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Cellular connectomes as arbiters of local circuit
models in the cerebral cortex
Emmanuel Klinger1,2,3, Alessandro Motta 1, Carsten Marr 2, Fabian J. Theis 2,3✉ &

Moritz Helmstaedter 1✉

With the availability of cellular-resolution connectivity maps, connectomes, from the mam-

malian nervous system, it is in question how informative such massive connectomic data can

be for the distinction of local circuit models in the mammalian cerebral cortex. Here, we

investigated whether cellular-resolution connectomic data can in principle allow model

discrimination for local circuit modules in layer 4 of mouse primary somatosensory cortex.

We used approximate Bayesian model selection based on a set of simple connectome

statistics to compute the posterior probability over proposed models given a to-be-measured

connectome. We find that the distinction of the investigated local cortical models is faithfully

possible based on purely structural connectomic data with an accuracy of more than 90%,

and that such distinction is stable against substantial errors in the connectome measurement.

Furthermore, mapping a fraction of only 10% of the local connectome is sufficient for

connectome-based model distinction under realistic experimental constraints. Together,

these results show for a concrete local circuit example that connectomic data allows model

selection in the cerebral cortex and define the experimental strategy for obtaining such

connectomic data.
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In molecular biology, the use of structural (x-ray crystal-
lographic or single-particle electron microscopic) data for the
distinction between kinetic models of protein function con-

stitutes the gold standard (e.g.,1,2). In Neuroscience, however, the
question whether structural data of neuronal circuits is infor-
mative for computational interpretations is still heavily
disputed3–6, with the extreme positions that cellular connectomic
measurements are likely uninterpretable6 or indispensable5. In
fact, structural circuit data has been decisive in resolving com-
peting models for the computation of directional selectivity in the
mouse retina7.

For the mammalian cerebral cortex, the situation can be
considered more complicated: it can be argued that it is not
even known which computation a given cortical area or local
circuit module carries out. In this situation, hypotheses about
the potentially relevant computations and about their concrete
implementations are to be explored simultaneously. To com-
plicate the investigation further, the relation between a given
computation and its possible implementations is not unique.
Take, for example pattern distinction (of tactile or visual
inputs) as a possible computation in layer 4 of sensory cortex.
This computation can be carried out by multi-layer
perceptrons8, but also by random pools of connected neurons
in an “echo state network”9 (Fig. 1a, Supplementary Fig. 1a–g)
and similarly by networks configured as “synfire chains”10

(Fig. 1a). If one considers different computational tasks, how-
ever, such as the maintenance of sensory representations over
time scales of seconds (short-term memory), or the stimulus
tuning of sensory representations, then the relation between the
computation and its implementation becomes more distinct
(Fig. 1a). Specifically, a network implementation of antiphase

inhibition for stimulus tuning11 is not capable of performing
the short-term memory task (Supplementary Fig. 1k, l), and a
network proposed for a short-term memory task (FEVER12),
fails to perform stimulus tuning (Fig. 1a, Supplementary
Figs. 1–3). Together, this illustrates that while it is impossible to
uniquely equate computations with their possible circuit-level
implementations, the ability to discriminate between proposed
models would allow to narrow down the hypothesis space both
about computations and their circuit-level implementations in
the cortex.

With this background, the question whether purely structural
connectomic data is sufficiently informative to discriminate
between several possible previously proposed models and thus a
range of possible cortical computations is of interest.

Here we asked whether for a concrete cortical circuit module,
the “barrel” of a cortical column in mouse somatosensory cortex,
the measurement of the local connectome can in principle serve
as an arbiter for a set of possibly implemented local cortical
models and their associated computations.

We developed and tested a model selection approach (using
Approximate Bayesian Computation with Sequential Monte-
Carlo Sampling, ABC-SMC13–15, Fig. 1c) on the main models
proposed so far for local cortical circuits (Fig. 1b) ranging from
pairwise random Erdős–Rényi (ER16) to highly structured “deep”
layered networks used in machine learning17,18. We found that
connectomic data alone is in principle sufficient for the dis-
crimination between these investigated models, using a surpris-
ingly simple set of connectome statistics. The model
discrimination is stable against substantial measurement noise,
and only partly mapped connectomes have already high
discriminative power.
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Fig. 1 Relationship between models and possible computations in cortical circuits, and proposed strategy for connectomic model distinction in local
circuit modules of the cerebral cortex. a Relationship between computations suggested for local cortical circuits (left) and possible circuit-level
implementations (right). Colored lines indicate successful performance in the tested computation; gray lines indicate failure to perform the computation
(see Supplementary Fig. 1 for details). b Enumeration of candidate models possibly implemented in a barrel-circuit module. See text for details. c Flowchart
of connectomic model selection approach to obtain the posterior p (m|C) over hypothesized models m given a connectome C. ABC-SMC: approximate
Bayesian computation using sequential Monte–Carlo sampling. d Sketch of mouse primary somatosensory cortex with presumed circuit modules
(“barrels”) in cortical input layer 4 (L4). Currently known constraints of pairwise connectivity and cell prevalence of excitatory (ExN) and inhibitory (IN)
neurons (pee: pairwise excitatory-excitatory connectivity30–33,36, pei: pairwise excitatory-inhibitory connectivity31,33, pii: pairwise inhibitory-inhibitory
connectivity31,34, pie: pairwise inhibitory-excitatory connectivity31,33,35, ree: pairwise excitatory-excitatory reciprocity30,31,33).
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Results
To develop our approach we focus on a cortical module in mouse
somatosensory cortex, a “barrel” in layer 4 (L4), a main input
layer to the sensory cortex19–21. The spatial extent of this module
(roughly db= 300 μm along each dimension) makes it a realistic
goal of experimentally mapped dense connectomes using state-of-
the-art 3D electron microscopy22,23 and circuit reconstruction
approaches24–27. A barrel is composed of about 2,000
neurons28,29. Of these about 90% are excitatory, and about 10%
inhibitory28,29 (Fig. 1d), which establish a total of about 3 million
chemical synapses within L4. The ensuing average pairwise
synaptic connectivity within a barrel has been estimated based on
data from paired whole-cell recordings30–35: excitatory neurons
connect to about 15–25% of the other intra-barrel neurons;
inhibitory neurons connect to about 50–60% of the other intra-
barrel neurons (Fig. 1d). Moreover, the probability of a connec-
tion to be reciprocated ranges between 15% and 35%29–31,33,36.
Whether intracortical connections in L4 follow only such pairwise
connection statistics or establish higher-order circuit structure is
not known23,37–39. Furthermore, it is not understood whether the
effect of layer 4 circuits is primarily the amplification of incoming
thalamocortical signals30,40, or whether proper intracortical
computations commence within L441–43. A L4 circuit module is
therefore an appropriate target for model selection in local cor-
tical circuits.

The simplest model of local cortical circuits assumes pairwise
random connectivity between neurons, independent of their
relative spatial distance in the cortex (Erdős–Rényi16, Fig. 2a–c).
This model has been proposed as Echo State Network (ESN9,44).
As a slight modification, random networks with a pairwise con-
nectivity dependent on the distance between the neurons’ cell
bodies are the basis of liquid state machines (LSMs45,46,
Fig. 2a–c). At the other extreme, highly structured layered net-
works are successfully used in machine learning and were ori-
ginally inspired by neuronal architecture (multi-layer
perceptrons8, Fig. 2d–g). Furthermore, embedded synfire chains
have been studied (SYN10,47, Fig. 2h–j), which can be considered
an intermediate between random and layered connectivity. In
addition to these rather general model classes, particular sug-
gestions of models for concrete cortical operations have been put
forward that make less explicit structural assumptions (feature
vector recombination network (FEVER12), proposed to achieve
stimulus representation constancy on macroscopic timescales
within a network; and antiphase inhibition (API11,48), proposed
to achieve contrast invariant stimulus tuning), or that are based
on local learning rules (spike timing-dependent plasticity/self-
organizing recurrent neural network (STDP-SORN49,50)).

We first had to investigate whether the so far experimentally
established circuit constraints of local cortical modules in S1
cortex (Fig. 1d; number of neurons, pairwise connectivity, and
reciprocity; see above) were already sufficient to refute any of the
proposed models.

Both the pairwise random ER model (Fig. 2c) and the pairwise
random but soma-distance dependent EXP-LSM model are
directly compatible with measured constraints on pairwise con-
nectivity and reciprocity (Fig. 2c). A strictly layered multilayer
perceptron model, however, does not contain any reciprocal
connections and would in the strict form have to be refuted for
cortical circuit modules, in which the reciprocity range is
0.15–0.35. Instead of rejecting such a “deep” layered model
altogether, we studied a layered configuration of locally randomly
connected ensembles (Fig. 2d). We found that models with up to
ten layers are consistent with the circuit constraints of barrel
cortex (Fig. 2e). In subsequent analyses we considered config-
urations with 2–4 layers. In this regime, the connectivity within
layers is 0.2–0.6 and between layers 0.3–0.6 (Fig. 2f, g; nl= 3

layers). Similarly, disjoint synfire chains10 (Fig. 2h) would have to
be rejected for the considered circuits due to lack of reciprocal
connections. Embedded synfire chains (e.g., ref. 47), however,
yield reciprocal connectivity for the sets of neurons overlapping
between successive pools (Fig. 2h). This yields a range of pool
sizes for which the SYNFIRE model is compatible with the known
circuit constraints (Fig. 2i, j). The other models were investigated
analogously (Supplementary Fig. 2), finding slight (API, Supple-
mentary Fig. 2d–g) or substantial modifications (FEVER, STDP-
SORN, Supplementary Fig. 2a–c, h–m) that make the models
compatible with a local cortical circuit in L4. Notably, the FEVER
model as originally proposed12 yields substantially too low con-
nectivity and too high reciprocity to be realistic for local cortical
circuits in L4 (Supplementary Fig. 2b). A modification in which
FEVER rules are applied on a pre-drawn random connectivity
rescues this model (Supplementary Fig. 2a, b).

Structural model discrimination via connectome statistics. We
then asked whether these local cortical models could be dis-
tinguished on purely structural grounds, given a binary con-
nectome of a barrel circuit.

We first identified circuit statistics γ that could serve as
potentially distinctive connectome descriptors (Fig. 3a). We
started with the relative reciprocity of connections within (rree
and rrii) and across (rrei and rrie) the populations of excitatory
and inhibitory neurons. Since we had already found that some of
the models would likely differ in reciprocity (see above, Fig. 2c, g,
j Supplementary Fig. 2b, f, g), these statistics were attractive
candidates. We further explored the network recurrency rðlÞ at
cycle length l, which is a measure for the number of cycles in a
network (Fig. 3a). This measure can be seen as describing how
much of the information flow in the network is fed back to the
network itself. So a LAYERED network would be expected to
achieve a low score in this measure, while a highly recurrent
network, such as SYNFIRE is expected to achieve a high score.
We used rðlÞ with l ¼ 5 since for smaller l this measure is more
equivalent to the reciprocity ree and for larger l, the measure is
numerically less stable. Moreover, we investigated the in/out-
degree correlation of the excitatory population ri=o (Fig. 3a). This
measure was motivated by the notion that ri=o < 0 should point
towards a separation of input and output subpopulations of L4, as
for example expected in the LAYERED model.

For a first assessment of the distinctive power of these six
connectome statistics γ, we sampled 50 L4 connectomes from
each of the 7 models (Fig. 3b). The free parameters of the models
were drawn from their respective prior distributions (Fig. 3b;
priors shown in Supplementary Fig. 4). For example, for the
LAYERED model, the prior parameters were the number of layers
nl 2 ½2; 4�, the forward connectivity pe;f 2 ½0:19; 0:57� and the
lateral connectivity pe;l 2 ½0:26; 0:43�. The proposed network
statistics γ (Fig. 3a) were then evaluated for each of the
350 sampled connectomes (Fig. 3b, c). While the statistics had
some descriptive power for certain combinations of models (for
example, rrei seemed to separate API from EXP-LSM, Fig. 3c),
none of the six statistics alone could discriminate between all the
models (see the substantial overlap of their distributions, Fig. 3c),
necessitating a more rigorous approach for model selection.

Discrimination via Bayesian model selection. We used an
Approximate Bayesian Computation-Sequential Monte Carlo
(ABC-SMC) model selection scheme13–15 to compute the pos-
terior probability over a range of models given a to-be-measured
connectome C#.
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In this approach, example connectomes Cs are generated from
the models m in question (using the priors over the model
parameters θ (Fig. 3b, d; see Supplementary Fig. 4 for plots of all
priors)). For each sampled connectome Cs, the dissimilarity
dγðCs;C#Þ to the measured connectome C# was computed

(formalized as a distance dγðCs;C#Þ between Cs and C#). The
connectome distance was defined as an L1 norm over the six
connectome statistics γ (Fig. 3a), normalized by the 20%-to-80%
percentile per connectome statistic (see Methods). If the sampled
connectome Cs was sufficiently similar to the measured
connectome C# (i.e. their distance dγðCs;C#Þ was below a preset
threshold ϵABC, see Methods), the sample was accepted and
considered as evidence towards the model that had generated Cs

(Fig. 3d). With this, an approximate sample from the posterior
pðθjC#Þ was obtained (Fig. 3d). The posterior pðθjC#Þ was
iteratively refined by resampling and perturbing the parameters of
the accepted connectomes and by sequentially reducing the
distance threshold ϵABC.

We then tested our approach on simulated connectomes C#.
These were again generated from the different model classes (as
in Fig. 3b); however in the ABC method, only the distances

dγðCs;C#Þ between the sampled connectomes Cs and the

simulated connectomes C# were used (Fig. 3d). It was therefore
not clear a-priori whether the statistics γ are sufficiently
descriptive to distinguish between the models; and whether this
would be the case for all or only some of the models.

We first considered the hypothetical case of a dense, error-free
connectomic reconstruction of a barrel circuit under the ER-ESN
model yielding a connectome C#. The ABC-SMC scheme
correctly identified this model as the one model class at which
the posterior probability mass was fully concentrated compared
to all other models (Fig. 4a). ABC-SMC inference was repeated
for n= 3 ER-ESN models, resulting in three consistent posterior
distributions. Similarly, connectomes C# obtained from all other
investigated models yielded posterior probability distributions
concentrated at the correct originating model (Fig. 4a). Thus, the
six connectome statistics γ together with ABC-based model
selection were in fact able to distinguish between the tested set of
models given binary connectomes.

Discrimination of noisy connectomes. We next explored the
stability of our approach in the face of connectome measurements
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isolines. Note that constraints are fulfilled only for within-layer connectivity pe;l >0, refuting a strictly feedforward network. h–j Embedded synfire chain
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barrel constraints (white and dashed line). See Supplementary Fig. 2 for analogous analysis of FEVER, API, and STDP-SORN models.
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in which C# was simulated to contain noise from biological
sources, or errors resulting from connectomic reconstruction
inaccuracies. The latter would be caused by the remaining errors
made when reconstructing neuronal wires in dense nerve
tissue24,26,27,51 and by remaining errors in synapse detection,
especially when using automated synapse classifiers52–57. To
emulate such connectome noise, we first randomly removed 15%
of the connections in C# and reinserted them again randomly. We
then computed the posterior on such noisy connectomes C#,
which in fact became less stable (Fig. 4b; shown is average of n = 3
repetitions with accuracies of 83.0%, 99.8%, and 100.0%,
respectively).

However, in this setting, we were pretending to be ignorant
about the fact that the connectome measurement was noisy (see
noise prior in Fig. 4b), and had assumed a noise-free measure-
ment. In realistic settings, however, the rate of certain
reconstruction errors can be quantitatively estimated. For
example, the usage of automated synapse detection57 and neurite
reconstructions with quantified error rates24,26,27,58–60, provide
such error rates explicitly. We therefore next investigated whether
prior knowledge about the reconstruction error rates would
improve the model posterior (Fig. 4c). For this, we changed our
prior assumption about reconstruction errors ξ from noise-free
(Fig. 4b) to a distribution with substantial probability mass
around 0–30% noise (modeled as pðξÞ � Betað2; 10Þ, Fig. 4c).

When we applied the posterior computation again to con-
nectomes C# with 15% reconstruction noise, these were now as
discriminative as in the noise-free case (Fig. 4c, cf. Fig. 4a, b).

To further investigate the effect of biased noise, we also tested
conditions in which synaptic connections were only randomly
removed or only randomly added (corresponding to cases in
which reconstruction of the connectome may be biased towards
neurite splits (Fig. 4d) or neurite mergers (Fig. 4e)); and cases in
which errors were focused on a part of the connectome
(corresponding to cases in which certain neuronal connections
may be more difficult to reconstruct than others, Supplementary
Fig. 5a). These experiments indicate a rather stable range of
faithful model selection under various types of measurement
errors.

Incomplete connectome measurement. In addition to recon-
struction noise, a second serious practical limitation of con-
nectomic measurements is the high resource consumption
(quantified in human work hours, which are in the range of
90,000–180,000 h for a full barrel reconstruction today, assuming
1.5 mm/h reconstruction speed, 5–10 km path length per cubic
millimeter and a barrel volume of (300 µm)3 24,61). Evidently, the
mapping of connectomes for model discrimination would be
rendered substantially more feasible if the measurement of only a
fraction of the connectome was already sufficient for model
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discrimination. We therefore next investigated the stability of our
discrimination method under two types of fractional measure-
ments (Fig. 5).

We first tested whether reconstruction of only fm = 30% of
neurons and of their connectivity is sufficient for model selection
(Fig. 5a). We found model discrimination to be 100% accurate in
the absence of reconstruction errors (Fig. 5b). This reconstruction
assumes the 3D EM imaging of a tissue volume that comprises an
entire barrel, followed by a fractional circuit reconstruction (see
sketch in Fig. 5a). Such an approach is realistic since the speed of
3D EM imaging has increased more quickly than that of
connectomic reconstruction61–64.

We then screened our approach for stability against both
measurement noise and incomplete connectome measurement by
applying our method on connectomes of varying noise rates ξ
and measurement fractions fm with a fixed noise prior
(pðξÞ � Betað2; 10Þ). For evaluating classification performance,
we used two approaches: first, we averaged the model posterior
along the diagonal of the classification matrix (e.g., Fig. 5b),
yielding the average accuracy for a given noise and fractional
measurement combination (Fig. 5c). In addition, we evaluated the
quality of the maximum-a-posteriori (MAP) classification, which
takes the peak of the posterior as binary classification result
(Fig. 5d). The MAP connectome classification was highly accurate
even in a setting in which only 10% of the connectome were
sampled, and at a substantial level of reconstruction error of 25%.
This implies that we will be able to perform the presented model
distinction in a partially mapped barrel connectome consuming

18,000 instead of 180,000 work hours24,57,61 (Fig. 5c, d).
Evidently, this makes a rather unrealistic reconstruction feasible
(note the largest reconstructions to date consumed 14,000–25,000
human work hours58–60,65).

We then asked whether complete connectomic reconstructions
of small EM image volumes27 could serve as an alternative to the
fractional reconstruction of large image volumes (Fig. 5e, f). This
would reduce image acquisition effort and thereby make it
realistic to rapidly compare how brain regions, species or disease
states differ in terms of circuit models. To simulate locally dense
reconstructions, we first restricted the complete noise-free
connectome to the neurons with their soma located within
the imaged barrel subvolume (Fig. 5e). Importantly, connections
between the remaining neurons may be established outside the
image volume. To account for the loss of these connections, we
further subsampled the remaining connections. We found model
selection from dense connectomic reconstruction of a (150 µm)3

volume (12.5% of the barrel volume) to be unstable (67% average
accuracy; Fig. 5f) due to the confusion between the ER-ESN, EXP-
LSM, FEVER, and STDP-SORN models (Fig. 5f). For the dense
reconstruction of (100 µm)3, accuracy of model selection was
close to chance level for all models (17% average accuracy;
Fig. 5f). So our tests indicate that an experimental approach in
which the image volume comprises an entire local cortical circuit
module (barrel), but the reconstruction is carried out only in a
subset of about 10–15% of neurons is favored over a dense
reconstruction of only 12.5% of the barrel volume. Since the
imaging of increasingly larger volumes in 3D EM from the
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mammalian brain is becoming feasible64,66, while its reconstruc-
tion is still a major burden, these results propose a realistic
experimental setting for connectomic model selection in the
cortex.

Incomplete set of hypotheses. Bayesian analyses can only com-
pare evidence for hypotheses known to the researcher. But what if
the true model is missing from the set of tested hypotheses? To
investigate this question, we excluded the original model during
inference of the posterior distribution from a complete noise-free
barrel connectome (Fig. 6a). In these settings, rather than
obtaining uniformly distributed posteriors, we found that the
probability mass of the posterior distributions was concentrated
at one or two of the other models. The FEVER model, for
example, which is derived from pairwise random connectivity
(ER-ESN) while imposing additional local constraints that result
in heightened relative excitatory-excitatory reciprocity, resembles
the EXP-LSM model (see Fig. 3c). Accordingly, these three

models (ER-ESN, EXP-LSM, FEVER) showed a high affinity for
mutual confusion when the original model was excluded during
ABC-SMC (Fig. 6a). This may indicate that our Bayesian model
selection approach assigns the posterior probability mass to the
most similar tested models, thus providing a ranking of the
hypotheses. Notably, models with zero posterior probability in
the confusion experiment (Fig. 6a) were in fact almost exclusively
those at largest distance from the original model. As a con-
sequence, rejecting the models with zero posterior probability
mass may provide falsification power even when the “true” model
is not among the hypotheses.

In order to investigate whether our approach provided sensible
model interpolation in cases of mixed or weak model evidence
(Fig. 6b), we considered the following example. The EXP-LSM
model turns into an ER-ESN model in the limit of large decay
constants λ of pairwise connectivity (that is modeled to depend
on inter-soma distance, see inset Fig. 6b). This allowed us to test
our approach on connectomes that were sampled from models
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interpolated between these two model classes. When we exposed
such “mixed” connectomes to our model discrimination
approach, the resulting posterior had most of its mass at the
EXP-LSM model for samples with dEXP close to 1 and much of its
mass at the ER-ESN model for samples with dEXP close to 0. For
intermediate model mixtures, the Bayesian model selection
approach in fact yielded interpolated posterior probability
distributions. This result gave an indication that the approach
had in fact some stability against model mixing.

Connectomic separability of sparse recurrent neural networks
trained on different tasks. Finally, we asked whether recurrent
neural networks (RNNs) that were randomly initialized and then
trained on different tasks could be distinguished by the proposed
model selection procedure based on their connectomes after
training. To address this question, we trained RNNs on either a
texture discrimination task or a sequence memorization task.
Initially, all RNNs were fully connected with random connection
strengths (Fig. 7a). During training, connection strengths were
modified by error back-propagation to maximize performance on
the task. At the same time, we needed to reduce the connectivity p
of the RNNs to a realistic level of sparsity (pS12[0.15…0.25], see
Fig. 1d) and used the following strategy: Whenever task perfor-
mance saturated, we interrupted the training to identify the
weakest 10% of connections and permanently pruned them from
the RNN (Fig. 7b). This training-pruning cycle then continued on
the remaining connections. As a result, connectivity within an
RNN was constrained only by the task used for training.

Maximum task performance was reached early in training
while connectivity was still high (p ≈ 80%) and started to decay
only after pruning more than 99.6% of connections (p < 0.4%).
Within this connectivity range (80% ≥ p ≥ 0.4%), task
performance substantially exceeded chance level (approx.
82.8–83.8% vs. 14.3% accuracy for n= 4 texture discrimina-
tion RNNs; 0.000–0.002 vs. 0.125 mean squared error for n=
4 sequence memorization RNNs; range of measurements vs.
chance level; Fig. 7c). Importantly, task performance was at
the highest achieved level also at realistic connectivity of
pS1 = 24%.

We then investigated the connectome statistics applied to
the RNNs during training (Fig. 7d). We wanted to address the
following two questions: First, how strongly are connectome
statistics constrained by the training task? In particular, is
the variance of connectome statistics in trained RNNs much

larger than in network models that are primarily defined by their
structure (e.g., LAYERED or SYNFIRE)? Second, does training of
RNNs on different tasks result in different connectomic
structures? And if so, are the connectome statistics sensitive
enough to distinguish RNNs trained on different tasks based only
on their structure?

At 24% connectivity, we found the variance of the connectome
statistics to be comparable to the variance in structural network
models (Fig. 7e; cf. Figure 3c), but connectome statistics of RNNs
trained on different tasks were statistically indistinguishable
(Fig. 7e), and RNNs with different tasks were thus only poorly
separable (sensitivity index d’ of 0.495; Fig. 7f). However, we
noticed a separation into two clusters when RNNs were trained
and further sparsified to a connectivity of p << 11% (d’ = 1.45 ±
0.23, mean ± std; Fig. 7f).

To further study the effect of sparsification of a trained RNN,
we investigated whether additional information about the
strength of connections (Fig. 7g) could improve the separability
of RNNs trained on different tasks. We started with the weighted
connectomes of RNNs that were trained and sparsified to 24%
connectivity. For the evaluation of connectome statistics, we then
restricted the RNNs to strong connections (Fig. 7h). When
ignoring the weakest 50% of connections of each RNN, the
texture discrimination and sequence memorization RNNs
differed significantly in their relative excitatory→excitatory
reciprocity (3.60 ± 0.99 vs. 7.83 ± 1.98, p= 0.011) and relative
prevalence of cycles (22.19 ± 12.69 vs. 118.16 ± 40.86, p = 0.011;
Fig. 7h). As a result, RNNs trained on different tasks could be
separated by the six connectome statistics with 85 ± 3% accuracy
(Fig. 7i, separability d’ = 1.61 ± 0.24, mean ± std). We concluded
that RNNs with biologically plausible connectivity that were
trained on different tasks could be distinguished based on the
proposed statistics derived from weighted connectomes, in which
only the strongest connections were used for connectome
analysis.

Discussion
We report a probabilistic method to use a connectome mea-
surement as evidence for the discrimination of local models in
the cerebral cortex. We show that the approach is robust to
experimental errors, and that a partial reconstruction of the
connectome suffices for model distinction. We furthermore
demonstrate the applicability to large cortical connectomes con-
sisting of thousands of neurons. Surprisingly, a set of rather

a

Posterior estimate

ER-ESN
EXP-LSM
LAYERED
SYNFIRE

API
STDP-SORN

FEVER

ER
-E

SN
EX

P-
LS

M
LA

YE
R

ED
SY

N
FI

R
E

FE
VE

R
AP

I
ST

D
P-

SO
R

N

Excluded

Po
st

er
io

r

0

1

O
rig

in
al

 m
od

el

b

Model interpolation

0

1

Po
st

er
io

r

ER-ESN
FEVER
EXP-LSM

0.1 0.9
ER EXP

dEXP

0 1
0

1

C
on

ne
ct

iv
ity

p e, 
p i

d EX
P

Inter-soma
distance ds/db

ER-ESN

EX
P-

LS
M

0

1

Fig. 6 Effect of incomplete hypothesis space and of model interpolation on Bayesian model selection. a Confusion matrix reporting the posterior
distribution when excluding the true model (hatched) from the set of tested model hypotheses (n= 1 repetition). Note that posterior probability is non-
uniformly distributed and concentrated at plausibly similar models even when the true model is not part of the hypothesis space. b Posterior distributions
for connectome models interpolated between ER-ESN and EXP-LSM (n= 1 repetition per bar). Inset: Space constant dEXP acts as interpolation parameter
between ER-ESN (dEXP = 0) and EXP-LSM (dEXP = 1). Note that the transition between the two models is captured by the estimated model posterior, with
an intermediate (non-dominant) confusion with the FEVER model.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22856-z

8 NATURE COMMUNICATIONS |         (2021) 12:2785 | https://doi.org/10.1038/s41467-021-22856-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


simple connectome statistics is sufficient for the discrimination of
a large range of models. These results show that and how con-
nectomes can function as arbiters of local cortical models5 in the
cerebral cortex.

Previous work on the classification of connectomes addressed
smaller networks, consisting of up to 100 neurons, in which the
identity of each neuron was explicitly defined. For these settings,

the graph matching problem was approximately solved67. How-
ever, such approaches are currently computationally infeasible for
larger unlabeled networks67,68, which are found in the cerebral
cortex.

As an alternative, the occurrence of local circuit motifs has
been used for the analysis of local neuronal networks69–71. Four
of our connectome statistics (Fig. 3a) could be interpreted as such
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motifs: the relative reciprocity within and across the excitatory
and inhibitory neuron populations, whose prevalence we could
calculate exactly. The key challenge of these descriptive approa-
ches is the interpretation of the observed motifs. The Bayesian
approach as proposed here provides a way to use such data as
relative, discriminating evidence for possible underlying circuit
models.

One approach for the analysis of neuronal connectivity data is
the extraction of descriptive graph properties (for example those
termed clustering coefficient72, small-worldness73, closeness- and
betweenness centrality74), followed by a functional interpretation
of these measures. Such discovery-based approaches have been
successfully applied especially for the analysis of macroscopic
whole-brain connectivity data75,76.

The relationship between (static) network architecture and task
performance was previously studied in feed-forward models of
primate visual object recognition77,78, in which networks with
higher object recognition performance were shown to yield better
prediction of neuronal responses to visual stimuli. Our study
considered recurrent neural networks, accounting for the sub-
stantial reciprocity in cortical connectivity, and investigated the
structure-function relationship for static recurrent network
architectures on a texture classification task (Supplementary
Fig. 1), as well as for sparse recurrent neural networks in which
both network architecture and task performance were jointly
optimized (Fig. 7).

Pre-hoc connectome analyses, in which the circuit models are
defined before connectome reconstruction, offer several advan-
tages over exploratory analyses, where the underlying circuit
model is constructed after-the-fact: First, the statistical power of a
test with pre-hoc defined endpoints is substantially higher79,80,
rendering pre-hoc endpoint definition a standard for example in
the design of clinical studies79. Especially since so far, microscopic
dense connectomes are mostly obtained and interpreted form a
single sample, n = 123,58,81,82, this concern is substantial, and a
pre-hoc defined analysis relieves some of this statistical burden.
Moreover, the pre-hoc analysis allowed us to determine an
experimental design for the to-be-measured connectome, defining
bounds on reconstruction and synapse errors and the required
connectome measurement density (Fig. 5c, d). Especially given
the substantial challenge of data analysis in connectomics61, this
is a relevant practical advantage.

We considered it rather unexpected that a 10% fractional
reconstruction, and reconstruction errors up to 25% would be

tolerable for the selection of local circuit models. One possible
reason for this is the homogeneity of the investigated network
models. For each model, the (explicit or implicit) structural
connectivity rules are not defined per neuron individually, but
apply to a whole sub-population of neurons. For example, the ER-
ESN model implies one connectivity rule for all excitatory neu-
rons and a second one for all inhibitory neurons; the layered
model defines one connectivity rule for each layer. Hence, the
model properties were based on the wiring statistics of larger
populations, permitting low fractional reconstruction and sub-
stantial wiring errors. If, on the contrary, the network models
were to define for each neuron a very specific connectivity
structure, a different experimental design would likely be favor-
able, in which the precise reconstruction of few individual neu-
rons could suffice to refute hypotheses.

How critical were the particular circuit constraints which we
considered for initial model validation (Fig. 1d)? What if, for
example, pairwise excitatory connectivity was lower than concluded
from pairwise recordings in slice (Fig. 1d28–36), and instead for
example rather 10%, not 15–25% in L4? The results on dis-
criminability of trained RNNs (Fig. 7), which was higher for sparser
networks, may indicate that model identification would even
improve for lower overall connectivity regimes. Also, such a setting
would imply that the model priors would be in a different range
(Supplementary Fig. 4; for example the layered network with four
layers would imply a pairwise forward connectivity pe;f = 27%
instead of 53%). Circuit measurements that already clearly refute
any of the hypothesized models based on simple pairwise con-
nectivity descriptors would of course reduce the model space a-
priori. Once a full connectomic measurement is available, the
connectivity constraints (Fig. 1d) can be updated, the model
hypothesis space diminished or not, and then our model selection
approach can be applied.

The choice of summary statistics in ABC is generally not
unique, and poorly chosen statistics may bias model
selection83–85. Our use of emulated reconstruction experiments
with known originating models was therefore required to verify
ABC performance (Figs. 4–6). These results also indicate that it
was sufficient to use summary statistics that were constrained to
operate on unweighted graphs. More detailed summary statistics
that also make use of indicators of synaptic weights accessible in
3D EM data (such as size of post-synaptic density, axon-spine
interface, or spine head volume86–88) may allow further distinc-
tion of plasticity models with subtle differences in neuronal

Fig. 7 Connectomic separability of recurrent neural network (RNNs) with similar initialization, but trained on different tasks. a Overview of training
process: RNNs were initially fully connected. Whenever task performance saturated during training, the weakest 10% of connections were pruned (†) to
obtain a realistic level of sparsity. b Task performance (black) and network connectivity (gray) of a texture discrimination RNN during training. Ticks
indicate the pruning of connections. Inset (*): Connection pruning causes a decrease in task performance, which is (partially) compensated by further
training of the remaining connections. c Task performance as a function of network connectivity (p). Performance defined as: Accuracy (Texture
discrimination RNNs, gray); 1 –mean squared error (Sequence memorization RNNs, magenta). Note that maximum observed performance was achieved in
a wide connectivity regime including connectivity consistent with experimental data (pS1 = 24%; dashed line). Task performance started to decay after
pruning at least 99.6% of connections. d Connectome statistics of RNNs over iterative training and pruning of connections (cf. Fig. 3a). e Distribution of
connectome statistics at p = pS1 for RNNs and structural network models. Note that structural network models and structurally unconstrained RNNs exhibit
comparable variance in connectome statistics (rree: 0.088 vs. 0.15 for API; rrei and rrie: 0.0019 vs. 0.026 for API; rrii: 9.35 × 10−7 vs. 8.17 × 10−3 for API; r(5):
1.54 vs. 1.51 for SYNFIRE; ri/o: 0.057 vs. 0.061 for LAYERED; cf. Fig. 3c). RNNs trained on different tasks did not differ significantly in terms of connectome
statistics (rree: 1.48 ± 0.30 vs. 1.46 ± 0.29, p = 0.997; rrei and rrie: 1.00 ± 0.04 vs. 0.99 ± 0.01, p = 0.534; rrii: 1.01 ± 0.01 vs. 1.01 ± 0.00, p = 0.107; r(5): 2.28
± 1.24 vs. 1.84 ± 0.80, p = 0.997; ri/o: 0.31 ± 0.24 vs. 0.49 ± 0.12, p = 0.534; mean ± std for n = 4 texture discrimination vs. sequence memorization RNNs,
each; two-sided Kolmogorov-Smirnov test without correction for multiple comparisons). Boxes: center line is median; box limits are quartiles; whiskers are
minimum and maximum; all data points shown. f Similarity of RNNs based on connectome statistics (lines) as connectivity approaches biologically
plausible connectivity pS1 (circles and arrows, left) and for connectivity range from 100% to 0.04% (circles and arrows, right). Note that connectome
statistics at ≤11% connectivity separate texture discrimination and sequence memorization RNNs into two clusters. g Distribution of connection strengths
at p = pS1 for two RNNs trained on different tasks. h Connectome statistics of RNNs with pS1 connectivity when ignoring weak connections. i Separability of
texture discrimination and sequence memorization RNNs with biologically plausible connectivity based on statistics derived from weighted connectome.
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activity history27. In fact, we found that weighted connectomes
were necessary to distinguish between circuit models that were
subject to identical structural constraints and that only differed in
the tasks that they performed (Fig. 7).

The proposed Bayesian model selection also has a number of
drawbacks.

First, likelihood-free model inference using ABC-SMC depends
on efficient simulation of the models. Computationally expensive
models, such as recurrent neural networks trained by stochastic
gradient descent (Fig. 7), are prohibitive for sequential Monte
Carlo sampling. However, the proposed connectome statistics and
the resulting connectomic distance function provide a quantita-
tive measure of similarity even for individual samples (Fig. 7i).
Furthermore, a rough estimate of the posterior distribution over
models can be obtained already by a single round of ABC-SMC
with a small sample size.

Second, an exhaustive enumeration of all hypotheses is needed
for Bayesian model selection. What if none of the investigated
models was correct? This problem cannot be escaped in principle,
and it has been argued that Bayesian approaches have the
advantage of explicitly and transparently accounting for this lack
of prior knowledge rather than implicitly ignoring it89. Never-
theless, this caveat strongly emphasizes the need for a proper
choice of investigated models. Our results (Fig. 6) indicate that
models close to but not identical to any of the investigated ones
are still captured in the posterior by reporting their relative
similarity to the remaining investigated models. We argue that
rejection of models without posterior probability mass provides
valuable scientific insights, even when the set of tested hypotheses
is incomplete.

Third, we assumed a flat prior over the investigated models,
considering each model equally likely a-priori. Pre-conceptions
about cortical processing could strongly alter this prior model
belief. If one assumed a non-homogenous model prior, this dif-
ferent prior can be multiplied to the posterior computed in our
approach. Therefore, the computed posterior can in turn be
interpreted as a quantification of how much more likely a given
model would have to be considered by prior belief in order to
become the classification result, enabling a quantitative assess-
ment of a-priori model belief about local cortical models.

Together, we show that connectomic measurement carries
substantial distinctive power for the discrimination of models in
local circuit modules of the cerebral cortex. The concrete
experimental design for the identification of the most likely local
model in cortical layer 4, proposed pre-hoc, will make the map-
ping of this cortical connectome informative and efficient. Our
methods are more generally applicable for connectomic com-
parison of possible models of the nervous system.

Methods
Circuit constraints. The following circuit constraints were shared across all cor-
tical network models. A single barrel was assumed to consist of 1800 excitatory
and 200 inhibitory neurons28,29. The excitatory connectivity pe, i.e. the probability
of an excitatory neuron to project to any other neuron was assumed to be
pee ¼ pei ¼ 0:230–33,36, the excitatory-excitatory reciprocity ree , i.e., the probability
of also observing a bidirectional connection given one connection between two
excitatory neurons, was assumed to lie in the range ree 2 ½0:15; 0:35�29–31,33,36. The
inhibitory connectivity pi , i.e., the probability of an inhibitory neuron to project
onto any other neuron, was assumed as pii ¼ pie ¼ 0:631,33–35. Self-connections
were not allowed.

Estimates of reconstruction time and synapse number. Neurite path length
density was assumed to be d ¼ 10km=mm3, barrel volume was assumed to be V =
(300 µm)3, annotation speed was taken as v ¼ 1:5mm=h24 together yielding the
total annotation time T ¼ Vd=v.

The total number of synapses in a barrel was calculated as Nf ¼ 3; 2299; 091
with f ¼ 3:36 the average number of synapses per connection30 and N ¼

2000 � ð1800 � 0:2þ 200 � 0:6Þ the total number of synaptically connected pairs of
neurons.

Implementations of cortical network models. Seven cortical models were
implemented: the Erdős–Rényi echo state network (ER-ESN9,16), the exponentially
decaying connectivity - liquid state machine model (EXP-LSM45,46), the layered
model (LAYERED8,90), the synfire chain model (SYNFIRE10,11,48), the feature
vector recombination model (FEVER12), the antiphase inhibition model (API) and
the spike timing-dependent plasticity self-organizing recurrent neural network
model (STDP-SORN49,50).

The Erdős–Rényi echo state network (ER-ESN) model was a directed
Erdős–Rényi random graph. Each possible excitatory projection was realized with
probability pe ¼ 0:2, each possible inhibitory projection with probability pi ¼ 0:6.

For the exponentially decaying connectivity - liquid state machine model (EXP-
LSM), excitatory and inhibitory neurons were assumed to be uniformly and
independently distributed in a cubic volume of equal side lengths. The excitatory
and inhibitory pairwise connection probabilities peðdÞ and piðdÞ were functions of
the Euclidean distance d of a neuron pair according to ptðdÞ ¼ p0exp

�d
λt

� �
,

p0 ¼ pt þ 1� pt
� �

dEXP, dEXP ¼ 1, t 2 e; if g. The length scale parameters λt were
adjusted to match an overall connectivity of pe ¼ 0:2 in the excitatory case (t ¼ e)
and a connectivity of pi ¼ 0:6 in the inhibitory case (t ¼ i).

The layered model (LAYERED) consisted of nl excitatory layers. Lateral
excitatory-excitatory connections were realized within one layer with connection
probability pe;l . Forward connections from one layer to the next layer were realized
with probability pe;f . Inhibitory neurons were not organized in layers but received
excitatory projections uniformly and independently from all excitatory neurons
with probability pe ¼ 0:2 and projected onto any other neuron uniformly and
independently with probability pi ¼ 0:6.

The synfire chain (SYNFIRE) implementation used in this work followed47. The
inhibitory pool size spool;i ¼ ni

ne
spool was proportional to the excitatory pool size

spool . The network was constructed as follows: (1) An initial excitatory source pool
of size spool was chosen uniformly from the excitatory population. (2) An excitatory
target pool of size spool and an inhibitory target pool of size spool;i were chosen
uniformly. The excitatory source and target pools were allowed to share neurons,
i.e., neurons were drawn with replacement. (3) The excitatory source pool was
connected all-to-all to the excitatory and inhibitory target pools but no self-
connections were allowed. (4) The excitatory target pool was chosen to be the
excitatory source pool for the next iteration. Steps (2) to (4) were repeated

round
log 1�peð Þ

log 1�
s2
pool

n2e

� �
0
@

1
A times, with roundð�Þ denoting the nearest integer. Inhibitory

neurons projected uniformly to any other neuron with probability pi ¼ 0:6.
The feature vector recombination model (FEVER) network was constructed

from an initial ER random graph C0 with initial pairwise connection probabilities
p0t ¼ pt � f rdf =n for t 2 e; if g with f r 2 ½0; 1� the feverization, df2N the feature
space dimension and n the number of neurons. The outgoing projections ck of
neuron k were obtained from C0 according to the sparse optimization problem

ck ¼ argminc ∑l≠k dl �∑p≠kdpcp

��� ���2
2
þ λtðkÞ c0k � c

�� ��
1

	 

, ; ckk ¼ 0; where the di 2

Rdf were the feature vectors drawn uniformly and independently from a unit
sphere of feature space dimension df and c0k2Rn denoted the initial outgoing

projections of neuron k as given by C0 and t kð Þ ¼ e if neuron k was excitatory,
t kð Þ ¼ i otherwise. The sparse optimization was performed with scikit-learn91

using the “sklearn.linear_model.Lasso” optimizer with the options “positive =
True” and “max_iter = 100000” for the excitatory and the inhibitory population
individually. The parameter λt , t 2 e; if g was fitted to match the excitatory and
inhibitory connectivity of pe ¼ 0:2 and pi ¼ 0:6 respectively.

In the antiphase inhibition model (API), a feature vector dk was associated with
each neuron k. The feature vectors were drawn uniformly and independently
from a unit sphere with feature space dimension df . The cosine similarity Cij ¼
csimðdi; djÞ between the feature vectors of neuron i and j were transformed
into connection probabilities pij between neuron i and j according to

pij ¼ 1� 1� Cij sjþ1
2

� �npow
� �nbinomial

sj
, where sj ¼ 1 if neuron j was excitatory and

sj ¼ �1 if neuron j was inhibitory. The coefficients nbinomial
x with x 2 f�1; 1g were

fitted to match the excitatory and inhibitory connectivity constraints. The
coefficient npow was in the range npow 2 ½4; 6� (Supplementary Fig. 4f11).

The spike timing dependent plasticity self-organizing recurrent neural network
model (STDP-SORN) network was constructed as follows: An initial random
matrix C0 2 f0; 1;�1gn ´ n with pairwise connection probabilities pt for t 2 e; if g
was drawn. Let se;k ¼ ∑l:Ckl>0

Ckl denote the sum of all excitatory incoming weights
of neuron k and similarly si;k ¼ �∑l:Ckl<0

Ckl denote the sum of all inhibitory
incoming weights of neuron k. Each weight Ckl > 0 was normalized according to
Ckl  Ckl=se;k and each weight Ckl < 0 according to Ckl  Ckl=si;k such that for
each neuron the sum of all incoming excitatory weights was 1 and the sum of all
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incoming inhibitory weights was �1. No self-connections were allowed. The so
obtained matrix was the initial adjacency matrix C. The initial vector of firing
thresholds t 2 Rn was initialized to t ¼ 1. The neuron state x 2 0; 1f gn and the
past neuron state xold 2 0; 1f gn were initialized as zero vectors.

After initialization, for each of the τend ¼ 10; 000 simulation time points, the
following steps were repeated50: (1) Propagation, (2) Intrinsic plasticity, (3)
Normalization, (4) STDP, (5) Pruning and (6) Structural plasticity as follows:

Propagation. The neuron state x 2 0; 1f gn was updated x ΘðCxþξ�tÞ,
where ξ was noise with ξk � Nð0; σ2Þ iid., σ ¼ 0:05 and Θ xð Þ ¼ 1; x ≥ 0

0; otherwise

	
.

Intrinsic plasticity. The firing thresholds were updated t tþ ηiðx � f 0Þ
where f 0 ¼ 1=10 was the target firing rate and ηi the intrinsic plasticity
learning rate.

Normalization. The excitatory incoming weights were normalized to 1: If Ckl > 0
then Ckl  Ckl=se;k:

STDP (Spike timing dependent plasticity). Weights were updated according to

Ckl  Ckl þ ηSTDP xkxold;l þ xkxl � xold;kxl
� �

for k≠ l. Finally the past neuron

state was also updated xold  x:
Pruning. Weak synapses were removed: If 0 ≤ Ckl < 1=n then Ckl  0.
Structural plasticity. It was attempted to add nadd ¼ ðn2e pe � nsÞ=ð1� peÞ

synapses randomly, with ns ¼ ∑k;l:Ckl>0
1 the number of excitatory synapses

currently present in the network. For each of these attempts two integers k; l �
DiscreteUniformð0; neÞ were chosen randomly and independently. If k≠ l and
Ckl ¼ 0 then Ckl  1=n.

The STDP-SORN model was implemented in Cython and OpenMP.
All code was verified using a set of unit tests with 91% code coverage.

Reconstruction errors and network subsampling. Reconstruction errors were
implemented by randomly rewiring connections: A fraction ξ of the edges of the
network was randomly removed, ignoring their signs. The same number of edges
was then randomly reinserted and the signs were adjusted to match the sign of the
new presynaptic neuron. Partial connectomic reconstruction was implemented by
network subsampling: A fraction f m 2 ½0; 1� of the neurons was uniformly drawn.
The subgraph induced by these neurons was preserved, its complement discarded.

Connectomic cortical network measures. The following measures (Fig. 3a) were
computed: (1) relative excitatory-excitatory reciprocity, (2) relative excitatory-
inhibitory reciprocity, (3) relative inhibitory-excitatory reciprocity, (4) relative
inhibitory-inhibitory reciprocity, (5) relative excitatory recurrency, and (6) exci-
tatory in/out-degree correlation. All measures were calculated on binarized net-
works as follows:

Reciprocity rxy with x; y 2 e; if g, e = excitatory, i = inhibitory, was defined as
the number of reciprocally connected neuron pairs between neurons of population
x and y divided by the total number of directed connections from x to y. If the
number of connections from x to y was zero then rxy was set to zero. Hence rxy was
an estimate for the conditional probability of observing the reciprocated edge of a
connection from y to x, given a connection from x to y. The relative excitatory-
inhibitory reciprocity was defined as rrei ¼ rei=pie . I.e., relative reciprocities were
obtained by dividing the reciprocity of a network by the expected reciprocity of an
ER network with the same connectivity.

Relative excitatory recurrency was defined as rðnÞ ¼ tr Cn
ee

� �
= nepe
� �n

, where Cee

was the excitatory submatrix and tr denoted the trace of the matrix. The cycle
length parameter n was set to n ¼ 5.

The excitatory in/out-degree correlation ri=o was the Pearson correlation
coefficient of the in- and out-degrees of neurons of the excitatory subpopulation.
Let di;k denote the in-degree of neuron k and do;k the out-degree of neuron k. Let
�di ¼ 1

ne
∑ne

k¼1di;k and do ¼ 1
ne
∑ne

k¼1do;k , with ne the total number of excitatory

neurons. Then ri=o ¼
∑ne

k¼1ðdi;k�diÞðdo;k�doÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ne

k¼1 di;k�dið Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ne
k¼1 do;k�doð Þ2

p .

Bayesian model selection. Bayesian model selection was performed on networks
sampled from the seven models as follows: First, a noise-free network C0 with 2000
neurons was drawn from one of the network models m 2 ½1; ¼ ; 7�. Second, this
noise-free network was perturbed with noise of strength ξ as described above.
Then, a fraction f m of the network was subsampled, yielding C.

The Bayesian posterior pðθjCÞ was then calculated on the noisy subnetwork C
using an approximate Bayesian-sequential Monte Carlo (ABC-SMC) method. The
implemented ABC-SMC algorithm followed the ABC-SMC procedure proposed
by92 with slight modifications to ensure termination of the algorithm, as described
below. The ABC-SMC algorithm was implemented as custom Python library (see
Supplementary Code file and https://gitlab.mpcdf.mpg.de/connectomics/
discriminatEM).

The network measures γ ¼ ðrree; rrei; rrie; rrii; r 5ð Þ; ri=oÞ described above were
used as summary statistics for the ABC-SMC algorithm. The distance between two

networks C# and Cs
i was defined as dγ C;Cs

i

� � ¼ ∑6
k¼1

γk Cð Þ�γk Cs
ið Þ

�� ��
γk;80�γk;20 , where the sum

over k was taken over the six network measures. The quantities γk;80 and γk;20 were

the 80% and 20% percentiles of the measure γk , evaluated on an initial sample from
the prior distribution of size 2000; the particle number, i.e., the number of samples
per generation, was set to 2000. If a particle of the initial sample contained an
undefined measure (e.g., in-/out-degree correlation), it was discarded. When γk;80
and γk;20 were equal, the corresponding normalization constant of the distance
function was set to the machine epsilon instead. The initial acceptance distance
ϵABC was the median of the distances dγ C#; Cs

i

� �
as obtained from the same

initially sampled connectomes Cs
i .

After each generation, ϵABC for the following generation was set to the median
of the error distances dγ C#;Cs

i

� �
of the particles in the current generation.

Particles were perturbed hierarchically. First, a model m was drawn from the
current approximating posterior model distribution. With probability 0.85 the
model m was kept, with probability 0.15 it was redrawn uniformly from all models.
Second, given the sampled model, a single particle from the model specific particles
was sampled. The sampled particle was perturbed according to a multivariate
normal kernel with twice the variance of the variance of the particles in the current
population of the given model. The perturbed particle was accepted if the error
distance was below ϵABC. To obtain again 2000 particles for the next population,
2000 particle perturbation tasks were run in parallel. However, to ensure
termination of the algorithm, each of the 2000 tasks was allowed to terminate
without returning a new particle if more than 2000 perturbation attempts within
the task were not successful. Model selection was stopped if only one single model
was left, the maximum number of 8 generations was reached, the minimum ϵABC ¼
0:175 was reached or less than 1000 accepted particles were obtained for a
population. See Supplementary Code for implementation details.

Functional testing. The ER-ESN, EXP-LSM, and LAYERED models were trained to
discriminate natural texture classes, which were represented by one natural image
each. Samples of length 500 pixel of these classes were obtained at random locations
of these images. These samples were then fed into LAYERED networks via a single
input neuron projecting to the first layer of the network. In the ER and EXP case the
input neuron projected to all neurons in the network. Within the recurrent network,
the dynamical model was given by a t þ 1ð Þ ¼ 1� αð ÞaðtÞ þ α reluðCaðtÞ þ uðtÞÞ,
where C was the adjacency matrix, u the input, a the activation, α ¼ 0:1 the leak rate
and relu �ð Þ ¼ maxð0; �Þ. Readout was a softmax layer with seven neurons o1; ¼ ; o7;
one neuron for each class. Adam93 was used to train all the forward connections with
exception of the input connections. The loss l was the categorical cross-entropy
accumulated over the last 250 time steps l ¼ � ∑

i;c0¼1;::;7;t¼250¼ 500
δc0 ;cðiÞlogðoc0 ðtÞÞ,

where i denoted the sample and cðiÞ the ground truth class of sample i. At prediction

time the predicted class c* was c* ¼ argmaxc21;¼ ;7 ∑
500

t¼250
ocðtÞ. The model was

implemented in Theano (https://deeplearning.net/software/theano) and Keras
(https://keras.io) as custom recurrent layer and run on Tesla M2090 GPUs. See
Supplementary Code for details of the implementation.

In the SYNFIRE model, a conductance based spiking model was used with
membrane potential _v ¼ ðvrest � vÞ=τp with τp ¼ 20ms, inhibitory reversal
potential vreversal;i ¼ �80mV, excitatory reversal potential vreversal;e ¼ 0mV, resting
potential vrest ¼ �70mV, spiking threshold vthreshold ¼ �55mV, inter pool delay
dpool � Uð0:5; 2Þ, excitatory intra pool jitter djitter;e � Uð0; 0:3Þ inhibitory intra pool
jitter djitter;i � Uð0:3; 0:9Þ, excitatory refractory period τref ;e ¼ 2ms and inhibitory
refractory period τref ;i ¼ 1ms. On spiking of presynaptic neuron j the membrane
potential of postsynaptic neuron i was increased by gpreðvreversal;pre � vpostÞ
where gpre denoted the presynaptic efficacy, vreversal;pre the presynaptic reversal
potential and vpost the postsynaptic membrane potential. The excitatory synaptic
efficacy ge and the inhibitory synaptic efficacy gi were functions of the pool size
and were obtained by interpolating spool ¼ ½80; 100; 120; 150; 200; 250; 300�,
log10ðgeÞ ¼ ½�2:1;�2:25;�2:28;�2:365;�2:6;�2:625;�2:75� and log10ðgiÞ ¼
½�0:45;�0:7;�0:763;�0:894;�1:25;�1:25;�1:5� linearly.

The fractional chain activation f ca was calculated as follows: Let niðtÞ denote the
number of active neurons of pool i between time t and t þ Δt, with Δt ¼ 0:1ms. Let
the maximal activation be n̂ðtÞ ¼ maxj njðtÞ and define the pool activity indicator

δi tð Þ ¼ Iðni tð Þ>
spool
2 ; n̂ tð Þ ¼ ni tð Þ; ijn̂ tð Þ ¼ ni tð Þ

 ��� �� ¼ 1Þ. Let the cumulative

activity be ci tð Þ ¼ ∑t0 ≤ tni tð ÞδiðtÞ and tend ¼ max tjci tð Þ< 1:2spool8i
n o

. The number

of activated pools was N ¼ ij9t < tend : δi tð Þ ¼ 1
 ��� �� and the fractional chain

activation f ca ¼ N=l in which l was the chain length. Fractional pool activation f pa
at time t was the fraction of neurons in a pool that exceeded a threshold activity
vthreshold ¼ �55mV between time t and t þ Δt, with Δt ¼ 0:1ms.

Additional model-functional testing was performed. Also, SYNFIRE, FEVER,
API, and STDP-SORN networks were trained to discriminate textures, analogous
to the ER-ESN and EXP-LSM models. The test previously applied to the SYNFIRE
model was not applied to the remaining models because the SYNFIRE model was
the only integrate-and-fire model. The recombination memory test, originally
proposed as part of the FEVER model, was also applied to the API model and vice
versa the antiphase inhibition test, originally proposed as part of the API model
was also applied to the FEVER model. These two tests were not applied to the
remaining models because these lacked feature vectors. The test for uncorrelated
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and equally distributed activity, originally proposed as part of the STDP-SORN
model, was also not applied to the remaining models because they did not feature
binary threshold neurons. If a model was not able to carry out a given task due to
inherent properties of that model such as, e.g., absence of feature vectors, the model
was considered to fail that task.

Training, sparsification, and connectomic separability of recurrent neural
networks trained on different tasks
Architecture and initialization of recurrent neural networks. Recurrent neural
networks (RNNs) consisting of 1800 excitatory, 200 inhibitory, and a single input
neuron were trained on either a texture discrimination or a sequence memorization
task (Fig. 7). Each of the 2000 neurons in the RNN received synaptic inputs from
the input neuron and from all other RNN neurons. The total input to neuron i at
time t was given by Ii,t =Wi,1 × A1,t-1 +… +Wi,2000 × A2000,t-1 + vi×ut + bi, where
Wi,j is the strength of the connection from neuron j to neuron i. Connections
originating from excitatory neurons were non-negative, while connections from
inhibitory neurons were non-positive. Self-innervations was prohibited (Wi,i = 0
for all i). Aj,t-1 = max(0, min(2, Ii,t-1)) is the activation of neuron j in at time t-1.
The input signal ut was projected to neuron i by connection of strength vi. bi was a
neuron-specific bias.

Prior to training, RNNs were initialized as follows (Fig. 7a): Neuronal activations
Ai,0 were set to zero. Internal connection strengths Wj,i were sampled from a
truncated normal distribution (by resampling values with absolute values greater
than two). If necessary, the sign of Wj,i was inverted. Connections from inhibitory
neurons were rescaled such that <Wj> = 0, where <•> denotes the average. Finally,
connection strengths were rescaled to a standard deviation of (2/2001)1/2 (94).
Connections from the input neuron were initialized by the same procedure.
Neuronal biases were set to minus <v>×<u>.

Texture discrimination task. RNNs were trained to discriminate between seven
different natural textures. The activity of the input neuron, ut, was given by the
intensity values of 100 consecutive pixels in a texture image. For each texture, a
different excitatory neuron was randomly chosen as output neuron. The RNNs
were trained to activate an output neuron if and only if the input signal was
sampled from the corresponding natural texture.

The texture images were split into training (top half), validation (third quarter),
and test sets (bottom quarter). Input sequences were sampled by random uniform
selection of a texture image, of a row therein, and of a pixel offset. The sequences
were reversed with 50% probability. The excitatory character of the input neuron
was emulated by normalizing the intensity values within each gray-scale image,
clamping the values to two standard deviations and adding a bias of two.

The RNNs were trained by minimizing the cross-entropy loss on mini-batches
of 128 sequences using Adam93 (learning rate: 0.0001, β1: 0.9, and β2: 0.999). The
gradient was clipped to a norm of at most 1. Every ten gradient steps, the RNN was
evaluated on a mini-batch from the validation set. If the running median of 100
validation losses did not decrease for 20,000 consecutive gradient steps, the
connectivity matrix W was saved for offline analysis and then sparsified (Fig. 7a).
Following95, connections with absolute connection strength below the 10th

percentile were pruned (and couldn’t be regained thereafter). The validation loss
and gradient step counter were reset before training of the sparsified RNN
continued (Fig. 7a).

Four RNNs were trained with different sets of initial parameters and different
training sequence orders. Each RNN was trained for around 5 days and 21 h,
corresponding to roughly 5.75 million training steps (Python 3.6.8, NumPy 1.16.4,
TensorFlow 1.12, CUDA 9.0, CuDNN 7.4, Nvidia Tesla V100 PCIe; Fig. 7b, c).

Sequence memorization task. In the sequence memorization task, RNNs were
trained to output learned sequences at the command of the input signal. The
sequences were 100-samples-long whisker traces from96. The input signal deter-
mined the onset time and type of sequence to generate. The activity of the input
neuron, ut, was initially at zero (u0 = 0) and switched to either +1 or −1 at a
random point in time. The RNN was trained to output zero while the input is zero,
to start producing sequence one at the positive edge, and to generate sequence two
starting at the negatives edge in ut. The whisker traces were drift-corrected, such
that they started and ended at zero. The amplitudes were subsequently divided by
twice their standard deviation.

Training proceeded as for texture discrimination. The mean squared error was
used as loss function. Four RNNs with different random initializations and
different training sequence orders were each trained for roughly 15 days and 22 h,
corresponding to 18.5 million training steps.

Analysis of RNN connectomes. Connectivity matrices were quantitatively analyzed
in terms of the relative excitatory-excitatory reciprocity (rree), the relative
excitatory-inhibitory reciprocity (rrei), the relative inhibitory-excitatory reciprocity
(rrie), the relative inhibitory-inhibitory reciprocity (rrii), the relative prevalence of
cycles of length 5 (r(5)), and the in-out degree correlation (ri/o) (Fig. 7d–i). The
connectome statistics were then further processed using MATLAB R2017b.
Equality of connectome statistics across different tasks was tested using the two-
sample Kolmogorov-Smirnov test. To visualize structural similarity of neural
networks in two dimensions, t-SNE97 was applied to the six connectome statistics.

For a quantitative measure of structural separability of RNNs, the connectomic
distance dγ(Ci, Cj) (see “Bayesian model selection”) was computed for all pairs of
RNNs. dγ(Ci, Cj) < θ was used to predict whether RNNs i and j were trained on the
same task. The performance of this predictor was evaluated in terms of the area (A)
under the receiver operating characteristic (ROC) curve, and accuracy. The sen-
sitivity index d’ was computed as 21/2Z(A), where Z is the inverse of the cumulative
distribution function of the standard normal distribution.

Whether information about connection strength helps to distinguish texture
discrimination and sequence memorization RNNs (Fig. 7g–i) was tested as follows:
For each RNN, the configuration with average connectivity closest to 24% was
further sparsified by discarding the weakest 5, 10, 15,..., 95% of connections before
computing the connectome statistics. Separability of texture discrimination and
sequence memorization network based on the connectome statistics was quantified
as above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://discriminatEM.
brain.mpg.de.

Code availability
All methods were implemented in Python 3 (compatible with version 3.7), unless noted
otherwise. All code is available under the MIT license in the Supplementary Code file and
at https://gitlab.mpcdf.mpg.de/connectomics/discriminatEM. To install and run
discriminatEM please follow the instruction in the readme.pdf provided within
discriminatEM_v2.zip. Detailed API and tutorial style documentation are also provided
within discriminatEM_v2.zip in the HTML format (doc/index.html).
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