
Vol.:(0123456789)1 3

Oecologia 
https://doi.org/10.1007/s00442-021-04907-w

SPECIAL ISSUE: IN HONOR OF RUSSELL K. MONSON

Protein expression plasticity contributes to heat and drought 
tolerance of date palm

Andrea Ghirardo1   · Tetyana Nosenko1   · Jürgen Kreuzwieser2   · J. Barbro Winkler1   · Jörg Kruse3   · 
Andreas Albert1   · Juliane Merl‑Pham4   · Thomas Lux5 · Peter Ache6   · Ina Zimmer1   · Saleh Alfarraj7 · 
Klaus F. X. Mayer5,8   · Rainer Hedrich6   · Heinz Rennenberg3,7,9   · Jörg‑Peter Schnitzler1 

Received: 11 October 2020 / Accepted: 23 March 2021 
© The Author(s) 2021

Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently repre-
senting a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, 
urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate 
large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic 
compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were 
grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with 
drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the 
abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer 
climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock pro-
teins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism 
were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response 
to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the 
gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, 
the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. 
We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental 
fluctuations.
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Introduction

Climate change is expected to increase the frequency and 
intensity of high temperatures and dry spells (IPCC 2013; 
Arnell et al. 2019; Baldwin et al. 2019; Kornhuber et al. 
2019). Heatwaves and prolonged drought episodes are 
threats for many plant species, including several agricul-
tural and forest plants. However, during evolution, some 
plants have survived remarkable seasonal variations 
of temperature and soil water availability by develop-
ing complex adaptation strategies to maintain metabolic 
homeostasis (Bréda et al. 2006) although the underlying 
mechanisms are still poorly understood. To ensure human 
food security and to remodel threatened forests, a deeper 
understanding of plants’ adaptability and resilience to the 
consequences of global warming is urgently required for 
the development of smart agricultural systems and the 
implementation of successful forest management.

Date palm (Phoenix dactylifera L.) is naturally distrib-
uted across arid/semi-arid environments typical of Mid-
dle East (Shabani et al. 2012). It is one of the oldest crop 
species and, because of its economic importance, cultiva-
tions have been extended to Australia, Asia, Africa, and 
the Americas (Tengberg 2012). The variety of climate 
conditions in which the date palm can grow shows that 
it tolerates adverse climate conditions: adapted to broad 
temperature range (12.7–27.5 °C as averages), date palm 
withstands frost and hot periods of − 5 and + 50 °C (Chao 
and Krueger 2007) and long drought episodes (Du et al. 
2019). Therefore, P. dactylifera provides a good model 
for dissecting molecular and physiological key processes 
that able plants to cope with extreme climate conditions 
(Arab et al. 2016).

Proteins respond to abiotic stresses at transcriptional, 
post-transcriptional, translational, and post-translational 
levels. Hence, adjustments of protein expression and 
modification can assist P. dactylifera in managing extreme 
environmental changes. An in-depth understanding of the 
tolerance mechanisms of date palm to its native climate 
habitat may help unravel the strategies that plants evolved 
to successfully withstand a wide range of environmental 
conditions similar to those expected in other parts of the 
globe under the effects of climate change.

Under severe drought stress, most plants react by clos-
ing their stomata to limit transpiration water loss. In turn, 
leaf internal carbon dioxide (CO2) concentrations drop, 
impairing net CO2 assimilation (A) (Brunner et al. 2015). 
This restriction of CO2 fixation with a simultaneous con-
tinuing light reaction of photosynthesis often leads to the 
formation of reactive oxygen species (ROS) causing oxi-
dative stress due to electron leakage to oxygen molecules 
(Rennenberg et al. 2006; Lee et al. 2012). In general, the 

detoxification of ROS is achieved by the use of efficient 
antioxidants such as ascorbate and glutathione and their 
regeneration in the Foyer-Halliwell-Asada cycle (Foyer 
and Noctor 2011). Enzymes involved in the antioxida-
tive response include the superoxide dismutase (SOD), 
catalase (CAT), glutathione reductase (GR), L-ascorbate 
peroxidase (APX), monodehydroascorbate reductase 
(MDHAR), and dehydroascorbate reductase (DHAR) 
(Noctor et al. 2012; Bartwal et al. 2013; Nievola et al. 
2017). Some metabolites such as carotenoids, polyphenols, 
and proline also possess antioxidant properties, although 
they cannot be recycled easily. Biosynthesis of the volatile 
organic compound (VOC) isoprene, however, is known to 
counteract oxidative stress and protects the photosynthetic 
apparatus. Isoprene helps leaves against abiotic stresses, 
especially during episodes of extremely high temperatures 
and drought (Sharkey et al. 2008; Loreto and Schnitzler 
2010). Although the mechanism is not yet fully under-
stood, it is shown that isoprene production affects the 
antioxidant system leading to a reduction in the level of 
reactive oxygen species (ROS) (Velikova et al. 2004, 2012, 
2014, 2015; Vickers et al. 2009). It also affects the sec-
ondary metabolic pathways of phenols, fatty acids, toco-
pherols and carotenoids, some of them are also involved 
in the quenching of harmful radicals (Behnke et al. 2010; 
Way et al. 2013; Kaling et al. 2014; Ghirardo et al. 2014). 
Compared to non-volatile molecules, the volatility of iso-
prene allows rapid penetration into membranes, diffusion 
through plant organelles and no need to be recycled, which 
may help plants to withstand acute heat stress (Behnke 
et al. 2007, 2013). Isoprene emission is strongly light-
dependent, and its formation occurs in the chloroplasts 
of some, but not all, plant species, including numerous 
woody plants (Monson et al. 2013). Palm species such 
as oil and date palm are strong isoprene emitters (Benja-
min et al. 1996; Wilkinson et al. 2006) and the study of 
isoprene emission is climate-relevant, as it participates in 
the formation of ozone, organic nitrates, aerosol formation 
and consumption of hydroxyl radicals in the atmosphere 
(Fuentes et al. 2000; Poisson et al. 2000; Ghirardo et al. 
2016; Kiendler-Scharr et al. 2009).

In the present study, we investigated the molecular and 
biochemical mechanisms of tolerance in the young date 
palm plants to high temperatures and mild-to-severe water 
shortage using simulated environmental conditions. These 
experiments were performed in climate chambers of the 
eco-/phytotron at Helmholtz Zentrum München, which pro-
vides a realistic simulation of climate and solar radiation 
(Seckmeyer and Payer 1993; Döhring et al. 1996; Thiel et al. 
1996; Kozovits et al. 2005; Ghirardo et al. 2020; Roy et al. 
2021). To this end, we acclimatized the plants to the summer 
and winter climate prevailing in Saudi Arabia and studied 
photosynthesis, VOC emissions and the leaf proteome upon 
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summer drought (SD) and winter drought (WD) conditions, 
and compared with well-irrigated summer control (SC) and 
winter control (WC) conditions. These harsh climates, char-
acteristic of the natural habitats of date palm, will likely 
occur in future in other regions under the effects of global 
warming.

In previous studies, partially employing the same experi-
mental approach, we focused on leaf photosynthesis and 
stomatal conductance (Kruse et al. 2019), changes of leaf 
metabolites (Du et al. 2019), antioxidative system, and fatty 
acid metabolism (Arab et al. 2016). Here, we study the plant 
volatile emission and the adjustments of the leaf proteome 
composition in response to heat and drought. In addition, 
based on bioinformatics analyses of genomic, transcriptomic 
and proteomics data, we report here for the first time the 
identification of the P. dactylifera isoprene synthase gene 
(PdIspS) and present the functional characterization of the 
respective enzyme key in abiotic stress tolerance.

Materials and methods

Plant material and experimental setup

Two-year-old date palm (Phoenix dactylifera L.) plants were 
purchased from a commercial supplier (’Der Palmenmann’, 
Bottrop, Germany) and transferred into 3.3-L pots filled with 
a peat-soil-sand mixture (3:1:7 v/v/v) and 10 g of Osmo-
cote fertilizer (16-9-12%, N-P-K). Plants were grown two 
months under greenhouse conditions (photoperiod of 12 h; 
25/15 °C, 20/30% rh, day/night) and irrigated once per week 
(c. 150–200 ml per pot) before they were transferred to the 
four climate chambers of the eco-/phytotron at Helmholtz 
Zentrum (Kruse et al. 2019; Ghirardo et al. 2020; Roy et al. 
2021).

Two of the four climate chambers were used to simu-
late the Saudi Arabian summer conditions, the other two 
to simulate the winter climate (see below for details). Each 
chamber was equipped with four sub-chambers, each host-
ing 15 plants. Per chamber, plants in two sub-chambers were 
exposed to water deprivation, whereas plants in the other 
two sub-chambers were kept well-watered as controls (n = 4 
sub-chambers per treatment).

During the first week, plants were acclimated in the 
climate chambers under gradually changing experimental 
parameters. We simulated the winter and the summer cli-
mate in Alahsa, Saudi Arabia, using a 10-years of average 
of temperatures in 2003–2012, observed in winter (21.12.-
21.03) or summer (21.06–21.09; Supplementary Informa-
tion, Fig. S1, for details, Kruse et al. 2019). Data on relative 
humidity were only available for 2013.

Winter and summer day climates were maintained 
throughout the duration of the experiment (7 weeks). 

Compared to winter, the photoperiod was four hours longer 
in summer, while the maximum irradiance at midday was 
similar, leading to a daily light integral of 20.6 (summer) 
and 15.6 (winter) mol m−2 day−1 PPFD (Supplementary, 
Fig. S1). Besides the day length, environmental conditions 
strongly differed in temperature: average noon temperature 
peaked at 40 °C in summer and at 25 °C in winter, with 
a day/night temperature amplitude of 20 °C. The relative 
humidity dropped in winter conditions from 80% during the 
night to 18% at noon and from 35 to 8% in summer.

To progressively lower the soil water content (SWC), the 
irrigation was reduced 50% relative to SC and WC on the 
days of experiment 24–27 and to 25% after further seven 
days. The effects of SD and WD on date palms were studied 
either continuously or at four different time points (T1-4, 

Fig. 1   Effects of climate and drought on isoprene emission and net 
CO2 assimilation. a Relative soil water content of plant substrate; b 
relative irrigation level during the experiment; c isoprene emissions 
at midday (1 h mean at 12 noon); d net CO2 assimilation; e relation-
ship between net assimilation and isoprene emission. T1–T4 indicates 
sampling times under pre-stress (T1), mild (T2), and severe (T3) 
water deprivations, and following re-watering (T4). Black arrows 
indicate the timepoints of leaf sampling for the proteomic analysis. 
Data shown are means ± SE (n = 4 replicates); *p < 0.05
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see Fig. 1), which included pre-treatment (T1), mild (T2), 
and severe stress (T3), as well as after re-watering (T4). 
The SWC was measured with a soil moisture sensor (ML3 
Thetaprobe, Delta-T, UK) and given as percentage of the 
maximum reading observed for the pot during the complete 
experiment.

Gas‑exchange and VOC analyses

Gas-exchange of CO2 was measured under standard condi-
tions ([CO2]: 400 ppm; light: 1000 µmol m−2 s−1 PPFD; 
temperature: 30 °C) on fully expanded leaves by infrared 
gas analyzers (GFS-3000, Walz, Effeltrich, Germany) as 
described elsewhere (Kruse et al. 2019). Three plants per 
sub-chamber were randomly chosen and treated as techni-
cal replicates for the measurements of CO2 gas-exchange. 
In total and per treatment, we measured 12 plants from four 
different sub-chambers (n = 4). Gas-exchange measurements 
were conducted at midday (11:00 am–1:30 pm).

The emissions of VOC in the climate chambers were 
monitored by online mass spectrometry throughout the 
whole experiment. The high-sensitivity proton-transfer-reac-
tion quadrupole mass-spectrometer (PTR-QMS) was oper-
ated as previously described (Ghirardo et al. 2010, 2011; 
Kreuzwieser et al. 2014) and in combination with the cham-
ber system of the EUS eco-/phytotron (Vanzo et al. 2015). 
Detailed information of the VOC system and the purification 
of the inlet air is given elsewhere (Ghirardo et al. 2020).

Sampling and analysis of VOCs were achieved by gas 
chromatography-mass spectrometry (GC–MS) as before 
(Duan et al. 2020). Collection of VOCs was performed 
simultaneously to CO2 gas-exchange measurements by 
diverting an aliquot of the air (4.5 L collected using an air-
flow of 100 ml min−1) from the cuvette outlet into GC–MS 
sampling tubes (Gerstel, Mülheim, Germany) filled with 
Tenax/Carbotrap/Carboxen 569 (20/30/40 mg; Supelco, 
Bellafonte, PA).

Harvest of plant material

Leaves from five different plants were harvested at time 
1:30 pm at the end of T1, T3, and T4, and fresh weight was 
determined. For the determination of dry mass, leaves were 
dried for three days at 65 °C.

Label‑free analysis of date palm leaf proteome 
using Progenesis LC–MS

Proteomic analysis was performed as before (Monson et al. 
2020). All LC–MS/MS spectra were used for peptide iden-
tification with Mascot (v2.5.1). The annotation and func-
tional classification were achieved based on the P. dactyl-
ifera genome annotation (38,570 predicted protein models; 

Hazzouri et al. 2019) and the Swissprot Green Plant protein 
database (38,396; https://​www.​unipr​ot.​org/) as described in 
Miloradovic van Doorn et al. (2020). Five biological repli-
cates were analyzed per treatment. The mass spectrometry 
data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE (Perez-Riverol et al. 2019) partner 
repository (identifier: PXD021666).

Proteomic mapping to MapMan functional 
categories (BINs) and pathway analysis

For each sample comparisons (SC/WC, SD/SC, WD/WC), 
protein identifiers and calculated log2 fold ratios were 
imported into MapMan (v3.6.0RC1, https://​mapman.​gabipd.​
org/) (Thimm et al. 2004; Usadel et al. 2005, 2009). Maps 
were created based on the Arabidopsis database, and the 
corresponding protein orthologs were searched on SMART-
BLAST (https://​blast.​ncbi.​nlm.​nih.​gov/​smart​blast). The pro-
gram compares protein sequences in databases and returns 
the accessions of all the proteins from different plant species 
found with the respective statistical significance of matches. 
Among these, the respective Arabidopsis orthologs with the 
highest identity were used in MapMan.

Identification and primary sequence analyses 
of the putative IspS gene from Phoenix dactylifera

To identify P. dactylifera orthologs and close paralogs of 
genes encoding proteins known to possess isoprene synthase 
(IspS) activity, BLAST sequence similarity searches were 
conducted against P. dactylifera predicted protein mod-
els and genome sequence assembly GCA_000413155.1 
(NCBI Bioprojects PRJNA396270) using Populus tremula 
CAC35696, P. alba ADG96473.1, P. fremontii AEK70967.1, 
Eucalyptus globulus BAF02831.1, Melaleuca alternifolia 
AAP40638.1 and Arundo donax ASF20076.1, Casuarina 
equisetifolia BAS30549.1 and Humulus lupulus ACI32638.1 
IspS genes as queries. The resulting sequences were aligned 
to the reference IspS sequences using MUSCLE (Edgar 
2004) and analyzed for the presence of conserved motifs 
and diagnostic tetrad residues described elsewhere (Sharkey 
et al. 2013; Li et al. 2017) using Mesquite (Massidon and 
Maddison 2018). Amino acid alignments of the candidate 
genes were searched to detect exact matches to the P. dactyl-
ifera peptides-markers of putative terpene synthase (TPS). 
To reconstruct the N- and C-termini of the partial IspS 
sequence XP_008779509.1, we identified close orthologs 
of this gene from other monocots from the NCBInr data-
base and used these sequences to screen genome data for 
the P. dactylifera cultivars Khalas and Khanizi (NCBI Bio-
projects PRJNA396270 and PRJNA322046), respectively. 
Contigs resulting from this screening were assembled in a 
single pseudo-scaffold, further verified and corrected using 

https://www.uniprot.org/
https://mapman.gabipd.org/
https://mapman.gabipd.org/
https://blast.ncbi.nlm.nih.gov/smartblast
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RNA-seq data available for P. dactylifera from the NCBI 
Short Read Archive (SRA) as described in Supplementary 
MM1. The CDS was translated using Mesquite and the 
cleavage site of the IspS plastid-targeting peptide was pre-
dicted with TargetP v1.1 (Emanuelsson et al. 2000).

Phoenix dactylifera IspS CDS cloning, expression 
in E. coli and in vitro enzymatic activity assay

The CDS sequence encoding mature PdIspS (1695 bp after 
removing the chloroplast transit peptide) was edited and 
optimized for expression in E. coli using the GeneArt portal 
software (Invitrogen). The attB1- and attB2-Express motifs 
were added to the N- and C-termini of the CDS sequence, 
respectively. The resulting sequence was synthesized, cloned 
into the Gateway donor vector pENTR221 and subsequently 
subcloned into the Gateway destination vector pDEST17 
(Invitrogen) by Life Technologies GmbH. Cloning efficiency 
was verified using restriction enzymes XbaI and HindIII and 
the in-gel insert size verification protocol.

The PdIspS was expressed in the chemically competent 
Escherichia coli cells BL21(DE3) (ThermoFisher Scientific, 
Darmstadt, Germany). Chemical transformation of the com-
petent cells and protein expression were conducted accord-
ing to the manufacturer protocol.

Protein extracts of heterologously expressed PdIspS were 
obtained as previously described (Schnitzler et al. 2005), 
and PdIspS enzyme activity was assayed in vitro, accord-
ing to Mayrhofer et al. (2005). Synthesized isoprene was 
measured by headspace analysis using PTR-QMS (Ghirardo 
et al. 2010, 2014). Date palm IspS activities were deter-
mined as described in Supplementary MM2 using 5 mM of 
the substrate dimethylallyl diphosphate (DMADP) for iso-
prene biosynthesis or by 5 mM geranyl diphosphate (GDP) 
for monoterpenes.

The temperature response curve of PdIspS activity was 
modeled by the Arrhenius equation:

where k is the enzymatic rate constant, A is the frequency 
factor of the process, Ea is the activation energy (J mol–1), 
R is the gas constant (8.314463 J mol–1 K–1), and T is the 
absolute temperature (K).

Statistical analysis

The four subchambers per treatment served as the units 
of replication (i.e., n = 4) for isoprene and photosynthesis 
analyses.

To test for differences in VOC profiles, data of relative 
VOC emission rate (peak area m−2 s−1) of drought-stressed, 
non-stressed, and re-watered plants grown in summer and 

(1)k = Ae
−

Ea

RT ,

winter climate were subjected to principal component analy-
sis (PCA) using MetaboAnalyst 3.0 (Xia et al. 2015; Chong 
et al. 2019; Pang et al. 2020). Data were subjected to loga-
rithmic transformation, centered and scaled to unit variance 
to conform to a normal distribution and ensure equal weigh-
ing of all compounds.

Statistical differences of proteomics data were analyzed 
using PCA and Orthogonal Partial Least Square regres-
sion (OPLS) analyses using SIMCA-P (v13.0.0.0, Umet-
rics, Umeå, Sweden) as described elsewhere (Vanzo et al. 
2015). PCA was calculated on normalized protein intensities 
(X-variables) after log10 and unit-variance transformations. 
The results were validated by full cross-validation (CV) 
(Eriksson et al. 2008) using a 95% confidence level. Addi-
tionally, discriminant proteins were independently tested for 
significant difference between the comparisons SC/WC, SD/
SC, WD/WC using one-way ANOVA (p < 0.05, FDR of 5%) 
(SigmaPlot v11.0, Systat Software, Erkrath, Germany).

Statistically significant BINs were tested using the Wil-
coxon rank-sum test implemented in MapMan after Benja-
mini Hochberg correction (FDR) of 5%. The hypergeometric 
distribution test (p < 0.05) was performed for over/underrep-
resentation analysis of BINs in the different protein classes 
(Goffard and Weiller 2006).

Results

Drought differently affects photosynthesis 
and isoprene emissions in date palm

The VOC emissions and the CO2 gas-exchange were stud-
ied from date palms growing under simulated winter and 
summer climate of Alahsa, Saudi Arabia, challenged by 
drought stress and compared to well-watered control con-
ditions (Fig.  1). Plants under SC showed significantly 
(p < 0.001, ANOVA) higher isoprene emission rates 
(~ 40.1 ± 2.0 nmol m−2 s−1 at noon, under T = 39.4 ± 0.4 °C 
and light of 640 µmol m−2 s−1; Fig. 1c) than plants growing 
under WC (8.5 ± 1.6 nmol m−2 s−1), whereas differences in 
photosynthetic net CO2 assimilation were small (Fig. 1d). 
Water deprivation caused a substantial decline in SWC in 
both climates but impaired the net CO2 assimilation rates 
(A) in WD but not in SD under mild drought (T2, Fig. 1d), 
when the decrease of SWC was 54–67% (Fig. 1a). Isoprene 
emissions remained unaffected in plants experiencing mild 
drought under both summer and winter climates compared 
to their respective well-watered controls (Fig. 1b). Under 
severe drought (T3) and compared to controls, A was 
strongly reduced in both SD and WD, but isoprene emissions 
decreased significantly only in SD (p < 0.05, ANOVA). Iso-
prene emission remained unaffected in WD, even when SWC 
was less than 30%. Upon re-watering of the plants, the SWD 
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recovered, isoprene emission rates increased again in SC, A 
fully recovered (T4) in both climates and dry/fresh weight 
ratios increased (Supplementary Fig. S2). The high emission 
of isoprene in SC and its slighter decrease in SD, despite a 
quick decline in photosynthesis, suggests an involvement 
of isoprene biosynthesis to assist leaves under heat/drought 
stress.

Emissions of stress-induced VOCs are molecular markers 
of physiological stress. We investigated date palm’s response 

to heat/drought stress by additionally collecting air sam-
ples for GC–MS analysis and analyzed by PCA. Besides 
isoprene, date palm emitted twenty additional plant VOCs 
(Supplementary Table S1), and these emissions changed 
under drought, as seen by the separation of drought from 
controls/re-watered samples in the significant principal com-
ponent (PC) 1 and 2 (Fig. 2). Most of the VOC emissions 
positively correlated to well-watered/re-watered conditions, 
meaning that emissions decreased under severe drought 
(T3). Indicative of molecular oxidation, the oxygenated vola-
tiles acetaldehyde (#1 in Fig. 2) and ethanol (#2 in Fig. 2) 
were specifically induced upon re-watering (Supplementary 
Table S1).

Climate fluctuation affects the leaf proteome 
broader than soil water deprivation

Climate and soil water deprivation caused clear physiologi-
cal responses in date palms, such as the reduction of net 
CO2 assimilation and isoprene emission (Fig. 1). We investi-
gated in detail the quantitative and qualitative leaf proteom-
ics changes in extracts of date palm leaves collected under 
severe drought stress (T3) of the comparison SC/WC, SD/
SC, and WD/WC. To this end, we quantitatively measured 
1520 proteins identified using SwissProt Green Plant data-
base and characterized the variation in protein expressions 
by a multivariate statistical approach based on OPLS (Fig. 3; 
Model fitness: r2 (x) = 38%, r2 (y) = 100%, r2 = 90.7%, and 
q2 (cumulative) = 65% using two predictive components. 
RMSEE (root mean square error of estimation) = 0.0909 
(S/W), 0.225 (D/C); RMSEcv (root mean square error 

Fig. 2   PCA biplot of date palm VOC emissions. Data depict sam-
ples collected from plants under drought (open symbols) and con-
trol (solid) conditions, or under drought recovery (half-open/solid), 
exposed to summer (red) or winter (blue) climate. The explained 
variance (in %) and the number of principal components (PC) are 
reported in x- and y-axes. Numbers reflect the compound IDs given in 
Supplementary Table S1

Fig. 3   Global effects of climate and drought on date palm proteome. 
a Two-dimensional score plot of OPLS proteome analysis. The 
ellipse indicates OPLS tolerance (Hotelling’s T2) with α = 0.05. b 
OPLS loading plot (correlation-scaled to 1). The outer/inner ellipses 
indicate 100/75% of explained variance. The circles are the X-load-
ings (protein abundances) and the triangle and squares are the Y-load-

ings for the climates (S/W) and for the treatment (D/C) variables, 
respectively. S summer, W winter, C control, D drought, PC princi-
pal component. Arrow points to the putative terpene synthase (TPS) 
referred in the text (accession number Q5UB07/XP_008779509.1, 
Supplementary Table S2)
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of CV) = 0.132 (S/W), 0.394 (D/C). p = 2.9∙10–6 (S/W), 
p < 0.05 (D/C)). The proteome of plants cultivated in SC 
was significantly (p < 0.001, CV-ANOVA) different from the 
protein composition in leaves of plants grown in WC. The 
comparison between SD/SC and WD/WC further showed 
that drought also led to significant changes (p < 0.05) in 
the leaf proteome. However, the influence of climate was 
greater than that of soil water deprivation, as shown by 
the 30% of the explained total variance in the PC1, which 
explains the separation of samples with respect to climate. 
In comparison, PC2, which describes the drought treatment, 
explains only 9% of the total variance. Because the OPLS 
aims to find the plane in the multivariate space along the 
difference between the sample groups are maximized, the 
greater distance between SD/SC than WD/WC indicate that 
date palm adjusted the proteome to a larger degree under 
hot conditions of summer than winter climate to withstand 
drought stress. This represents a quantitative analysis of the 
proteome-wide protein expression plasticity of date palm 
under extreme climate and soil water contents.

Specifically, the expression of 295 proteins was signifi-
cantly different in the foliar proteome of date palm accli-
mated to summer and winter climate, 64 related to pho-
tosynthesis (Fig. 3b, Supplementary Table S2). Far fewer 

proteins, i.e., 156 (31 related to photosynthesis) and 40 (7 
related to photosynthesis) were differentially regulated in 
the comparisons SD/SC and WD/WC, respectively (Sup-
plementary Table S2). Among those significant changes, 
we depicted the most strongly upregulated (log2 of fold 
changes (FC) of > 1) or downregulated (FC < -1) proteins 
(Fig. 4) and visualized the overall significant proteomic 
changes using MapMan, a tool to map proteins in func-
tional categories (Fig. 5, Supplementary Table S2). Com-
pared to WC, the heat of SC led to a remarkable (FC > 1) 
upregulation of proteins involved in primary metabolism 
(28), stress response (27) and photosynthesis (27), and a 
downregulation (FC < 1) of those involved in gene expres-
sion and protein formation (44), amino acid and protein 
metabolic processes (22), and secondary metabolism (14) 
(Fig. 4). Drought caused a more general downregulation 
of proteins. In respect to protein function, the processes of 
photosynthesis, abiotic stress, redox homeostasis, proteol-
ysis, and secondary metabolites were significantly changed 
(p < 0.05, hypergeometric test; Fig. 5). Within these gen-
eral adjustments, we studied in more detail (below) the 
individual proteins that were most affected under heat 
(comparison SC/WC) and soil water limitation (SD/SC 
and WD/WC).

Fig. 4   Proteomic changes 
following climate adaptation 
and drought. a–c Volcano plot 
showing the relative changes of 
protein abundance in date palm 
leaves (FC, log2 of fold change) 
compared with the measure of 
statistical significance (− log10 
[p value, ANOVA]). Vertical 
lines indicate a FC of ± 1 and 
the horizontal line indicates the 
significance level of p < 0.05. 
d–f The number of proteins 
significantly (p < 0.05) present 
in low (blue bars) or high (red 
bars) abundances in date palm 
leaves as affected by climate 
(summer or winter) and water 
availability (drought or well-
watered controls). Low or high 
abundance of proteins was 
counted when FC were <  − 1 
or > 1, respectively. The proteins 
were grouped based on their 
putative biological function. SC 
summer-control, SD summer-
drought, WC winter-control, 
WD winter-drought
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Summer heat acclimation is achieved by remodeling 
the photosynthesis‑related proteome 
and by inducing stress‑related proteins

We first investigated in detail the protein adjustments caused 
by climate in plants acclimated to summer and compared to 
plants grown in winter climate (comparison SC/WC). The 
protein abundances of the photosynthetic light and dark 
reactions were significantly upregulated. In particular, the 
content of eight proteins related to ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco) and 2 ATP synthases 
increased (Supplementary Table S2). Another three pro-
teins of chlorophyll metabolism, two related to the thylakoid 
membrane, and some central proteins of the photosystem 
II reaction center and the electron transport chain (ETC) 
such as, e.g., ubiquinol oxidase (GenBank accession number 
XP_008785033.1) were also more abundant in chloroplasts 
in SC than in the cooler WC (Supplementary Table S2). In 
contrast to these highly regulated proteins and indicative of 
lower demand of nutrient and energy transport inside the 
cell, proton pump H+-ATPase integrated into the plasma 
membrane (PM) was strongly downregulated (Q42556, 
FC = − 4.39), concomitant to a lower abundance of the mito-
chondrial adenosine diphosphate (ADP)/adenosine triphos-
phate (ATP) carrier (XP_008795699.1, FC = − 0.71).

The hot temperatures of SC induced the expression of 
several proteins involved in acclimation processes to abi-
otic stress. Notably, we found 16 heat shock proteins (Hsps), 
molecular chaperones crucial in thermotolerance, and four 
involved in regulating the redox homeostasis. The plastidic 

metalloprotein [Cu–Zn] SOD (XP_008813737.1), capable 
of quenching superoxide radical by production of H2O2 to 
mitigate oxidative stress, was strongly upregulated in SC/
WC (FC = 1.88, adj. p value = 2.89E−03). Consistently, 
both APX (XP_008783664.1), which reduces H2O2 to H2O 
using L-ascorbate, and thiol-disulfide oxidoreductase (TDO, 
XP_008785058.1) that may participate in various redox 
reactions, were found significantly upregulated (FC, adj. p 
value: APX = 0.84, 0.011; TDO = 0.64, < 0.05). In contrast, 
GR (XP_008789436.1) was downregulated (FC = − 1.04, 
adj p value < 0.01). We also observed that the chloroplastic 
methionine sulfoxide reductase (MSR, XP_008784388.1), 
which restores protein activities by catalyzing the reduc-
tion of methionine sulfoxide to methionine, was upregu-
lated (FC > 0.5, adj p value < 0.05) in plants grown under 
hot conditions.

Proteins involved in the secondary metabolism of terpe-
nes, phenylpropanoids, phenols, and flavonoids were down-
regulated. Also, proteins involved in proteolysis and signal-
ing were mainly downregulated (#Q338C0, FC = − 6.43). 
Only a putative terpene synthase (TPS; XP_008779509.1) 
was found upregulated (FC = 1.57).

Drought amplifies proteomic differences of hot 
summer temperatures

We further investigate soil water deprivation effects by 
comparing the samples SD/SC and WD/WC (Fig. 4 and 
5). Under summer climate, drought stress intensified prot-
eomic differences caused by hot temperatures (seen from the 

Fig. 5   MapMan visualization of 
major proteomic changes. The 
map was created using Map-
Man (Usadel et al. 2005) and 
the corresponding Arabidopsis 
protein homologs using the 
significant protein expression 
changes given in Supplementary 
Table S2. Protein expression 
changes (squares) in the cor-
responding biosynthetic path-
ways, significantly different in 
either the comparison SC/WC, 
SD/SC, WD/WC are colored 
according to their log2 of fold 
ratios. SC summer-control, SD 
summer-drought, WC winter-
control, WD winter-drought, 2 
metab secondary metabolism, 
Photosyn photosynthesis, Phen 
phenylpropanoids. p < 0.05 for 
each individual protein
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comparison SC/WC), except for proteins involved in redox 
reactions and photosynthesis, which mainly decreased sig-
nificantly. Upon water deprivation in SD/SC, 117 proteins 
were downregulated and 39 upregulated.

Under the cooler conditions of winter climate, drought-
induced protein expression changes were less pronounced 
than in summer but affected a similar subgroup of proteins. 
The WD/WC comparison resulted in 20 downregulated and 
20 upregulated proteins. Interestingly, the same upregulated 
and downregulated proteins in WD/WC were found in SD/
SC, suggesting that the same subgroups of proteins were 
involved in drought acclimation regardless of temperature 
(Supplementary Table S2).

The methylation of protein and DNA has profound 
effects on enzyme and gene regulation. The abundance 
of the putative adenosylhomocysteinase (AdoHcyase, 
XP_008776857.1), crucial for the modulation of meth-
yltransferase activity in cells, was strongly positively 
correlated with drought (VIP = 1.8, FC = 1.63; adj p 
value = 0.0196). In agreement with the negative effects of 
drought on assimilation and indicative of a decreased avail-
ability of energy and lower demand for active movement 
of ions and nutrients, an NADP-dependent glyceraldehyde-
3-phosphate dehydrogenase (XP_008794414.1), two ATP 
carriers (P27081, XP_008795699.1), and a magnesium pro-
toporphyrin involved in photosynthesis (XP_008778346.1,) 
were downregulated (FC < − 0.5, adj. p value < 0.05).

Phoenix dactylifera IspS gene identification 
from proteomics data

Isoprene is important in protecting the photosynthetic appa-
ratus from abiotic stresses, yet isoprene synthase (IspS) and 
its encoding gene (IspS) are not described in date palm so 
far. Therefore, we searched the IspS with the help of prot-
eomic data. First of all, we correlated climate and soil water 
deprivation with proteins involved in photosynthetic pro-
cesses and terpene production and found peptides of three 
potential terpene synthases (TPS, Fig. 3b). One of these 
proteins (Q5UB07) shows high homology to the tricyclic 
synthase TPS4 in Medicago truncatula and its protein con-
tent correlated positively with the high isoprene emissions in 
summer climate (Fig. 1, 3). These features made the protein 
an excellent candidate for the discovery of IspS.

Screening P. dactylifera predicted protein models for 
sequences homologous to known isoprene synthases 
identified three candidate genes: XP_008775412.1, 
XP_017699994.1, and XP_008779509.1. Only one of these 
proteins, XP_008779509.1, a partial TPS, contains the first 
three residues of the diagnostic IspS tetrad F(V/S)F(N/S) 
(Supplementary Fig. S3; Sharkey et al. 2013; Li et al. 2017), 
and matched to the peptide-marker for one out of ten can-
didate proteins (LCNDLATSSAELER; Table  S2). The 

presence of the diagnostic IspS tetrad (Supplementary Fig. 
S3) and the correlation of the protein expression with the 
climate differences of isoprene emission (Fig. 6) suggest 
that XP_008779509.1 was a strong candidate for the IspS 
gene in the P. dactylifera genome. XP_008779509.1 is a 
partial TPS, from which both N- and C-terminal ends of 
the IspS gene are missing. We reconstructed, therefore, the 
complete CDS of the putative PdIspS (Supplementary Figs 
S4-5) using genomic and RNA-seq data of the two date palm 
cultivars Khalas and Khanizi as described in Supplementary 
MM1. The putative PdIspS consists of 7 exons encoding 585 
amino acid residues (1755 bp). The first 21 amino acids rep-
resent a putative chloroplast transit peptide (TargetP prob-
ability 72%). The PdIspS has a 16 amino acid long extension 
at its C-terminus relative to other plant IspS genes. Among 
functionally characterized IspS, the putative PdIspS showed 
the highest sequence similarity to A. donax IspS (52% amino 
acid sequence identity). The mature PdIspS of date palm 

Fig. 6   Correlation between protein levels and isoprene emissions. a 
Protein abundance (MS intensities of XP_008779509.1) and b iso-
prene emissions under simulated winter (in blue) and summer (in red) 
climate in Saudi Arabia and upon severe drought stress (white pat-
terns). c Linear correlation between protein level and isoprene emis-
sions. Dot lines depict confidence intervals of 95%. a–c Data were 
collected under T3 (severe drought stress). SC summer-control (red), 
SD summer-drought (red/white), WC winter-control (blue), WD win-
ter-drought (blue/white). Data shown are means ± se of 4 (isoprene 
emissions) and 5 (protein levels) independent replicates
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consists of the conserved functional TPS motifs DDXXD, 
DTE/NSE, and RXR (Supplementary Figs S3-4).

Phoenix dactylifera IspS functional characterization

The function of the putative PdIspS gene was demonstrated 
by heterologous expression of the corresponding mature pro-
tein in E. coli, followed by protein extraction and incubation 
of protein extracts with either the IspS substrate DMADP, 
or the monoterpene synthases substrate GDP as control 
(Fig. 7a-b). Mass spectrometric analysis revealed that the 
enzyme indeed produced isoprene, as seen by its forma-
tion in the presence of DMADP (Fig. 7a). As expected, we 
observed a small chemical degradation of DMADP to iso-
prene (Brüggemann and Schnitzler 2002) at amounts com-
parable to products formed by E. coli protein extracts trans-
formed with the empty expression vector (negative control). 
Complementary analysis demonstrated that PdIspS has no 
monoterpene synthase activity (specifically, tricyclene syn-
thase, Supplementary Table S2), as seen from the inability 
of the enzyme to convert GDP into a monoterpene.

Temperature response of isoprene emission mirrors this 
of IspS activity under saturating substrate concentrations 
(Rasulov et al. 2010). The analysis of PdIspS between 20 
and 60 °C showed a typical enzyme activity profile of IspS 
with a maximum enzyme velocity (ranging between 0.3–2.3 
µkat kg protein−1) at approximately 50 °C (Fig. 7c), suitable 
for plants growing under the hot summer conditions of the 
Arabian Peninsula. The relationship between temperature 
and enzyme activity can be well-described by the Arrhenius 
equation at temperatures from 20–50 °C indicating that the 
enzyme protein becomes denatured at higher temperatures. 
The activation energy (Ea) of PdIspS was 50.3 kJ⋅mol−1.

Discussion

Plants have evolved complex mechanisms to withstand harsh 
climates. Native to the Middle East, P. dactylifera provides 
an excellent model for studying complex mechanisms of 
plant adaptation. It grows under high temperatures and light 
intensities and is remarkably drought-tolerant. Combining 
climate chamber experiments with proteomics and VOC 
emission analyses, we showed a comprehensive picture in 
the adaptation of the date palm leaf proteome to naturally 
occurring climatic conditions of Saudi Arabia. The protein 
expression plasticity of the date palm contributed to the 
plant acclimation to a large fluctuation of environmental 
conditions. We related changes in the protein expression pat-
terns observed under the seasonal climatic extremes to phys-
iological processes such as photosynthesis and the emission 
of VOCs. As proteins are the functional macromolecules in 
cells, adjustments at protein expression level helped plants 

maintaining homeostasis of fundamental metabolic pro-
cesses such as seen in photosynthesis and were instrumental 
in achieving cellular stress resistance under environmental 
changes. Our data suggest that the one underlying mecha-
nism of date palm’s tolerance to heat and drought is the 
remarkable plasticity of its proteome.

Proteomic adjustments counterbalance the adverse 
effects of heat and drought on photosynthesis

Heat and drought are among the most harmful and com-
mon abiotic stressors. They inhibit metabolic processes 
and damage key components of photosynthesis, such as 

Fig. 7   Functional characterization of PdIspS. Production of a iso-
prene with DMADP and b monoterpene with GDP following expres-
sion of PdIspS in E. coli, protein extraction and headspace analysis. 
Negative controls in a were performed using the protein extracts from 
E. coli transformed with an empty vector construct; positive controls 
in b were performed with pure monoterpene standard. c Temperature 
dependence of PdIspS enzyme activity (means ± se of five replicates). 
Data were fitted by the cubic polynomial function; optimum tempera-
ture (Topt) is the temperature when the fitted enzyme activity is at its 
maximum
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ETC of photosystem II (damaging PSII), energy produc-
tion (ATPase), and CO2-fixation (Rubisco) (Lu and Zhang 
2000; Zhang et al. 2009). Typically, the consequences of 
heat and drought are stomatal closure and reduction of pho-
tosynthesis rates, which are then restored upon return to 
lower temperature or water availability. In the present study, 
analysis of CO2-assimilation (A) showed that the physiologi-
cal responses of date palm were similar to those of woody 
temperate plant species under moderate stress: drought 
stress-induced partial stomatal closure but upon re-watering 
photosynthesis fully recovered (see also Kruse et al. 2019). 
Analysis of VOCs indicated that date palm incurred, to some 
extent, cellular stress as emissions of typical stress-induced 
oxygenated compounds under recovery were indicative 
of molecular oxidation (Niinemets et al. 2014). However, 
date palm did not experience a critical heat/drought stress 
condition, as photosynthesis fully recovered and we did not 
observe any phenotypic signs of injury such as leaf chlo-
rosis/necrosis of withering leaves or damage of PSII fol-
lowing excessive formation of ROS that would have led to 
membrane leakiness and eventually cellular death. Sensing 
external abiotic stress stimuli was depicted by increasing 
abundances of proteins involved in signaling, in function-
ing as regulatory factors, protein transporters, G-proteins 
and calcium ion binding (Supplementary Table S2). Soil 
water deprivation under summer climate increased AdoH-
cyase, an important enzyme of the S-adenosyl-L-methionine 
(SAM) cycle that generally increases in leaves in response to 
drought stress (Wang et al. 2016). AdoHcyase is involved, 
among others, in the epigenetic process of thermomemory 
(Zhang 2018; Lamelas et al. 2020), which may help date 
palm "remembering" the thermal stress to next generations.

The full recovery of physiological parameters and similar 
A in plant acclimated to summer and winter climates indi-
cated that date palm was fully able to withstand the heat/
drought applied. We investigated, therefore, the mechanisms 
behind this extraordinary ability to cope with such harsh 
environmental conditions. As previously shown, increasing 
enzyme activities of the antioxidant system are important for 
maintaining the redox homeostasis (Arab et al. 2016). Here, 
the profound adjustments at protein levels of the photosyn-
thetic machinery and abiotic stress-related proteins, sec-
ondary metabolism, and protein metabolisms, as discussed 
below, indicate a complex protein reprogramming in date 
palm leaves to confer heat/drought tolerance.

Adjustment of leaf proteome and resilience 
of isoprene emission to support photosynthesis

The proteome of date palms acclimated to summer climate 
showed, compared to winter climate, a much higher expres-
sion of proteins related to the light and dark reactions of 
photosynthesis concomitant with strong isoprene emissions. 

These proteome-wide adjustments supported photosynthe-
sis and are consistent with the metabolic reprogramming of 
chloroplasts under heat stress (Sharkey 2005; Wang et al. 
2018). Summer climate induced the expression of proteins 
related to Rubisco, chlorophyll metabolisms, PSII and ETC. 
Among the most affected proteins, we found a higher abun-
dance of the chloroplastic protein magnesium protopor-
phyrin IX monomethyl ester cyclase, which is involved in 
chlorophyll biosynthesis during the metabolism of porphy-
rin-containing compounds and catalyze the formation of the 
isocyclic ring (Tottey et al. 2003).

Heat/drought stress also caused the increase of ATP syn-
thases and downregulation of the H+-ATPase integrated 
in PM. ATP synthases are crucial in energy transduction 
and alleviation of stress; they confer tolerance to drought in 
peanut and Arabidopsis (Zhang et al. 2008; Kottapalli et al. 
2009) and their increases are consistent to those observed 
in date palm under severe drought (El Rabey et al. 2016). 
The H+-ATPases are proton-symport for the transport of 
sugars and amino acids across the PM (Morsomme and 
Boutry 2000). The downregulation of H+-ATPases in our 
study was indicative of lower demand for active movements 
of nutrients. In agreement to lower H+-ATPase abundances, 
the mitochondrial ADP/ATP transporter was downregulated. 
Such adenosine transports are necessary for regular cell 
metabolism since the ADP/ATP cycle provides energy for 
the metabolite reactions (Klingenberg 2008).

The hot summer climate also increased the expression 
of PdIspS and, respectively, the leaf emissions of isoprene. 
High emissions were maintained under mild drought stress 
despite the decline in photosynthesis. In our study, isoprene 
emissions were affected by water deprivation only after 
14 days and later than photosynthesis (see also Kruse et al. 
2019). The effects of drought on isoprene emissions agree 
with the severity of the stress: emission decreases under 
severe but not mild drought, when it becomes partially 
sustained by non-photosynthetic carbon supply (Pegoraro 
et al. 2004, 2006; Brilli et al. 2007; Perreca et al. 2020). 
The resilience of emissions under limited photosynthetic 
capacity suggests a role of isoprene under drought. Finally, 
we demonstrated a significant correlation between PdIspS 
expression and isoprene emission under a broad spectrum 
of environmental changes. This is valuable information that 
may help process-based modeling approach (Grote et al. 
2006, 2009) to improve estimates of regional and global 
isoprene emissions under drought conditions.

Isoprene can protect the photosynthetic apparatus 
from abiotic stress (see review Monson et al. 2021) as it 
is effective against cellular oxidative stress occurring dur-
ing drought, strong light, or ozone exposure (Loreto and 
Velikova 2001; Affek and Yakir 2002; Velikova et al. 2004; 
Vickers et al. 2009; Behnke et al. 2009). Using transgenic 
non-isoprene emitting poplars, it has been demonstrated that 
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isoprene is crucial for maintaining electron transport rates 
under heat and drought stress episodes (Vanzo et al. 2015; 
Monson et al. 2020). Our data do not provide direct evidence 
for the functionality of isoprene in the mitigation of the 
effect of heat and drought stress on photosynthesis in date 
palm, which would require, e.g., a transgenic approach with 
non-isoprene emitting date palms. However, proteome anal-
ysis and correlation with isoprene emissions in this study 
suggest the interplay between the plastic and coordinated 
protein composition and biochemical processes involved in 
the protection and maintenance of central processes of pri-
mary plant metabolism.

Identification and functional characterization 
of isoprene synthase in date palm

The trait to emit isoprene is characteristic to plant species 
with high growth rates and affinity for sunny environment 
(Harley et al. 1999; Loreto et al. 2015). To date, genes 
encoding isoprene synthase have been reported for a limited 
number of plant species (Sharkey et al. 2013). Although it 
has long been known that palm species emit isoprene (Ben-
jamin et al. 1996), the gene responsible for this emission 
remained unknown. Here, we identified, reconstructed and 
experimentally validated a complete CDS sequence encod-
ing a IspS in P. dactylifera, a monocotyledon species from 
the order Arecales. To this end, we performed a correla-
tion analysis of annotated P. dactylifera peptide sequence 
abundances with the different treatment conditions, which 
allowed the identification of this enzyme from the potential 
terpene synthase (TPS)-like peptides. Our screening of pep-
tide sequences with IspS homologous sequences from litera-
ture yielded three reasonable peptide candidates, but only 
one contained the first three residues of the diagnostic IspS 
tetrad F(V/S)F(N/S) (Sharkey et al. 2013; Li et al. 2017). 
Although mutagenesis experiments could prove the func-
tional significance of all four residues of the diagnostic IspS 
tetrad (Li et al. 2017), the second and fourth residues in the 
date palm sequence show some variation among known IspS. 
Instead of asparagine (dicotyledonous IspS) or serine (mon-
ocotyledonous IspS), PdIspS contains threonine (T479) at 
the position of the fourth residue of the diagnostic tetrad. All 
three amino acids are polar and uncharged and can substitute 
each other in IspS. We focused our analysis on this unique 
protein, which showed a correlation with isoprene emission 
in summer climate, since we knew that the IspS promoter is 
activated by light (Cinege et al. 2009) and that the enzyme 
is upregulated under high temperature and seasonal condi-
tions (Lehning et al. 1999; Mayrhofer et al. 2005). Among 
the functionally characterized plant IspS, PdIspS shares the 
highest amino acid sequence identity to the monocot Arundo 
donax AdIspS (52%; Li et al. 2017; but see Note added at 
the end of the paper). The metal-binding motifs DDXXD 

and DTE/NSE and RXR motif of the mature PdIspS clearly 
demonstrate that, like other IspS, PdIspS belongs to the class 
type I of the TPS family (Zhou and Pichersky 2020).

Finally, the functional analysis of the PdIspS protein 
expressed in E. coli proved that the gene XP_008779509.1 
indeed encodes the IspS of date palm. Another typical fea-
ture of PdIspS is the very high temperature optimum of its 
catalytic activity (46.5 °C), which is characteristic for all 
IspS characterized so far (Silver and Fall 1991; Lehning 
et al. 1999; Schnitzler et al. 2005). This optimum also helps 
to explain the high emission rates of date palms under the 
climate conditions of the Arabian Peninsula. The present 
identification of PdIspS and the encoding enzyme will pave 
the way to study in more detail the isoprene functions in date 
palm under extreme environments.

Heat shock protein and the antioxidant system 
responses to contrast ROS formation

Well-known mechanisms to cope with heat and drought 
stresses are the upregulation of Hsps and the enzymatic 
or non-enzymatic scavenging of ROS. Heat causes pro-
tein unfolding, and molecular chaperons are the first line 
of protection to detect misfolded proteins and prevent their 
aggregation in cells (Wang et al. 2004). In this respect, the 
16 Hsps upregulated in date palm leaves acclimated to sum-
mer climate appear to play a crucial role in thermotolerance 
under heat by stabilizing membranes and protein motifs. The 
Hsps abundances increased further under water limitation, 
suggesting that the drought-induced stomatal closure exac-
erbated the temperature effects on leaves. As Hsps are nor-
mally induced upon pH shift or hypoxia (Al-Whaibi 2011; 
Ul Haq et al. 2019), the accumulation of molecular chaper-
ons observed in this study confirmed that the leaves expe-
rienced stressful conditions. However, the proteasome, the 
primary proteolytic system involved in the removal of oxida-
tively damaged proteins, was neither upregulated in summer 
conditions compared to winter conditions nor under summer 
drought and compared to well-watered plants, suggesting 
that there was no need to employ the degradation machinery 
to remove denatured proteins. Interestingly, the abundance 
of proteins involved in proteolysis was lower in summer 
compared to winter climate, when isoprene emission and 
the proteins involved in abiotic stress response were high. 
Their abundances increased under soil water deprivation in 
summer when isoprene decreased, but remained unchanged 
under drought in winter concomitant to unchanged isoprene 
emissions. This observation points to a diverse mechanism 
to counteract drought stress under winter and summer cli-
mate, possibly involving isoprene or other molecules closely 
related to photosynthetic supply limitation. Taken together, 
the results suggest a multifaceted mechanism in summer and 



Oecologia	

1 3

winter climate to contrast oxidative stress and efficiently 
avoid protein damage.

In general, heat and drought cause oxidative stress and 
produce ROS (Sharma et al. 2020). Increasing levels of ROS 
function as a signaling mechanism to activate a series of 
acclamatory and protective responses mainly via hydroxyl 
radicals. Excess of ROS is dangerous for the plant cells 
as ROS can oxidize a series of molecules (protein, lipids, 
DNA), leading to cellular dysfunction and eventually, cell 
death. Since we did not observe any phenotypic effects 
under summer climate or under drought, the ROS forma-
tion was counteracted by an adequate antioxidant response 
via non-enzymatic and enzymatic mechanisms. Particularly 
noteworthy was the upregulation of the plastid SOD and 
APX involved in the Foyer-Halliwell-Asada cycle. How-
ever, we also observed downregulation of the GR protein. 
The lower level of GR that catalyzes the reduction of glu-
tathione disulfide to its sulfhydryl form of tripeptide glu-
tathione may have been offset by increased enzyme activity, 
as shown by an in vitro assay from a previous date palm 
experiment (Arab et al. 2016). Interestingly, heat stress often 
leads to the inactivation of methionine sulfoxide by oxida-
tion (Davies 2005). The date palm seemed to compensate for 
this by upregulating the expression of MSR, the reductase 
that restores protein activity by catalyzing the reduction of 
methionine sulfoxide to methionine.

It is worth noting that the increasing enzyme activities of 
the antioxidant system (Arab et al. 2016) coincide with the 
remarkable upregulation of the antioxidant and Hsps pro-
teins. Their close connection agrees with a feedback loop 
regulation to maintain homeostasis, as ROS activate the 
expression of Hsps, and the formation of Hsps can enhance 
the enzyme activities of the antioxidant system, including 
POD, CAT and SOD, which in turn reduce ROS formation 
(Driedonks et al. 2015; Ul Haq et al. 2019). Also, non-enzy-
matic reactions occur in cells between ROS and phenolic 
compounds such as phenylpropanoids and flavonoids that 
may act as protective molecules against oxidative stress by 
scavenging radical formation and prevent lipid peroxidation 
(Agati and Tattini 2010; Mierziak et al. 2014). Our study 
shows a decreased expression of proteins involved in the 
biosynthesis of these secondary metabolites under higher 
temperature and drought conditions (except for isoprene). 
This confirms that the upregulation of the Hsps and the anti-
oxidant system was efficient in counteracting ROS formation 
under drought and with the help of isoprene formation under 
higher temperatures. In adition, it suggests that investing in 
protein changes and isoprene biosynthesis instead of non-
volatile secondary compounds is a successful strategy of 
date palm to cope with heat and drought.

Taking together, we conclude that date palm evolved a 
complex multi-mechanism based on increasing abundances 
of proteins involved in abiotic stress defense (Hsps) and 

redox homeostasis (Fig. 5) and isoprene production to coun-
teract the stress mediated by summer temperature conditions 
and soil aridity of the Arabian Peninsula.
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