AEM Accepted Manuscript Posted Online 7 May 2021 Appl Environ Microbiol doi:10.1128/AEM.00286-21 Copyright © 2021 Dershwitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

- 1 Revised Manuscript: AEM00286-21
- 2 Oxygen generation via water splitting by a novel biogenic metal ion binding
- 3 compound
- 4 Philip Dershwitz¹, Nathan L. Bandow^{1Ψ}, Junwon Yang², Jeremy D. Semrau², Marcus T.
- 5 McEllistrem³, Rafael A. Heinze³, Matheus Fonseca³, Joshua C. Ledesma¹, Jacob R. Jennett¹,
- 6 Ana M. DiSpirito¹, Navjot S. Athwal¹, Mark S. Hargrove¹, Thomas A. Bobik¹, Hans Zischka⁴,
- 7 and Alan A. DiSpirito¹*
- ⁸ ¹Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology. Iowa State
- 9 University, Ames, IA 50011-3260, USA
- 10 ²Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI,
- 11 48109-2125, USA
- ¹² ³Materials Science and Biomedical Engineering, University of Wisconsin-Eau Claire, WI, 54602,
- 13 USA
- ⁴ Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German
- 15 Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg,
- 16 Germany. and Technical University Munich, School of Medicine, Institute of Toxicology and
- 17 Environmental Hygiene, Biedersteiner Strasse 29, D-80802 Munich, Germany.
- 18 ^v Current address: Allogene Therapeutics, Inc., South San Francisco, CA 94080, USA
- 19 [°]Current address: Stemcell Technologies, Vancouver, BC Canada
- 20 *To whom correspondence should be addressed: Email: <u>aland@iastate.edu</u>; Phone: 1-515-294-
- 21 2944; Fax: 1-515-294-0453
- 22 Running title: Oxidation of water by methanobactin

- Accepted Manuscript Posted Online
- Applied and Environmental Microbiology

- 23 Keywords: Methanobactin chalkophore• water oxidation methanotroph aerobic methane
- 24 oxidation gold nanoparticle.

25 ABSTRACT

26	Methanobactins (MBs) are small (<1,300 Da) post-translationally modified copper-binding
27	peptides and represent the extracellular component of a copper acquisition system in some
28	methanotrophs. Interestingly, MBs can bind a range of metal ions, with some reduced after
29	binding, e.g., Cu ²⁺ reduced to Cu ⁺ . Other metal ions, however, are bound but not reduced, e.g.,
30	K^{\star} . The source of electrons for selective metal ion reduction has been speculated to be water
31	but never empirically shown. Here, using H ₂ ¹⁸ O, we show that when MB from <i>Methylocystis sp</i> .
32	strain SB2 (MB-SB2) and Methylosinus trichosporium OB3b (MB-OB3) were incubated in the
33	presence of either Au ³⁺ , Cu ² , and Ag ⁺ , $^{18,18}O_2$ and free protons were released. No $^{18,18}O_2$
34	production was observed either in presence of MB-SB2 or MB-OB3b alone, gold alone, copper
35	alone, silver alone or when K^+ or Mo^{2+} was incubated with MB-SB2.
36	In contrast to MB-OB3b, MB-SB2 binds Fe $^{3+}$ with an N_2S_2 coordination and will also
36 37	In contrast to MB-OB3b, MB-SB2 binds Fe^{3+} with an N_2S_2 coordination and will also reduce Fe^{3+} to Fe^{2+} . Iron reduction was also found to be coupled to oxidation of $2H_2O$ and
36 37 38	In contrast to MB-OB3b, MB-SB2 binds Fe^{3+} with an N_2S_2 coordination and will also reduce Fe^{3+} to Fe^{2+} . Iron reduction was also found to be coupled to oxidation of $2H_2O$ and generation of O_2 . MB-SB2 will also couple Hg^{2+} , Ni^{2+} and Co^{2+} reduction to the oxidation of $2H_2O$
36 37 38 39	In contrast to MB-OB3b, MB-SB2 binds Fe^{3+} with an N ₂ S ₂ coordination and will also reduce Fe^{3+} to Fe^{2+} . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg ²⁺ , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce
36 37 38 39 40	In contrast to MB-OB3b, MB-SB2 binds Fe^{3+} with an N ₂ S ₂ coordination and will also reduce Fe^{3+} to Fe^{2+} . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg^{2+} , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions.
 36 37 38 39 40 41 	In contrast to MB-OB3b, MB-SB2 binds Fe ³⁺ with an N ₂ S ₂ coordination and will also reduce Fe ³⁺ to Fe ²⁺ . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg ²⁺ , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O ₂ generated during metal ion reduction by MB could be coupled to
 36 37 38 39 40 41 42 	In contrast to MB-OB3b, MB-SB2 binds Fe ³⁺ with an N ₂ S ₂ coordination and will also reduce Fe ³⁺ to Fe ²⁺ . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg ²⁺ , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O ₂ generated during metal ion reduction by MB could be coupled to methane oxidation, ¹³ CH ₄ oxidation by <i>Methylosinus trichosporium</i> OB3b was monitored under
 36 37 38 39 40 41 42 43 	In contrast to MB-OB3b, MB-SB2 binds Fe ³⁺ with an N ₂ S ₂ coordination and will also reduce Fe ³⁺ to Fe ²⁺ . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg ²⁺ , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O ₂ generated during metal ion reduction by MB could be coupled to methane oxidation, ¹³ CH ₄ oxidation by <i>Methylosinus trichosporium</i> OB3b was monitored under anoxic conditions. The results demonstrate O ₂ generation from metal ion reduction by MB-
 36 37 38 39 40 41 42 43 44 	In contrast to MB-OB3b, MB-SB2 binds Fe ³⁺ with an N ₂ S ₂ coordination and will also reduce Fe ³⁺ to Fe ²⁺ . Iron reduction was also found to be coupled to oxidation of 2H ₂ O and generation of O ₂ . MB-SB2 will also couple Hg ²⁺ , Ni ²⁺ and Co ²⁺ reduction to the oxidation of 2H ₂ O and generation of O ₂ , but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O ₂ generated during metal ion reduction by MB could be coupled to methane oxidation, ¹³ CH ₄ oxidation by <i>Methylosinus trichosporium</i> OB3b was monitored under anoxic conditions. The results demonstrate O ₂ generation from metal ion reduction by MB-

46

AEM

47 **IMPORTANCE**

48	The discovery that MB will couple the oxidation of H_2O to metal ion reduction and the release
49	of O_2 suggests that methanotrophs expressing MB may be able to maintain their activity in
50	hypoxic/anoxic conditions through "self-generation" of dioxygen required for the initial
51	oxidation of methane to methanol. Such an ability may be an important factor in enabling
52	methanotrophs to not only colonize the oxic-anoxic interface where methane concentrations
53	are highest, but also tolerate significant temporal fluctuations of this interface. Given that
54	genomic surveys often show evidence of aerobic methanotrophs within anoxic zones, the
55	ability to express MB (and thereby generate dioxygen) may be an important parameter in
56	facilitating their ability to remove methane, a potent greenhouse gas, before it enters the
57	atmosphere.
58	

59 INTRODUCTION

60 Aerobic methane oxidizing bacteria (methanotrophs) oxidize methane to carbon dioxide via a 61 series of two electron steps with methanol, formaldehyde and formate as intermediates (1). 62 The initial oxidation of methane to methanol is an oxygen and energy dependent reaction and 63 is catalyzed by either a soluble cytoplasmic methane monooxygenase (sMMO) or a particulate 64 or membrane-associated methane monooxygenase (pMMO) (1-8). The reductant for the initial oxidation of methane is supplied by NADH for the sMMO and by quinols for the pMMO (2, 3, 9-65 66 11). Methanol is oxidized to formaldehyde by a calcium or rare earth dependent methanol 67 dehydrogenase using a c-type cytochrome as an electron acceptor (12-17) Formaldehyde is 68 either assimilated or oxidized using either NAD $^{+}$ or quinone as the electron acceptor (10, 18-

20). The final two electron oxidation of formate to carbon dioxide is catalyzed by the NAD⁺linked formate dehydrogenase (21-23). Electrons from NADH, quinol or cytochrome *c* are
either utilized in biosynthetic reactions or oxidized for energy using either dioxygen (11), nitrate
(24) or ferric iron (25) as the terminal electron acceptor.
In methanotrophs capable of expressing both forms of the MMO, expression is
regulated by copper (1, 9, 26-28). In addition to the MMOs, a number of genes are regulated by
copper (1) and some methanotrophs of the *Alphaproteobacteria* have a novel copper

- 76 acquisition systems based on the extracellular copper binding peptide methanobactin (MB) (29-
- 31). Methanobactins (MBs) are low molecular mass (<1,300Da), high potential (E_m 483 745
- 78 mV) ribosomally synthesized post-translationally modified peptides (RiPPs) and were the first
- 79 examples of a chalkophore, i.e., a compound excreted by bacteria for the purpose of
- 80 scavenging copper from the surrounding environment (30, 32). Structurally MBs are divided
- 81 into two groups. Both Group I and II MBs are characterized by an internal oxazolone group with 82 an associated thioamide and a second N-terminal 5 or 6 membered ring which in Group I MBs is 83 either an oxazolone or pyrazinedione group with an associated thioamide while Group II MBs 84 has either an imidazoline or pyrazinedione group with an associated thioamide (30, 32-36). The 85 ring and associated thioamide are derived from an X-Cys dipeptide via a series of partially characterized post-translational modifications (29, 31, 37). Group I MBs are characterized by an 86 87 internal disulfide bridge and the copper bound form a dicyclic structure (33, 34, 38). Group II 88 MBs lack this disulfide bridge and the copper bound form has a hairpin-like structure and is 89 characterized by a central sulfonated threonine (30, 36).

5

≶
\square
\triangleleft

90	In addition to copper ions, MBs will bind many metal ions (39-42) and reduce some, but
91	not all metal ions that are bound (39, 43). In MB from Methylosinus trichosporium OB3b, MB-
92	OB3b, metal ions such as copper, silver and gold are coordinated via an N_2S_2 ligand set utilizing
93	a N from each ring and the two thioamides and these metals are reduced after binding (30, 34,
94	39, 44). Other metal ions such as iron, nickel and cobalt are coordinated via an N_1S_1 ligand set
95	using one ring and its associated thioamide and are not reduced (39). Based on coordination
96	metals were classified as either Group A metals coordinated by a N_2S_2 ligand set, or Group B
97	metals coordinated by a N_1S_1 ligand set. In contrast, all of the metals bound by MB from
98	Methylocystis strain SB2 (MB-SB2) are coordinated by a N_2S_2 ligand set ((40, 41, 43, 45) and this
99	report).
100	Since metal ion reduction assays are often carried out in unbuffered reaction mixtures in
101	the absence of an external reductant, water has been proposed, but not shown to be the
102	electron donor (36). Here, we examine the binding and reduction of oxidized forms of gold (as
103	$HAuCl_4$), copper (as CuCl ₂), silver (as AgF), iron (as FeCl ₃), nickel (as NiCl ₂), mercury (HgCl ₂),
104	cobalt (as CoCl ₂) and potassium (as KCl) in the presence and absence of ${\rm H_2}^{18}{\rm O}$ by MB-SB2 as
105	well as the binding and reduction of gold, copper and silver in the presence of ${\rm H_2}^{18}{ m O}$ by MB-
106	OB3b.
107	
108	RESULTS

109 \qquad Spectral and Thermodynamic Properties of AuCl_4 $\,$ binding by MB-SB2 \qquad

- 110 UV-visible absorption, fluorescence and circular dichroism spectra (Figs. S1-S3) and
- 111 thermodynamic measurements (Fig. S4; Table S1) demonstrate changes following the addition

112 of HAuCl₄ to MB-SB2 were complex with transitions apparent at 0.25, 0.5, 0.75, 1.0 and 2.0 Au 113 per MB-SB2. As MB-SB2 has only one identified metal binding motif (i.e. an N_2S_2 ligand set), we 114 therefore interpret these data to indicate changes in Au coordination, when MB-SB2 115 transitions from an oligomeric state(s) to a monomer. 116 117 disruption of internal quenching between the imidazolone and oxazolone groups and is 118 consistent with the intramolecular exciton transfer previously demonstrated following 119 hydrolysis of the oxazolone group (43)(Fig. S2). The decreased fluorescence at HAuCl₄ to MB-

> 120 SB2 ratios greater than 1.0 suggests direct metal quenching or intra-/ inter-exciton transfer

The increased fluorescence emission intensity following HAuCl₄ addition may be due to

121 between the oxazolone and imidazolone groups, or may be associated with nanoparticle

122 formation which occurs at Au to MB-SB2 ratios greater than 1:1.

As Au nanoparticle formation requires Au³⁺ reduction (46), nanoparticle formation (Fig. 123 S5; Table 2S) by MB-SB2 indicated that MB-SB2 binds and reduces multiple Au³⁺ to Au⁰. Such 124 125 findings accentuated the need to determine the electron source for metal reduction by MBs. To 126 extend these preliminary studies, we examined reduction of HAuCl₄ via MB-SB2 when dissolved in either $H_2^{16}O$ or $H_2^{18}O$. 127

128

129 X-Ray Photoelectric Spectroscopy (XPS), Kinetics and Chloride Determination

In reaction mixtures containing HAuCl₄ and MB-SB2 dissolved in H₂¹⁶O, MB-SB2 was observed to 130 reduce AuCl₄⁻ to Au⁰ + 4Cl⁻, as determined by XPS and argentometric titrations, respectively (Fig. 131 1; Table 1). MB-SB2 reduced up to 19 Au^{3+} to 19 Au^{0} with a time-dependent average Au^{3+} to Au^{0} 132 reduction rate of 0.3 ± 0.06 min⁻¹ for those assays where rates could be determined. This time-133

Applied and Environmental

Microbiology

134

135

136

137

138

139 Kinetics of AuCl₄⁻ Binding and Reduction

reduction of HAuCl₄ (Fig. 1).

The time course for the binding of Au³⁺ to the oxazolone and imidazolone rings in MB-SB2 was 140 141 measured as the decrease in absorbance at 341 and 389 nm, respectively, following stoppedflow mixing of MB-SB2 with Au³⁺ at 4°C (Fig. 2A). Unfortunately, even at 4°C, initial binding 142 143 rates could only be determined for the oxazolone ring, since the binding to the imidazolone ring 144 was complete before mixing of the sample was complete (1.4 msec). In contrast, the binding 145 rates to the oxazolone ring were low, 12 - 57 s⁻¹, at Au³⁺to MB-SB2 ratios below 0.3, increased at Au³⁺ to MB--SB2 ratios between 0.3 and 1.5 Au³⁺ per MB-SB2 up to a maximum rate of \sim 1600 146 s^{-1} , followed by a decline in rate at molar ratios >1.5 Au³⁺ per MB-SB2 (Fig. 2A). 147

dependent reduction was the reason samples were frozen in liquid nitrogen and lyophilized

overnight to stop the reaction and dry the samples for analysis. As observed with MB-OB3b

(39), Au^{3+} and Au^{0} were the only oxidation states detected, indicating a direct three-electron

 Au^{3+} reduction rates (0.3 ± 0.06 min⁻¹; Table 1) were much slower to the initial binding 148 rates (greater than 2,000 s⁻¹; Fig. 2A). The difference may be due to the different binding rates 149 150 between the imidazolone and oxazolone groups. Monitoring the florescent changes over time 151 at HAuCl₄ to MB-SB2 below 1:1, suggest final Au coordination required several minutes to 152 complete (Fig. 2B). At gold to MB-SB2 concentrations greater than 1.0 an initial disruption of 153 exciton coupling resulting in increased florescent intensity followed by quenching (Fig. 2B). 154 What is pertinent to this discussion is that Au initially binds primarily if not exclusively to the

155 imidazolone group followed by binding to the oxazolone group and a final reorientation. The

156 time scale for these changes are in keeping with gold reduction rates.

157

Oxidation of H₂O coupled to Au³⁺ reduction by MB-SB2 158

159 As four Cl⁻ were generated in reaction mixtures for every HAuCl₄ reduced to Au⁰, chlorine was

ruled out as a potential electron donor. To determine if H_2O was the electron donor, H^+ 160

161 concentrations were monitored during HAuCl₄ titrations of MB-SB2. Unfortunately, pH changes

162 associated with the addition of HAuCl₄ to unbuffered reaction mixtures made pH changes

163 associated with binding of $AuCl_4^-$ difficult to determine (Fig. 3A). To examine if H_2O could serve

as an electron source for Au³⁺ reduction, ^{18,18}O₂ production was monitored in reaction mixtures 164

containing 97% H₂¹⁸O. No ^{18,18}O₂ production was observed in reaction mixtures containing 165

166 either MB-SB2 alone (Fig. 4A) or HAuCl₄ alone (result not shown). However, following HAuCl₄

addition to MB-SB2, $^{18,18}O_2$ was observed demonstrating the coupling of water oxidation with 167 168 metal reduction (Figs. 4B and 5).

169 It should be noted that there is seemingly an electron imbalance, with three electrons required for Au³⁺ to Au⁰ while four electrons are released for every two molecules of water 170 oxidized. There are two possibilities to resolve this issue (47) the reduction of four atoms of 171 172 Au³⁺ are coupled to the oxidation of six molecules of water and (2) the reduction of one atom of Au³⁺ is coupled to the oxidation of two molecules of water with the fourth electron used to 173 174 reduce dioxygen to superoxide. Assays show that reduced MB-SB2 will reduce dioxygen to 175 superoxide (Table S3). Under the low pH conditions following HAuCl₄ addition to MB-SB2 (Fig. 176 3) superoxide would be expected to undergo dismutation reactions generating H_2O_2 (48). In

178

179

180

181

182

183

AEM

184	it is not likely biologically relevant. To determine if the oxidation of H_2O was specific to $Au^{3\ast}$
185	reduction or a more general property of metal ion reduction by MB-SB2, similar experiments in
186	${\rm H_2}^{18}{\rm O}$ were carried out with CuCl ₂ as it is believed the primary purpose of MB is the collection of
187	copper critical for methanotrophic activity. Previous spectral and thermodynamic studies have
188	shown MB-SB2 will reduce multiple Cu^{2+} to Cu^{+} in the absence of an external reductant,
189	suggesting that water served as the reductant (43). $^{18,18}O_2$ evolution was observed following
190	the addition of $CuCl_2$ to a $H_2^{18}O$ solution of MB-SB2 (Fig 4C). Further, such evolution followed a
191	similar trend to that for $HAuCl_4$ and a substantial pH drop was observed (Fig. 3B - 5). Perhaps of
192	greater environmental relevance is the finding of substantial (>100 μ M) evolution of dioxygen
193	from water oxidation when MB-SB2 bound and reduced copper (Fig. 5).
194	The ratio of $AuCl_4^-$ and Cu^{2+} to MB-SB2 in the experiments described above, as well as
195	other metals showing $^{18,18}\text{O}_2$ production (Fig. 4) described below was 10:1. To determine the
196	number of electrons needed to be extracted from MB-SB2 before water oxidation occurs,
197	reaction mixtures containing 0.5, 1, 2, 3, 4, and 5 Cu^{2+} per MB-SB2 in 97% H_2^{18} O were examined.
198	No $^{18,18}O_2$ was observed in samples containing 0.5, 1, 2, 3, or 4 Cu ²⁺ per MB-SB2 (results not

addition, as observed in MB-OB3b (49), Au-MB-SB2 complexes show superoxide dismutase

activity (Table S3). Thus, H₂O₂ should appear in reaction mixtures if the fourth electron was

Although the oxidation of water to dioxygen coupled to Au³⁺ reduction is chemically interesting

used to reduce dioxygen. The rate of $^{18,18}O_2$ production increased by approximately 18%

following the addition of catalase, suggesting the production of H_2O_2 (Fig. 5).

Oxidation of H₂O coupled to Cu²⁺ reduction by MB-SB2

shown). ^{18,18}O₂ was observed in samples containing 5 Cu²⁺ per MB-SB2 indicating for the initial 199 200 water oxidation to occur five electrons must be extracted from MB-SB2 (Fig.4D).

201 K^{+} was also examined as a metal ion bound by MB-SB2 (Fig. S6A), but not reduced, as no evidence of the formation of metallic K^0 was observed (50). No $^{18,18}O_2$ was observed following 202 203 the addition of KCI (Fig.4E) and comparatively minor changes in pH (Fig. 3C) were observed 204 demonstrating water oxidation by MB-SB2 after binding a metal ion is contingent upon that metal being reduced. MB-SB2 does not bind Mo²⁺ (Fig. S6B) and was used as a negative control. 205 206 As expected, no ^{18,18}O₂ was observed in reaction mixtures containing NaMoO₄ and MB-SB2 207 (results not shown).

208

Oxidation of H₂O coupled to Ag⁺, Hg²⁺ Fe³, Ni²⁺ and Co²⁺ reduction by MB-SB2 209

210 As described above Group A metal ions bound by MB-OB3b are reduced following binding. Ag $^{+}$

and Hg^{2+} are Group A metals, MB-SB2 bound both metals via an N₂S₂ coordination (Figs. S6C 211

and S6D) and ^{18,18}O₂ was observed in reaction mixtures containing MB-SB2 and AgF (Fig. 4F) or 212

213 HgCl₂ (Fig. 4G) at levels similar to that observed with gold and copper.

214 In contrast to MB-OB3b (39), MB-SB2 binds all metal ions tested via an N₂S₂

coordination (40, 41, 43) (Fig. S6). Also in contrast to MB-OB3b, MB-SB2 will reduce Fe³⁺ to Fe²⁺ 215

216 at a rate of 1.02 ± 0.09 min⁻¹ as measured via the ferrozine assay (51, 52)(Fig. 6A). In fact, MB-

SB2 will dissolve insoluble Fe³⁺ hydroxides in the light (Fig. S6E insert) or dark (Fig. 6C). The one 217

218 electron ferric iron reduction rate was approximately three times faster than the three electron

- gold reduction rate. In reaction mixtures containing MB-SB2 and FeCl₃ (Fig. 4H) ^{18,18}O₂ was 219
- observed at concentrations 1.3 ± 0.1 fold higher than those observed with Au³⁺ and Cu²⁺. 220

^{18,18}O₂ was also observed in reaction mixtures containing NiCl₂ (Figs. 4I and S6F) or CoCl₂ (Figs.
 4H and S6G) and MB-SB2, although the concentration of ^{18,18}O₂ was consistently low with CoCl₂.

224 Oxidation of H₂O coupled to Au³⁺, Cu²⁺, and Ag⁺ reduction by MB-OB3b

225 To determine if water oxidation coupled to metal ion reduction was specific to MB-SB2, a 226 Group II MB, or a more general property of MBs, water oxidation was examined in the Group I 227 MB from M. trichosporium OB3b (MB-OB3b) (53). Previous studies have shown MB-OB3b binds and reduces Au³⁺, Cu²⁺ and Ag⁺ to Au⁰, Cu⁺ and Ag⁰, respectively, and bound but did not reduce 228 Fe³⁺ (Fig. 6B; (39, 44)). Thus, ^{18,18}O₂ production was monitored in reaction mixtures containing 229 HAuCl₄, CuCl₂, AgF and FeCl₃ with or without MB-OB3b prepared in 97% $H_2^{18}O$. Again, no ^{18,18}O₂ 230 231 production was observed in reaction mixtures containing either MB-OB3b alone (Fig. 7A) or 232 with HAuCl₄, CuCl₂ or AgF alone (result not shown). However, following HAuCl₄ (Fig. 7B), CuCl₂ (Fig. 7C) or AgF (Fig. 7D) addition to reaction mixtures containing MB-OB3b, ^{18,18}O₂ was 233 observed although the concentrations of ^{18,18}O₂ were less than 25% of the ^{18,18}O₂ produced in 234 similar reactions with MB-SB2. No ^{18,18}O₂ was observed following FeCl₃ addition to a reaction 235 236 mixture containing MB-OB3b.

237

238 Methane oxidation coupled to O₂ generated from Cu²⁺ reduction by MB-OB3b

To determine if dioxygen generated during metal ion reduction could support methane oxidation by *M. trichosporium* OB3b, incubations with ¹³CH₄ in the presence and absence of MB-OB3b and Cu²⁺ were performed under anoxic conditions in an anaerobic glove box. In cell suspensions with no additional amendments of either copper or MB-OB3b, $0.72 \pm 0.17 \mu$ mol

243	13 CO $_2$ was observed after three days (assumed to be driven by the presence of residual
244	dioxygen in the reaction mixtures (Fig. 8)). In cell suspensions amended with 25 μM Cu $^{2+}$, 0.97 \pm
245	$0.03~\mu\text{mol}~^{13}\text{CO}_2$ was observed (a 34% increase, not significantly different from the amount of
246	$^{13}\text{CO}_2$ measured with no amendment, p = 0.06). If 5 μM MB-OB3b were added instead, 1.47 \pm
247	0.08 μmol $^{13}CO_2$ was measured (an increase of ~104%, significantly greater from no
248	amendment, $p = 2.2 \times 10^{-3}$, presumably to MB-OB3b binding and reducing metals part of the
249	growth medium). If both 25 μM Cu and 5 μM MB-OB3b were added, 2.5 \pm 0.37 μmol $^{13}CO_2$ was
250	observed, an increase of \sim 250% from that in no amendment (again significantly different, p =
251	1.5 x 10^{-3}), indicating that metal ion reduction by MB can support methane oxidation in anoxic
252	conditions (Fig.8).
252	

254 DISCUSSION

255	Metal ion binding by MBs has focused on MB-OB3b, a Group I MB (34, 39, 44). MB-OB3b
256	bound Group A metal ions such as Cu ²⁺ , Au ³⁺ , Ag ⁺ , Hg ²⁺ via an N ₂ S ₂ ligand set. Other metal ions
257	such as Fe ³⁺ , Co ²⁺ , Cd ²⁺ Mn ²⁺ , Ni ²⁺ and Zn ²⁺ showed an N_1S_1 coordination and were placed in
258	Group B. Of the metal ions examined Group A metals were reduced following binding whereas
259	Group B metal ions were not. In this and previous reports (40, 41, 43, 45), MB-SB2, a Group II
260	MB, coordinates all metals bound via N_2S_2 coordination and reduced metals previously place
261	Group A and B. With the exception of $K^{\scriptscriptstyle +}$, metal ions bound via an N_2S_2 coordination are
262	reduced and here we show that H_2O can serve as an electron donor driving metal ion reduction.
263	The finding that MB, after binding specific metal ions can split water to form dioxygen
264	and that this reaction can drive methane oxidation under anoxic conditions suggests that this

266

267

268

269

270

271	can form very effective relationships with oxygenic photosynthetic microbes to scavenge trace
272	amounts of dioxygen, and by so doing, enhance methane removal from these environments.
273	More germane to the findings here, however, is the discovery that aerobic
274	methanotrophs were also active in deep lake water (~160 m) where oxygenic photosynthesis is
275	highly unlikely as sunlight cannot penetrate to this depth (56). Such activity, however, could be
276	stimulated by the addition of dioxygen and oxidized metals. Here it was concluded that
277	methanotrophs may survive anoxic environments by utilizing alternative electron acceptors.
278	Others have shown that aerobic methanotrophs of the Methylobacter genus can be stimulated
279	in anoxic lake waters through the addition of either nitrate or sulfate (57). Indeed, it has been
280	shown that some aerobic methanotrophs can respire nitrate (24) or ferric iron (25). Such a
281	strategy could conserve trace amounts of dioxygen to enable methane oxidation by the MMOs.
282	Alternatively, it has been shown that some methanotrophs will couple methane oxidation to
283	fermentation to putatively conserve dioxygen (58), and such a strategy has been speculated to
284	be responsible for methanotrophic activity in dioxygen-limited lakes (57). Finally, it has been
285	speculated that alternatively or in conjunction, methanotrophs may form syntrophic
286	partnerships with other microbes to facilitate methane oxidation (57) when dioxygen is limiting.

may be another strategy whereby aerobic methanotrophy can occur in an anoxic environment.

That is, it has been shown that methane oxidation via aerobic methanotrophy occurs in anoxic

photosynthesis as sunlight could penetrate to this depth (54, 55). In these studies, it was found

that methane oxidation rates increased in the light vs. dark, and such activity was abolished

when a selective inhibitor of photosynthesis was added. Thus, it appears that methanotrophs

zones of shallow lakes (i.e., at a depth of ~10 m), with such activity driven by oxygenic

287	It should be noted, however, that in studies of methane oxidation in anoxic lake water
288	samples, great care was taken to exclude any oxygen intrusion and any trace amounts of
289	oxygen present were quite small and could not explain the extent of methane oxidation
290	observed. How these microbes then are able to oxidize methane in the absence of dioxygen is
291	still unclear. That is, for the identified methanotrophs to oxidize methane, dioxygen is required
292	for either form of MMO regardless if alternative terminal electron acceptors can be used or if
293	effective microbial partnership(s) can be formed. Thus, either unknown sources of dioxygen
294	exist in these environments and/or these microbes possess some novel, as yet undescribed
295	mechanism of anaerobic methane oxidation, i.e., novel forms of MMO that can utilize oxidized
296	sulfur and nitrogen species in place of dioxygen.

297 Here we present an alternative explanation for the presence and activity of aerobic 298 methanotrophs in anoxic environments, particularly alphaproteobacterial methanotrophs. That 299 is, genes for MB biosynthesis have only been found in the genomes of various Methylosinus and 300 Methylocystis species of the Alphaproteobacteria (53). It has been repeatedly shown that these 301 genera prefer high methane/low oxygen conditions found at the oxic-anoxic interface in situ 302 (59, 60). Further, they are the predominant methanotrophic genera present in completely 303 anoxic zones of rice paddy soils (61). Thus, it is tempting to speculate that the ability to produce 304 MB enables methanotrophs to colonize methane-rich environments by self-producing dioxygen 305 to ensure that methane oxidation can continue even when ambient concentrations of dioxygen 306 are quite low. Such a strategy is particularly important for methanotrophs that colonize the 307 oxic-anoxic interface in soils, for not only are these locations dark (thus excluding the possibility 308 of methanotrophy/phototrophy synergy), this interface shifts quickly in response to episodic

309	precipitation and drying periods. As such, methanotrophs that colonize this interface must be
310	prepared to tolerate periodic and possibly quite extended anoxic conditions. The ability to
311	produce dioxygen from water would thus enable these microbes to continue to oxidize
312	methane under anoxia, thereby generating ATP, as well as providing intermediates required for
313	carbon assimilation (i.e., formaldehyde). Doing so would enable them to survive extended
314	periods in the absence of oxygen, if not allow for some continued growth in anoxic conditions.
315	It should be noted, however, is that in aforementioned lake studies concluding aerobic
316	methanotrophy occurs in anoxic environments, gammaproteobacterial methanotrophs
317	appeared to be predominantly responsible for methane oxidation and to date, no
318	representatives of this group have been shown to have the genes required for MB biosynthesis,
319	although it is clear that at least some can and do secrete a copper-binding compound (62). It
320	may be that these methanotrophs utilize dioxygen created by others via MB production (i.e.,
321	some sort of collaboration between gamma- and alpha-proteobacteria as concluded between
322	methanotrophs and oxygenic photosynthetic microbes) and/or also can generate dioxygen via
323	some unknown mechanism.
324	Finally, prior to discovery of dioxygen production via splitting of water by metal-MB
325	complexes reported here, dioxygen production by biological systems has been observed in only
326	four known pathways: oxygenic photosynthesis (63, 64), detoxification of oxygen radicals (65,
327	66), (per)chlorate respiration (67) and nitric oxide dismutation by Candidatus Methylomirabilis
328	oxyferans of the NC10 phylum (68). The latter two mechanisms may provide some explanation
329	as to the significance of MB-mediated water oxidation. That is, it has been shown that dioxygen

332

333

334

AEN

Applied and Environmental

Microbiology

335	methane oxidation to methanol (68). Stable isotope studies showed that Ca. M. oxyferans
336	dismutates nitric oxide to dinitrogen and dioxygen, the latter which is used for methane
337	oxidation (the mechanism(s) by which this occurs, however, is still unknown). It may be that
338	MB-expressing aerobic methanotrophs perform a similar feat to ensure that there is adequate
339	dioxygen for continued MMO activity in hypoxic/anoxic conditions.
340	In conclusion, the discovery of water oxidation by specific metal-methanobactin
341	complexes is not only unusual, it also implies a strategy whereby aerobic methanotrophs can
342	survive, if not thrive in anoxic conditions. As such, MB-driven dioxygen generation may be an
343	important but hitherto unrecognized process whereby methane emissions are regulated.
344	
345	MATERIALS AND METHODS
346	Materials
347	Anhydrous $CuCl_2$ (Acros Organics, Geel, Belgium), HAuCl ₄ (Acros Organics), HgCl ₂ (Acros
348	Organics, Geel, Belgium), AgF (Acros Organics, Geel, Belgium), FeCl₃ (Acros Organics, Geel,
349	Belgium), NiCl ₂ (Acros Organics, Geel, Belgium), CoCl ₂ (Acros Organics, Geel, Belgium), NaMoO ₄
350	(Sigmal-Aldrich) and KCl (Sigmal-Aldrich) were stored in a desiccator under Ar ₂ . H ₂ ¹⁸ O was
351	obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA) and $^{18,18}O_2$ from Sigma
352	Aldrich. Ar ₂ , $^{16,16}O_2$ and CP grade CH ₄ were obtained from Airgas USA LLC. HPLC grade

chloride and dioxygen, and it is speculated that the dioxygen is then used for an antibiotic-

methanotroph, but respires nitrite rather than dioxygen. Interestingly, dioxygen is critical for its

producing monooxygenase in Haloferaxvol- volcanii (69). Further, Ca. M. oxyferans is a

growth as this microbe utilizes the membrane-associated methane monooxygenase for

Applied and Environmental Microbiology 353 acetonitrile, methanol and other reagents/chemicals were purchased from Fisher Scientific and 354 used without additional purification. Dianion HP-20 was purchased from Sigma-Aldrich C. LLC.

355

356 Organism, Culture Conditions and Isolation of Methanobactin

357 Methylocystis strain SB2 and M. trichosporium OB3b were cultured in nitrate mineral salts

- 358 media (70) amended with either 0.2 or 1.0 μ M CuSO₄ to optimize production of its
- 359 methanobactin (MB-SB2). MB-SB2 was purified from the spent media as previously described
- 360 with the following exception (71). The freeze-dried sample from the Dianion HP20 column was
- 361 resuspended in deionized H₂O and loaded onto a 250mm x 20mmTarga C18 column (Higgins
- 362 Analytical Inc., Mountain View, Ca, USA) on an Azurk HPLC system (Knauer, Berlin, Germany).
- 363 MB-SB2 eluted in the 12-25% methanol fraction in a methanol:H₂O gradient. The purified
- 364 methanobactin was then freeze-dried as described above.
- 365

366 X-Ray Photoelectric Spectroscopy (XPS)

- 367 XPS was performed as previously described (39, 44) with the following modifications. HAuCl₄
- 368 and HAuCl₄ plus MB-SB2 samples were dried onto highly oriented pyrolytic graphite by freeze-
- 369 drying. The 1 cm square graphite substrates were immersed in either HAuCl₄ or HAuCl₄ plus MB-
- 370 SB2 solutions, frozen in liquid nitrogen and lyophilized overnight. The graphite was then
- 371 mounted onto an XPS puck and analyzed. Other drying methods were employed such as drying
- 372 in air under a stream of He gas with a drying time of 30 min or filtered through a porous
- 373 alumina filter followed by a 2 min drying time. However, samples produced by these methods
- 374 showed additional reduction.

375 376 reduction during the measurement process. Au 4f peak areas were therefore measured as a 377 function of X-ray exposure, the peak areas for a given X-ray dose determined using the CASA 378 XPS fitting program, and the areas plotted as a function of time. An exponential fit to the data 379 using Igor Pro fitting program allowed a determination of the unirradiated sample's Au³⁺ and 380 Au⁰ peak areas.

> 381 XPS measurements were carried out on a custom-designed system that incorporated a 382 SPECS hemispherical analyzer (SPECS Scientific Instruments, Sarasota, FL, USA), AI X-ray source, 383 and load-lock to allow for rapid sample exchanges.

As previously observed (39), XPS analysis of Au was complicated by X-ray induced

384

Kinetics of Au³⁺ Binding. The rates of Au³⁺ binding to mb-SB2 were determined by measuring 385 386 absorption changes at 338 nm and 387 nm using a four-syringe Biologic SFM/4000/S stopped 387 flow reactor coupled to a MOS-500 spectrophotometer (Bio-Logic (40). Science Instrument SA, 388 Claix, France) at 4°C as previous described (40). In contrast to the absorbance maxima using 389 Cary 50 spectrometer, the absorbance maximum for the oxazolone was 338 nm and for the 390 imidazolone ring 387 nm on with this system. Stock solutions of HAuCl₄ were prepared in 391 >18MΩ•cm H₂O. The stock solutions for MB-SB2 were prepared by dissolving freeze-dried MB-392 SB2 in > 18MQ•cm H₂O. Final concentration of the stock solutions of MB-SB2 were determined 393 after filtration by UV-visible absorption spectroscopy as previously described (40). Path length 394 for the cuvette used in the Biologic SFM/4000/S stopped flow reactor was 1.5 mm and dead 395 time of the system was 1.4 ms. The system was cooled and maintained at 4°C. Reaction 396 mixtures contained 400 µM of MB-SB2 and either 40, 100, 200, 240, 280, 320, 360, 400, 600,

Applied and Environmental

Microbiology

397	700, or 800 μ M of HAuCl ₄ . Rates obtained for each concentration were an average of either 5 or
398	7 traces. The rates were determined by fitting the traces to the exponential function in Biokine
399	operational software (Bio-Logic Science Instrument SA). Binding rates were calculated in mol Au
400	bound per sec per mol MB-SB2 and reported as the binding number (s ⁻¹).
401	Fluorescence changes overtime were monitored at 429 nm on a Cary Eclipse (Agilent
402	Technologies Inc. Santa Clara, CA, USA following excitation at 341nm.
403	
404	Water Oxidation
405	Saturated solutions of anhydrous CuCl ₂ , HAuCl ₄ , HgCl ₂ , AgF, FeCl ₃ , NiCl ₂ , CoCl ₂ , NaMoO ₄ and KCl
406	were prepared in a Coy anaerobic chamber (atmosphere 95% Ar 5% H_2)(Coy Laboratory
407	Products, Ann Arbor, MI, USA). Oxidation of $2H_2O$ to $O_2 + 4H^+$ in reaction mixtures containing a
408	metal ion and either MB-SB2 or MB-OB3b was determined by monitoring production of $^{18,18}O_2$
409	and H^{+} and in the case of HAuCl ₄ , production of Cl ⁻ . In oxygen evolution experiments, freeze-
410	dried MB-SB2, MB-OB3b, catalase, as well as anhydrous metal stock solution were prepared in
411	97% H ₂ ¹⁸ O (Sigma Aldrich, St. Louis, Mo, USA) in 0.8 ml brown airtight vials (DWK Life Sciences,
412	Millville, NJ, USA). Reaction mixtures contained 0 or 2mM MB-SB2 or MB-OB3b and 0 – 20mM
413	metal ion in a final volume of 100 μ l ${H_2}^{18}$ O. Reaction mixtures were prepared in 2 ml brown
414	serum vials, sealed with Teflon lined silicon septa. Initial experiments were determined with
415	aluminum foil wrapped vials, but that practice was discontinued once it was clear that identical
416	results were produced regardless if vials were wrapped or not. Generation of $^{18,18}O_2$ from $H_2^{18}O_2$
417	was monitored by direct injection (1 μ l or 2 μ l) of head space.

418	Gas samples were manually injected into an Agilent 7890B GC system (Santa Clara, CA,
419	USA with a 7250 Accurate-Mass Q-TOF GC/MS and a DB5-ms column. Except for the $^{\rm 18,18}{\rm O}_2$
420	injections for standard curves, all injections were 1μ l using gas tight Hamilton syringes.
421	Standard curves were generated with 1µl, 1.5µL and 2 µl injections of 97% $^{18,18}\text{O}_2$ (Sigma
422	Aldrich, St. Louis, Mo, USA). The head space in the vials was sampled before and after the
423	addition of the metals, as was the outside air in the mass spectroscopy as controls. After the
424	standards and controls were injected, the samples were mixed and head space samples were
425	immediately collected, with subsequent samples taken every 30-60 seconds. After several
426	minutes, collection slowed to 1 sample every 2-3 minutes. The quantization of generated $^{18,18}\mathrm{O}_2$
427	came from an extracted-ion chromatogram set to 35.9978 Da. A small shift in the MS location
428	of the ${}^{18,18}\text{O}_2$ was observed on some dates. If a drift in the MS of ${}^{18,18}\text{O}_2$ was observed, identity
429	of the peak was verified with 97% $^{18,18}O_2$ standard.

431 Oxidase, Superoxide Dismutase, Hydrogen Peroxide Reductase and Iron reductase Activity

432 and pH Measurements

430

Oxidase, superoxide dismutase and hydrogen peroxide reductase activity were determined as
previously described by Choi *et al.* (49). Ferrozine assay was used to determine iron reductase
activity (51, 52).

pH changes during metal titrations were monitored on either a Radiometer PHM 220
 meter with a pH2005-7 combined pH electrode (Radiometer Analytical, Villeurbanne Cerdex,

438 France) or on an Oakion Ion 700 pH meter (Cole-Parmer, Vermon Hills, IL, USA).

440	via argentometric titration (72). HAuCl ₄ :MB-SB2 solutions were prepared at a molar ratio of 9:1
441	and incubated for at least 72 h. Following the incubation period, the solution was titrated with
442	a standardized AgNO $_3$ solution, delivered with a Ramé-hart 2.0 ml microsyringe. The titration
443	processes were monitored with a custom-made Ag wire working electrode and Ag/AgCl
444	reference electrode.
445	
446	Methane oxidation coupled to O_2 generated from Cu^{2+} reduction by MB-OB3b
447	Sample preparation. M. trichosporium OB3b was grown on nitrate mineral salts medium (NMS)
448	(70) at 30° C in 250-ml side-arm flask sealed with rubber stoppers. Cultures were shaken at 200
449	rpm under a methane-to-air ratio of 1:2, until the mid-exponential phase (OD ₆₀₀ \sim 0.3). 2 ml of
450	the cell culture was then transferred to 8.5 ml serum vials containing a Teflon-coated magnetic
451	stir bar. Four separate conditions were prepared: (1) <i>M. trichosporium</i> OB3b with no
452	amendments; (2) <i>M. trichosporium</i> OB3b + 25 μ M copper (5 μ l added from a filter sterilized
453	(0.22 μ m) 10 mM stock solution of CuCl ₂); (3) <i>M. trichosporium</i> OB3b + 5 μ M MB-OB3b (10 μ l
454	added from a filter sterilized (0.22 μm) 1 mM stock solution of MB-OB3b), and (4) M.
455	trichosporium OB3b + 25 μ M copper + 5 μ M MB-OB3b. Biological triplicate samples were
456	prepared for all conditions. The vials were then crimp-sealed and degassed using pre-purified
457	grade filter-sterilized (0.22 $\mu m)$ nitrogen gas (N_2, 99.998%) for 20 minutes at a flow rate of 3.42
458	ml/s using 22- and 25-gauge needles for N_2 gas flow in and out. After degassing, the needles
459	were removed and the samples immediately placed in an anaerobic chamber filled with a H_2/N_2
460	gas mixture (1:9 mixing ratio). Once in the anaerobic chamber, 1 ml of ¹³ C-labeled methane

Free chloride produced from the binding and deduction of HAuCl_4 to Au^0 was measured

22

461 (¹³CH₄, 99%) (Sigma-Aldrich, St. Louis, MO) was added using a 10 ml gas-tight syringe (Hamilton
462 Company, Reno, NV). Vacuum-grease was then spread on the top of the sealed septa. The vials
463 were finally covered by aluminum foil and incubated inverted (septum side down) on a
464 magnetic stir plate in the anaerobic chamber for 3 days at 25°C.

465 Gas chromatography/mass spectrometry analysis. Gas chromatography/mass 466 spectrometry (GC/MS) analyses was performed using an Agilent 7890B gas chromatograph 467 system coupled with Agilent 5977B single quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). A Carboxen[®]-1010 PLOT capillary column with 30 m × 0.32 468 469 mm was used for separation (Supelco, Bellefonte, PA). 10 µL of headspace gas of each sample 470 was injected manually using a 25 µL gas-tight syringe (Hamilton Company, Reno, NV). GC 471 system conditions were as follows: carrier gas and flow rate, He 10 ml/min; split injection with 472 split ratio of 5:1; inlet temperature 170°C; oven temperature maintained at 145°C throughout 473 the analysis. The mass spectrometry ion source and quadrupole temperatures were 250°C and 200°C, respectively. Under these conditions ${}^{13}CH_4$ and ${}^{13}CO_2$ were detected at 2.16 min and 474 475 2.86 min, respectively. Data were acquired in selected ion monitoring (SIM) mode, monitoring m/z 17 for ¹³CH₄ and m/z 45 for ¹³CO₂. 476

477

478 **ACKNOWLEDGEMENTS**

- 479 **Funding:** This research was supported by the U.S. Department of Energy Office of Science
- 480 (Grants #DE-SC0018059; JDS and ADS), the National Science Foundation (Grant #1912482; JDS),
- 481 the Materials Science and Engineering Center at UW-Eau Claire (MTM), and the ISU Bailey
- 482 Research and Career Development (TAB). Use of ITC and Biologic SFM/4000 stopped flow

- 483 reactor coupled to a MOS-500 spectrophotometer was made possible through a generous gift
- 484 from the Roy J. Carver Charitable Trust (Muscatine, Iowa).
- 485 **Competing interests:** Authors declare they have no competing interests.

S

- Semrau JD, DiSpirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol
 Rev 34:496-531.
- 489 2. Basu P, Katterle B, Andersson KK, Dalton H. 2003. The membrane-associated form of
 490 methane mono-oxygenase from *Methylococcus capsulatus* (Bath) is a copper/iron
 491 protein. Biochem J 369:417-427.
- 492 3. Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, de
- 493 la Mora AM, DiSpirito AA. 2003. The membrane-associated methane
- 494 monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from
 495 *Methylococcus capsulatus* Bath. J Bacteriol 185:5755-64.
- 496 4. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD,
- 497 Ohlendorf DH. 1997. Crystal structure of the hydroxylase component of methane
- 498 monooxygenase from *Methylosinus trichosporium* OB3b. Protein Sc 6:556 568.
- 499 5. Fox BG, Hendrich MP, Surerus KK, Andersson KK, Froland WA, Lipscomb JD, Münck
- 500 E. 1993. Mössbauer, EPR, and ENDOR studies of the hydroxylase and reductase
- 501 components of methane monooxygenase from *Methylosinus trichosporium* Ob3b. J
 502 Am Chem Soc 115:3688-3701.
- 503 6. Lipscomb JD. 1994. Biochemistry of the soluble methane monooxygenase. Ann Rev
 504 Microbiol 48:371-399.
- 505 7. Colby J, Dalton H. 1978. Resolution of the methane monooxygenase of *Methylococcus*506 *capsulatus* (Bath) into three components. Purification and properties of component
 507 C, a flavoprotein. Biochem J 171:461 468.

8.

509		metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177-
510		182.
511	9.	Dalton H, Prior SD, Leak DJ, Stanley SH. 1984. Regulation and Control of Methane
512		Monooxygenase. In Crawford RL, Hanson RS (ed), Microbial Growth in C1
513		Compounds. American Society for Microbiology, Washington, D.C.
514	10.	Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA. 2001. Membrane-associated
515		quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J
516		Bacteriol 183:6832-6840.
517	11.	DiSpirito AA, Kunz RC, Choi DW, Zahn JA. 2004. Electron flow during methane
518		oxidation in methanotrophs., p 141-169. In Zannoni D (ed), Respiration in Archaea
519		and Bacteria Kluwer Scientific, The Netherlands.
520	12.	Picone N, Camp HJMOd. 2019. Role of rare earch elements in methanol oxidation.
521		Curr Opin Chem Biol 49:39-44.
522	13.	Anthony C. 1982. The Biochemistry of Methylotrophs. Academic Press, London.
523	14.	Anthony C. 1992. The structure of bacterial quinoprotein dehydrogenases. Int J
524		Biochem 24:29 - 30.
525	15.	Williams PA, Coates L, Mohammed F, Gill R, Erskine PT, Coker A, Wood SP, Anthony
526		C, Cooper JB. 2004. The atomic structure of methanol dehydrogenase from
527		Methylobacterium extorquens. Biol Crystall D61:75-79.
528	16.	Read J, Gill R, Dales SL, Cooper JB, Wood SP, Anthony C. 1999. The molecular
529		structure of an unusual cytochrom c_2 determined at 2.0A; the cytochrome c_H from
530		Methylobacterium extorques. Protein Sc 8:1232-1240.

Lieberman RL, Rosenzweig AC. 2005. Crystal structure of a membrane-bound

531	17.	DiSpirito AA, Lipscomb JD, Lidstrom ME. 1990. Soluble cytochromes from the
532		marine methanotroph <i>Methylomonas</i> sp. strain A4. J Bacteriol 172:5360-7.
533	18.	Vorholt JA. 2002. Cofactor-dependent pathways of formaldehyde oxidation in
534		methylotrophic bacteria. Arch Microbiol 178:239-49.
535	19.	Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK. 1998. Distribution of
536		tetrahydromethanopterin-dependent enzyme in methylotrophic bacteria and
537		phylogeny of methenyl tetraphydromethopterin cyclohydrolases. J Bacteriol
538		180:5351 - 5756.
539	20.	Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME. 1999. Distribution
540		of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and
541		phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol
542		181:5750-5757.
543	21.	Jollie DR, Lipscomb JD. 1990. Formate dehyrogenase from Methylosinus
544		trichosporium OB3b. Meth Enzymol 188:331 - 334.
545	22.	Jollie DR, Lipscomb JD. 1991. Formate dehydrogenase from Methylosinus
546		trichosporium OB3b. J Biol Chem 266:21853 - 21863.
547	23.	Yoch DC, Chen CL, Hardt MG. 1990. Formate dehydrogenase from the methane
548		oxidizer Methylosinus trichosporium OB3b. J Bacteriol 172:4456 - 4463.
549	24.	Kits KD, Klotz MG, Stein LY. 2015. Methane oxidation coupled to nitrate reductio
550		under hypoxia by gammaproteobacterium Methylomonas denitrificans, sp. nov. type
551		strain FJG1. Environ Microbiol 17:3219-3232.

552	25.	Sheng Y, Wang H, Liu Y, Zhu B, Li J, Yang Y, Qin W, Chen L, Wu X, Chistoserdova L,
553		Zhao F. 2020. Methane-dependent mineral reduction by aerobic methanotrophs
554		under hypoxia. Environ Sc Technol Lett doi:doi.org/10.1021/acs.estlett.0c00436.
555	26.	Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL. 2003. Genes involved in the
556		copper-dependent regulation of soluble methane monooxygenase of Methylococcus
557		capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology
558		149:1785-1795.
559	27.	Murrell JC, McDonald IR, Gilbert B. 2000. Regulation of expression of methane
560		monooxygenases by copper ions. Trend Microbiol 8:221-225.
561	28.	Prior SD, Dalton H. 1985. Copper stress underlines the fundamental change in
562		intracellular location of the membrane monooxygenase in methane oxidizing
563		organisms: studies in batch and ontinuous culture. J Gen Microbiol 131:155 - 163.
564	29.	DiSpirito AA, Semaru JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. 2016.
565		Methanobactin and the link between copper and bacterial methane oxidation.
566		Microbiol Mol Biol Rev 80:387-409.
567	30.	El Ghazouani A, Basle A, Gray J, Graham DW, Firbank SJ, Dennison C. 2012.
568		Variations in methanobactin structure influences copper utilization by methane-
569		oxidizing bacteria. Proc Natl Acad Sci U S A 109:8400-4.
570	31.	Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. 2020. Methanobactin from
571		methanotrophs: genetics, structure, function and potential applications. FEMS
572		Microbiol Lett 367:fnaa045.

573	32.	Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D,
574		Sherwood PMA. 2004. Methanobactin, a copper-acquisition compound from
575		methane-oxidizing bacteria. Science 305:1612-1615.
576	33.	Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW, Masterson LR, Veglia G,
577		Gallagher WH. 2008. NMR, mass spectrometry and chemical evidence reveal a
578		different chemical structure for methanobactin that contains oxazolone rings. J Am
579		Chem Soc 130:12604-5.
580	34.	El Ghazouani A, Basle A, Firbank SJ, Knapp CW, Gray J, Graham DW, Dennison C.
581		2011. Copper-binding properties and structures of methanobactins from
582		Methylosinus trichosporium OB3b. Inorg Chem 50:1378-91.
583	35.	Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM, Hoffman BM, Kelleher NL,
584		Rosenzweig AC. 2016. Characterization of methanobactin from Methylosinus sp.
585		SW4. J Am Chem Soc 138:11124 - 11127.
586	36.	Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow NL, Haft DH, Vuilleumier
587		S, Murrell JC, McEllistrem MT, Hartsel SC, Gallagher WH. 2010. A comparison of
588		methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2
589		predicts methanobactins are synthesized from diverse peptide precursors modified
590		to create a common core for binding and reducing copper ions. Biochemistry
591		49:10117-10130.
592	37.	Gu W, Baral BS, DiSpirito AA, Semrau JD. 2017. An aminotransferase is responsible
593		for the deamination of the N-terminal leucine and required for formation of
594		oxazolone ring A in Methanobactin of Methylosinus trichosporium OB3b. Appl
595		Environ Microbiol 82:e01619-16.

596	38.	Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D,
597		Sherwood PM. 2004. Methanobactin, a copper-acquisition compound from methane-
598		oxidizing bacteria. Science 305:1612-5.
599	39.	Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, Semrau JD, Pohl NL, Kisting CJ,
600		Scardino LL, Hartsel SC, Boyd ES, Geesey GG, Riedel TP, Shafe PH, Kranski KA,
601		Tritsch JR, Antholine WE, DiSpirito AA. 2006. Spectral and thermodynamic
602		properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV),
603		and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg
604		Biochem 100:2150-61.
605	40.	Baral BS, Bandow NL, Vorobev A, Freemeier BC, Bergman BH, Herdendorf T, Fuentes
606		N, Ellias L, Turpin E, Semrau JD, Di Spirito AA. 2014. Mercury binding by
607		methanobactin from <i>Methylocystis</i> strain SB2. J Inorgan Biochem 141:161 - 169.
608	41.	Bandow NL. 2014. Isolation and binding properties of methanobactin from the
609		facultative methanotroph Methylocystis strain SB2. Ph.D. Iowa State University,
610		Ames, IA.
611	42.	Lu X, Gu W, Zhao L, Fagan UHM, DiSpirito AA, Semrau JD, Gu B. 2017. Methylmercury
612		uptake and degradation by methanotrophs. Science Adv 3:e1700041.
613	43.	Bandow N, Gilles VS, Freesmeier B, Semrau JD, Krentz B, Gallaghe W, McEllistrem
614		MT, Hartse SC, Cho DW, Hargrove MS, Heard TM, Chesner LM, Braunreiter KM, Cao
615		BV, Gavitt MM, Hoopes JZ, Johnson JM, Polster EM, Schoenick BD, A.M. U, DiSpirito
616		AA. 2012. Spectral and copper binding properties of methanobactin from the
617		facultative methanotroph Methylocystis strain SB2. J Inorgan Biochem 110:72 - 82.

618	44.	Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, Pohl NL, Boyd ES,
619		Geesey GG, Hartsel SC, Shafe PH, McEllistrem MT, Kisting CJ, Campbell D, Rao V, de la
620		Mora AM, Dispirito AA. 2006. Spectral, kinetic, and thermodynamic properties of
621		Cu(I) and Cu(II) binding by methanobactin from <i>Methylosinus trichosporium</i> OB3b.
622		Biochemistry 45:1442-53.
623	45.	Baral BS. 2017. Methanobactin: Metal binding properties, physiological function and
624		biosynthesis. Ph.D. Iowa State University.
625	46.	Zahao P, Astruc NLD. 2013. State of the art in gold nanoparticle synthesis. Coord
626		Chem Rev 257:638-665.
627	47.	Chatwood LL, Müller J, Gross JD, Wagner G, S.J. L. 2004. NMR structure of the flavin
628		domain from soluble methane monooxygenase reductase from Methylococcus
629		capsulatus (Bath). Biochemistry 43:11983 - 11991.
630	48.	Hayyan M, Hashim MA, AlNashef IM. 2016. Superoxide ion: generation and chemical
631		implications. Chem Rev 116:3029 - 3065.
632	49.	Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC, Carey JN, Dreis AM,
633		Kenseth EM, Renstrom JM, Scardino LL, Van Gorden GS, Volkert AA, Wingad AD,
634		Yanzer PJ, McEllistrem MT, de la Mora AM, DiSpirito AA. 2008. Oxidase, superoxide
635		dismutase, and hydrogen peroxide reductase activities of methanobactin from types
636		I and II methanotrophs. J Inorg Biochem 102:1571-80.
637	50.	Latimer WM, Hildebrand JH. 1940. Reference Book of Inorganic Chemistry. The
638		Macmillan Co. , New York, NY, USA.
639	51.	Carter P. 1971. Spectrometric determination of serum iron at the submicrogram
640		level with a new reagent (ferrozine). Anal Biochem 40:450-458.

641	52.	Moody MD, Dailey HA. 1983. Aerobic ferrisiderophore reductase assay and activity
642		stain for native polyacrylamide gels. Anal Biochem 134:235-239.
643	53.	Semau JD, DiSpirito AA, Obulisamy PK, Kang CS. 2020. Methanobactin from
644		methanotrophs: genetics, structure, function and potential applications. FEMS
645		Microbiol Lett 367:feaa045.
646	54.	Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MMM, Schubert CJ.
647		2015. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME
648		J 9:1991-2002.
649	55.	Oswald K, Milucka J, Brand A, Littmann S, Wehrll B, Kuypers MMM, Schubert CJ.
650		2015. Light-dependent aerobic methane oxidation reduces methane emissions from
651		seasonally stratified lakes. PLOS Ome 10.1371/journal.pone.0132574.
652	56.	Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle MR, Soria X, Vicente E,
653		Lehmann M, Zopfi J, Schubert CJ. 2016. Methanotrophy under versatile conditins in
654		water column of the ferruginous meromictic lake La Crus (Spain). Frount Microbiol
655		7:7:1762. doi: 10.3389/fmicb.2016.01762.
656	57.	van Grinsven S, Damste JSS, Harrison J, Villanueva L. 2020. Impact of electron
657		acceptor availability on methane-influenced microorganisms in an enrichment
658		culture obtained from a stratified lake. Fount Microbiol 103389/micrb.2020.00715.
659	58.	Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, Pesecky M, Lieberman R,
660		Beck DAC. 2017. Oxygen-limited metabolism in the methanotroph
661		Methylomicrobium buryatense 5GB1C. PeerJ 5:e3945.
662	59.	Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen
663		counter gradients. FEMS Microbiol Lett 216:215-220.

664	60.	Henckel T, Roslev P, Conrad R. 2000. Effects of O_2 and CH_4 on presence and activity
665		of the indigenous methanotrophic community in rice field soil Microbiology 2:666-
666		679.
667	61.	Lee HJ, Jeong SE, Kim PJ, Madsen EL, Jeon CO. 2015. High resolution depth
668		distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and
669		rhizosphere soils of a flooded rice paddy. Front, Microbiol
670		6:doi.org/10.3389/fmicb.2015.00639.
671	62.	Choi DW, Bandow NL, McEllistrem MT, Semrau JD, Antholine WE, Hartsel SC,
672		Gallagher W, Zea CJ, Pohl NL, Zahn JA, DiSpirito AA. 2010. Spectral and
673		thermodynamic properties of methanobactin from gamma-proteobacterial methane
674		oxidizing bacteria: a case for copper competition on a molecular level. J Inorg
675		Biochem 104:1240-7.
676	63.	Mandal M, Kawashima K, Saito K, Ishikita H. 2020. Redox Potential of the Oxygen-
677		Evolving Complex in Electron Transfer Cascade of Photosystem II. J Phys Chem Lett
678		11:249-255.
679	64.	Vass I, Styring S. 1991. pH-Dependent Charge Equilibria between Tyrosine-D and
680		the S States in Photosystem II. Estimation of Relative Midpoint Redox Potentials.
681		Biochemistry 30:830-839.
682	65.	Nicholls P, Fita I, Loewen PC. 2001. Enzymology and structure of catalases. Adv
683		Inorg Chem 51:51-106.
684	66.	Apel K, Hurt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and
685		signal transduction. Annu Rev Plant Biol 55:373-399.

686	67.	Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Magiaqui AP, Gau-Pan PS, Redford SA,
687		Wong A, Tainer JA, Coates JD. 2016. Perchlorate reductase is distinguished by active
688		site aromatic gate residues. J Biol Chem, 291:9190-9202.
689	68.	Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber
690		F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu
691		ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ,
692		Stunnenberg H, Weissenbach J, Jetten MS, Strous M. 2010. Nitrite-driven anaerobic
693		methane oxidation by oxygenic bacteria. Nature 464:543 - 548.
694	69.	Bab-Dinitz E, Shmuely H, Maupin-Fulow J, Eichler J, Shaanan B. 2006. <i>Haloferax</i>
695		volcanii PitA: an example of functional interaction between Pfam chlorite dismutase
696		and antibiotic biosynthesis monooxygenase familes? Bioinformatics 22:671-675.
697	70.	Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some
698		properties of methane-utilizing bacteria. J Gen Microbiol 61:205-18.
699	71.	Bandow NL, Gallagher WH, Behling L, Choi DW, Semrau JD, Hartsel SC, Gilles VS,
700		Dispirito AA. 2011. Isolation of methanobactin from the spent media of methane-
701		oxidizing bacteria. Meth Enzymol 495:259-69.
702	72.	Harris DC. 2007. Quantitative Chemical Analysis, 7^{th} Ed. W.H. Freeman and
703		Company.
704		
705		

Applied and Environmental Microbiology

Applied and Environmental Microbiology

AEM

706

707

Table 1

708 Distribution of Au as Au³⁺ and Au⁰ following incubation of MB-SB2 and HAuCl₄. Reduction rate

709 where determined from samples were less than 100 percent reduction was observed.

HAuCl ₄ : MB-SB2	Time	Percent		Reduction Rate
Ratio	(min)	Au ³⁺	Au ⁰	(Au ³⁺ reduced min ⁻¹)
0.9	30	0	100	-
2.25	30	0	100	-
9	30	8	92	0.27
14	30	11	89	0.41
19	30	59	41	0.26
9	60	0	100	-
14	60	0	100	-
19	60	10	90	0.28
19	360	0	100	-

710

713	Fig. 1. Gold X-ray photoelectric spectra of MS-SB2 (A) at gold to MB-SB2 molar ratio of 14 to 1
714	after 30 min incubation (O) and (B) at gold to MB-SB2 molar ratio of 19 to 1 after
715	30 min incubation. Experimental results (circles) fit with CASA XPS software to four
716	Gaussian/Lorentzian curves, using two peaks for Au ³⁺ (orange curves) and two
717	peaks for Au^0 (blue curves). Gold 4f core electrons are spin-orbit split as $4f_{7/2}$ and
718	$4f_{5/2}$, with a splitting of 3.7 eV and area ratio of 4:3, so that only two peaks are
719	independently fit: the $4f_{7/2}$ peaks for Au ³⁺ and Au ⁰ . The $4f_{5/2}$ peaks' position and
720	area are determined by the spin-orbit splitting; those parameters and the peak
721	widths are fixed in the fitting program. Background used was a Shirley type.
722	
723	Fig. 2. A. A. Kinetics of Au binding by MB-SB2 at 4°C. (A) Rate of HAuCl ₄ binding to the
724	imidazolone ($ riangle$) and oxazolone (O) rings of mb-SB2 at 4°C as measured from the
725	absorbance change at 386 nm and 341 nm, respectively. The rates for Au binding
726	>2000 sec ⁻¹ , and were set at 2000 sec ⁻¹ in the figure. B. Emission at 429nm from

SB2-MB following excitation at 341nm after the addition of 0 (-), 0.25 (-), 0.5
(-), 0.75 (-), or 2.25 (-) HAuCl₄ per MB-SB2.

729

730Fig. 3. A. pH changes following the addition of HAuCl₄, to aqueous solutions (\triangle) or aqueous731solution of 40 μ M MB-SB2 (\triangle). B. pH changes following the addition of CuCl₂ to732aqueous solutions (\triangle) or aqueous solution of 40 μ M MB-SB2 (O). C. pH changes

≶
Ш
\triangleleft

733	following the addition of KCl to aqueous solutions ($ riangle$) or aqueous solution of 40
734	μM MB-SB2 (O).
735	Fig.4. Mass spectra of head space gas of a reaction mixture containing 2mM MB-SB2 in 97%
736	${ m H_2}^{ m 18} m O$ (A) and following the addition of 20mM HAuCl4 (B), 20mM CuCl2 (C),), 10mM
737	CuCl ₂ (D), 20mM KCl (E),), 20mM AgF (F), 20mM FeCl ₃ (G),), 20mM HgCl ₂ (H),),
738	20mM NiCl ₂ (I), 20mM CoCl ₂ (J).
739	Fig. 5. $^{18,18}O_2$ concentration in the head space of a reaction mixture containing 2 mM MB-SB2
740	plus 20mM HAuCl ₄ ($ m (m)$) or 20mM CuCl ₂ ($ m O$) in 97% H $_2^{18}$ O and following the addition
741	of 7.3 mM of catalase.
742	Fig. 6. Iron reductase activity of MB-SB2 (A) and MB-OB3b (B). Absorption change at 562 nm of
743	reaction mixtures containing 1mM ferrozine plus 10mM FeCl $_3$ (),1mM ferrozine plus
744	23.4 μ M MB-SB (——), 1mM ferrozine plus 10mM FeCl $_3$ and either 5.8 (——), 11.6 (——),
745	17.4 (——–) or 23.4 (——–) μ M MB-SB2 (A) or MB-OB3b (B). C. Aqueous 4M FeCl $_3$ solution
746	(a) and a 4M FeCl $_3$ solution plus 20 mM MB-SB2 4 hours after the addition of MB-SB2.
747	Fig.7. Mass spectra of head space gas of a reaction mixture containing 2mM MB-OB3b in 97%
748	${\rm H_2}^{18}$ O (A) and following the addition of 20mM HAuCl4 (B), 20mM CuCl2 (C), and
749	20mM AgF (D).
750	Fig. 8. 13 CO ₂ production by <i>M. trichosporium</i> OB3b wild type (WT), WT plus 25 μ M CuCl ₂ , WT
751	plus 5 μM MB-OB3b, and WT plus 25 μM CuCl_2 and 5 μM MB-OB3b incubated in an
752	Anaerobic glove box for 3 days.

Applied and Environmental

Microbiology

Applied and Environmental Microbiology

Table 1

Distribution of Au as Au^{3+} and Au^{0} following incubation of MB-SB2 and HAuCl₄. Reduction rate where determined from samples were less than 100 percent reduction was observed.

HAuCl₄ : MB-SB2	Time	Percent		Reduction Rate
Ratio	(min)	Au ³⁺	Au ⁰	(Au ³⁺ reduced min ⁻¹)
0.9	30	0	100	-
2.25	30	0	100	-
9	30	8	92	0.27
14	30	11	89	0.41
19	30	59	41	0.26
9	60	0	100	-
14	60	0	100	-
19	60	10	90	0.28
19	360	0	100	-