 100]
inhibitor PMDA weight loss

Licogliflozin Dual SGLT12 PO Phase Ila l NA l ! |Related to [192, 193]

(LIK066) inhibitor weight loss

PO, oral; PMDA, Pharmaceuticals and Medical Devices Agency, Japan
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Table 6 Insulins that target hepatic lipid and glucose metabolism
Drug Mechanism of ~ Mode of Regulatory Clinical effect References
action administration status
Steatosis Fibrosis Hepatic HbA,. Insulin
markers enzymes resistance
Peglispro Insulin SC Interrupted i NA = l - [108]
Glargine Insulin SC Phase [V = NA = l - [68, 79]
Glargine Insulin SC Phase IV l NA = l - [71, 80, 107,
108]

SC, subcutaneous injection

with type 1 diabetes (8.8%) and in those with type 2 diabetes
NAFLD prevalence was lower in insulin-treated (61.7%) than
in insulin-naive (75.6%) individuals [106]. Basal exogenous
insulin decreases liver steatosis [71, 80, 107, 108], likely by
improving both lipotoxicity and glucotoxicity. However, not
all studies have reported a decrease in hepatic fat content [68,
79]. One study showed that acute normalisation of fasting
glucose concentrations in individuals with type 2 diabetes
with variable insulin infusion for 67 h decreased EGP without
changing peripheral insulin resistance but increased hepatic
triacylglycerol content [109]. Furthermore, in a cross-
sectional study involving 346 individuals with type 2 diabetes
and biopsy-proven NAFLD, multivariate models analysis
showed that treatment with insulin (but not metformin) was
significantly associated with a higher prevalence of NASH
(OR 2.24, p =0.025) but not fibrosis [11]. However, the indi-
viduals treated with insulin had HbA ;. 8.2% vs 6.9% (66 vs
52 mmol/mol) and it cannot be excluded that worse metabolic
control and longer duration of diabetes may contribute to these
findings. Insulin is known to decrease FFA concentrations by
stimulating triacylglycerol re-esterification, not only in the
adipose tissue, but also in other organs such as the liver or
the muscle [109]. However, insulin also stimulates de novo
lipogenesis (DNL). Thus, it is likely that in conditions of
excess substrates (e.g. in more obese individuals with adipose
tissue insulin resistance) high insulin concentrations favour
hepatic triacylglycerol accumulations.

Drugs targeting hepatokines

Hepatokines are proteins secreted by hepatocytes involved in
the regulation of metabolic processes through autocrine, para-
crine and endocrine pathways [110] and might become a
target for the treatment of hepatic metabolic diseases (see
Table 7 for more information on specific drugs targeting
hepatokines). Among the hepatokines we can find fetuin-A,
FGF-21 and angiopoietin-like protein 3 (ANGPTL3).
Fetuin-A is involved in the pathophysiology of type 2
diabetes and CVD [110]. Among the drugs approved for the

treatment of diabetes, liraglutide [111] and pioglitazone [112],
but not metformin [112], reduce circulating levels of fetuin-A.

Individuals with metabolic disease (i.e. diabetes, NAFLD
and obesity) display increased circulating levels of FGF-21; this
has been attributed to a resistance to this hormone, and the
administration of pharmacological doses of exogenous FGF-
21 would overcome the resistance. FGF-21 is considered to
have acute insulin-sensitising effects via activation of the FGF
receptor-1/transmembrane protein (3-klotho complex in adipose
tissue. In contrast, the long-term metabolic benefits of FGF-21
treatment (in particular weight loss) are thought to be primarily
caused by binding of FGF-21 to the FGF receptor-1/transmem-
brane protein (3-klotho complex in the brain [113].

Several FGF-21 analogues are in the pipeline of pharma
companies [114—-119] and preclinical studies indicate that they
reduce body weight, hepatic fat, circulating lipids, insulin and
glucose in a dose-dependent manner by reducing hepatic
gluconeogenesis and lipogenesis and improving hepatic and
peripheral insulin resistance [120]. A recent trial that
employed pegbelfermin, a pegylated FGF-21, administered
subcutaneously for 16 weeks [115], showed that there was a
significant decrease in hepatic fat content and an increase in
adiponectin levels compared with placebo.

NGM313 (now MK3655) is a humanised monoclonal anti-
body activator of 3-klotho/FGF receptor-1c that, by once-
monthly administration, boosts the effect of FGF-21 [121].
Results of a Phase 1 trial employing NGM313 vs pioglitazone
for 36 days showed a reduction in absolute and relative liver
fat content, HbA,, and ALT for both treatment arms,
compared with baseline, but effects were more robust in indi-
viduals treated with NGM313, although the data are published
only as an abstract [121].

Angiopoietin-like protein 3 (ANGPTL3) is secreted mainly
by the liver and, in this sense, it might be considered a
hepatokine. ANGPTL3 acts as dual inhibitor of lipoprotein
lipase and endothelial lipase, thereby increasing plasma
NEFA, triacylglycerols, LDL-cholesterol and HDL-cholester-
ol, and its plasma concentration is associated with clinical/
histological markers of NAFLD/NASH and with hepatic
ANGPTL3 expression [122]. Evinacumab is an
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investigational monoclonal antibody that blocks ANGPTL3.
Results of a Phase III trial showed that evinacumab reduced
LDL-cholesterol, apolipoprotein B, non-HDL-cholesterol and
total cholesterol, compared with placebo [123, 124].
Moreover, evinacumab decreased odds of atherosclerotic
CVD [125] and, although data on fatty liver are lacking, it is
likely that inhibition of ANGPTL3 might improve NAFLD.

Drugs that modulate lipid metabolic
pathways

Several drugs that target hepatic lipid metabolism have recent-
ly been developed (see Table 7 for more information on
specific drugs and references).

Stearoyl CoA desaturase-1 (SCD-1) is a key enzyme in the
formation of monounsaturated fatty acids, specifically oleate
and palmitoleate from stearoyl CoA and palmitoyl CoA.
Inhibitors of SCD-1 are being tested in the treatment of
NAFLD. In one trial, the SCD-1 inhibitor Aramchol (devel-
oped by Galmed, Israel) decreased liver fat content in individ-
uals with NAFLD at a dose of 300 mg but not 100 mg,
compared with placebo, but no significant change was observed
in ALT, adiponectin or HOMA-IR [126]. However, no such
effect on liver fat content was seen in individuals with HIV-
associated NAFLD and lipodystrophy [127].

Ketohexokinase (KHK), also known as hepatic fructokinase,
catalyses the first step in the metabolism of dietary fructose,
comprising the conversion of fructose to fructose-1-phosphate,
with the potential to decrease DNL. The KHK inhibitor PF-
06835919 reduced hepatic fat and improved insulin resistance
in individuals with NAFLD [128, 129].

Fatty acid synthase (FAS) is involved in DNL, since it
catalyses the synthesis of palmitate (C16:0, a long-chain satu-
rated fatty acid), from acetyl-CoA and malonyl-CoA. The
FAS inhibitor TVB-2640 is reported to reduce DNL and
hepatic fat when administered for 10 days [130].

Acyl-CoA:diacylglycerol acyltransferase-1 and -2
(DGAT-1 and DGAT-2) catalyse the formation of triacylglyc-
erols from diacylglycerol and Acyl-CoA. DGAT inhibitors
are under study for the treatment of diabetes, obesity and
NAFLD and exert effects on both endogenous and meal-
induced triacylglycerol turnover [131-133].

Epeleuton is a synthetic n-3 fatty acid derivative of
eicosapentaenoic acid that decreased triacylglycerols, improved
glycaemic control and decreased markers of inflammation in a
Phase II exploratory study (16 weeks) in individuals with obesi-
ty and NAFLD [134]. Epeleuton at the highest dose significant-
ly decreased hepatic fat from baseline, although not significant-
ly, vs placebo but it did not meet the primary endpoints of
decreased ALT concentrations or liver stiffness.

Acetyl-CoA carboxylase (ACC) is a key enzyme in fatty acid
synthesis since it catalyses the irreversible carboxylation of

acetyl-CoA to produce malonyl-CoA. The ACC inhibitor GS-
0976 is reported to reduce hepatic fat and markers of fibrosis but
increases the concentration of triacylglycerols [135, 136].

Liver-directed selective thyroid hormone receptor-f3
agonists are in the pipeline for the treatment of NAFLD.
Resmetirom [137, 138] and VK2809 [138, 139] have been
shown to improve hepatic lipid metabolism and ameliorate
NAFLD in Phase II studies although in vitro their effect seems
less potent than the native thyroid hormone receptor ligand,
triiodothyronine (T3) [137, 138].

Several drugs target important enzymes like 11f3-
hydroxysteroid dehydrogenase type-1 (113-HSD1) [140-148]
and protein tyrosine phosphatase-1B (PTP1B) [149]. 11f3-
HSDI1 reduces cortisone to the active hormone cortisol, which
activates glucocorticoid receptors. 11(3-HSD1 inhibitors, not only
reduce HbA,. and fasting plasma glucose but also, if present,
improve hyperlipidaemia and hypertriacylglycerolaemia and
reduce hepatic steatosis [143]. PTPIB is a soluble non-
transmembrane and cytosolic tyrosine-specific phosphatase; it is
a negative regulator of insulin signalling. Liver-specific deletion
of PTP1B in mice brought about improvement in both glucose
and lipid metabolism, with suppression of gluconic and lipogenic
genes (Fig. 1) [150]. PTPIB inhibitors, such as IONIS-PTP-
1BRx, have demonstrated sustained effects on HbA ;. and glucose
variables and increased adiponectin levels in humans [149].

Summary and conclusions

The high prevalence of NAFLD, NASH and type 2 diabetes
has made the liver a central target for drug development. It is
now evident that not only reducing glucotoxicity and
lipotoxicity but also improving insulin resistance and inflam-
mation is beneficial for the liver in both type 2 diabetes and
NAFLD/NASH. Many drugs are in the pipeline for the treat-
ment of NAFLD/NASH, also having effects on
hyperglycaemia and insulin resistance. Similarly, several
(but not all) drugs already approved to treat type 2 diabetes
are effective in improving hepatic lipid metabolism and are
now being tested specifically for treatment of NAFLD/NASH.
The effect of these drugs on hepatic inflammation is less clear,
mainly because of lack of standard methods, besides liver
biopsy, to specifically evaluate tissue inflammation.
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