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BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic
toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to
evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute tox-
icity predictions without using animals.
OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organ-
ized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50
(LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard
(five) categories, very toxic chemicals [LD50 (LD50 ≤ 50 mg=kg)], and nontoxic chemicals (LD50 > 2,000 mg=kg).

METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35
participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the
submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual
approaches.

RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity
Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results.

DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral
toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program’s Integrated
Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA,
which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495

Introduction
Acute systemic toxicity studies are required by regulators around
the world to inform chemical hazard classification, labeling, and
risk management. The testing to assess acute systemic toxicity is
conducted in vivo through a predefined route of exposure (oral, der-
mal, or via inhalation) during a fixed observation period as
described in test guidelines issued by the Organization for
Economic Cooperation and Development (OECD) (OECD 2002a,
2002b, 2002c, 2008). Five U.S. agencies [Consumer Product
Safety Commission (CPSC), Department of Defense (DoD),
Department of Transportation (DoT), Environmental Protection
Agency (U.S. EPA), Occupational Safety and Health Administration
(OSHA)], as well as Registration, Evaluation, Authorization, and
Restriction of Chemicals (REACH) in Europe use the median Lethal
Dose 50 (LD50; the dose of a substance that would be expected to kill
half the animals in a test group) from acute oral toxicity data for the
classification and labeling of chemical substances (ECHA 2008;
Kleinstreuer et al. 2018; Strickland et al. 2018). However, in vivo
acute oral toxicity testing is cost- and time-prohibitive and raises ethi-
cal concerns related to the use of many animals. Given the large num-
ber of new and existing substances requiring assessment, there is a
pressing need for cost-effective and rapid nonanimal alternatives.

Recent technological advances in computational resources and
artificial intelligence have increased the accuracy and speed of
machine learning algorithms. As a result, in silico approaches such
as quantitative structure–activity relationships (QSARs) are being
increasingly recognized as alternatives to bridge the lack of knowl-
edge about chemical properties and their biological activities.
QSARs are being promoted for their ability to accurately predict tox-
icological end points at low cost but also for being reliable, repro-
ducible, and broadly applicable to the diversity of chemicals
requiring testing (Dearden et al. 2009; Worth et al. 2005).
Consequently, the integration of nonanimal methods for assessing
chemical toxicity is gainingmomentum. In Europe, REACH regula-
tions call for the use of nonanimal methods to assess chemical toxic-
ity (Benfenati et al. 2011; European Commission, Environment
Directorate General 2007; Lahl and Hawxwell 2006). Similarly, in
2020, U.S. EPA created a New Approach Methods (NAMs) Work
Plan to prioritize agency efforts and resources toward activities that
will reduce the use of animal testing while continuing to protect
human health and the environment (U.S. EPA 2020). Furthermore,
the Interagency Coordinating Committee on the Validation of
AlternativeMethods (ICCVAM), consisting of representatives from

16 U.S. federal agencies, has several workgroups focused on the de-
velopment or validation of NAMs. These workgroups contribute to
the goals of the ICCVAM Strategic Roadmap for Establishing New
Approaches to Evaluate the Safety of Chemicals and Medical
Products in the United States (Interagency Coordinating Committee
on the Validation of Alternative Methods 2018). One of the
ICCVAM ad hoc workgroups established was the Acute Toxicity
Workgroup (ATWG), which sought to develop an implementation
plan for identifying, evaluating, and applying alternative methods
for acute systemic toxicity (Kleinstreuer et al. 2018; Lowit et al.
2017). An initial ATWG study was conducted to assess the acute
toxicity data regulatory requirements, needs, and decision con-
texts of member agencies as well as to understand the current ac-
ceptance of alternative methods (Strickland et al. 2018).
Subsequent charges of the ATWG were to identify, acquire, and
curate high-quality data from reference test methods that could
be used to evaluate existing models for acute toxicity as well as
investigate the feasibility of developing new models. Focusing
initially on the oral route of exposure to evaluate existing in silico
models, the ATWG organized an international collaborative pro-
ject to develop new in silicomodels for predicting acute oral sys-
temic toxicity (Kleinstreuer et al. 2018; Strickland et al. 2018).

International consortia have successfully developed collabora-
tive computational solutions for challenging toxicological prob-
lems. Examples in the area of endocrine disruption screening
include the Collaborative Estrogen Receptor Activity Prediction
Project (CERAPP) (Mansouri et al. 2016a) and the Collaborative
Modeling Project for Androgen Receptor (CoMPARA) (Mansouri
et al. 2020). The predictive consensus models from these projects
have been integrated to assess the endocrine activity potential of
organic chemicals within the EPA’s Endocrine Disruptor
Screening Program (EDSP) (U.S. EPA-NCCT 2014b). The global
network of experts represented by these successful consortia was
leveraged for the current acute oral systemic toxicity modeling
project, and the legacy workflows from CERAPP and CoMPARA
were adapted and applied for the data analysis and modeling con-
ducted herein.

For the current project, the U.S. National Toxicology Program
(NTP) Interagency Center for the Evaluation of Alternative
Toxicological Methods (NICEATM) and the U.S. EPA’s Center
for Computational Toxicology and Exposure (CCTE) collected
and curated rat oral LD50 data for more than 15,000 substances
from public sources to produce data sets that were used during the
project as training and evaluation sets (Karmaus et al. 2019;
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Kleinstreuer et al. 2018). Thirty-five international collaborators
representing various sectors, including government, industry, and
academia, participated in this effort, which produced a total of 139
different models. All submitted models were both quantitatively
and qualitatively evaluated. A workshop was convened (https://
ntp.niehs.nih.gov/go/atwksp-2018) to bring contributing computa-
tional modelers and regulatory decision makers together to discuss
the feasibility of using in silico predictions for regulatory use in
lieu of in vivo acute oral systemic toxicity testing (Kleinstreuer
et al. 2018). Ultimately, predictions within the applicability
domains of the developed models were combined into consensus
predictions based on a weight-of-evidence (WoE) approach, form-
ing the Collaborative Acute Toxicity Modeling Suite (CATMoS).
CATMoS was then implemented into the open-source, open-data
OPERA [OPEn (q)saR App] tool to enable further screening of
new chemicals (Mansouri et al. 2016b, 2018). This paper provides
a description of the data on which the CATMoS models are based,
the evaluation process, and development of consensus models. We
close with a discussion of the limitations of CATMoS and a
description of implementation and additional evaluation of the
model.

Materials and Methods

U.S. Regulatory Uses for Acute Oral Toxicity Data
Prior to identifying any existing alternative methods or investing
in the development, optimization, and validation of new ones, it
is important to understand the current regulatory needs and deci-
sion contexts, including the use and acceptance of nonanimal
data for the toxicological end point of concern. Strickland et al.
(2018) described the use of acute oral toxicity data by ICCVAM
regulatory agencies to provide a basis for identifying opportuni-
ties for flexibility with regard to replacing or reducing the need
for in vivo acute oral toxicity studies (Strickland et al. 2018). The
regulatory needs of these agencies require three different types of
acute toxicity outcomes, as detailed in Table 1: a) an LD50 value
estimate; b) a binary outcome based on a single threshold; and c)
a multiclass scheme based on different thresholds. Two binary
models were relevant to U.S. agencies: a) the identification of
whether a chemical was “very toxic” (i.e., LD50 ≤ 50 mg=kg);
and b) identification of whether a chemical was “nontoxic” (i.e.,
LD50 > 2,000 mg=kg). Multiclass schemes in use by several
agencies included hazard categories defined by the U.S. EPA and
the U.N. Globally Harmonized System of Classification and
Labeling of Chemicals (GHS), which consist of four or five cate-
gories, respectively (Table 2) (Strickland et al. 2018).

Based on this information, for this project we asked participants
to developmodels to predict one ormore of the following end points:

• Very toxic (VT; LD50 ≤ 50 mg=kg vs. all others)
• Nontoxic (NT; LD50 > 2,000 mg=kg vs. all others)
• U.S. EPA hazard categories (U.S. EPA 2016)
• GHS hazard categories (United Nations 2015)
• Point estimate LD50 values.

Data Sets
Data collection and preprocessing. The data set underlying the
modeling effort for this project was initially compiled by
NICEATM and U.S. EPA’s CCTE. Briefly, LD50 data were col-
lected from rat acute oral systemic toxicity tests, including limit
tests, ranges/confidence intervals, and discrete LD50 values. The full
data set included 21,200 LD50 entries for 15,688 substances. These
data came from a variety of publicly available databases, including
OECD’s eChemPortal, the National Library of Medicine’s
Hazardous Substances Data Bank (NLM HSDB), ChemIDplus
databases, and the European Commission Joint Research Center’s
(JRC) AcutoxBase (Karmaus et al. 2019; Kleinstreuer et al. 2018;
NTP 2018). Data were reviewed to ensure that LD50 values with
obvious errors in the extracted data such as unit conversion errors
(e.g., comma and decimal separator misplacements) were either
fixed or removed. After this review, 16,209 LD50 values remained.
Many of the chemicals represented had multiple LD50 entries,
requiring that a single representative value per Chemical Abstracts
Service Registry Number (CASRN) identifier be defined to facili-
tate modeling efforts. Based on ATWG feedback and to define the
representative LD50 as a protective value while accounting for the
distribution across multiple LD50s, the median of the lowest quartile
was computed using only discrete LD50 values (omitting limit test
data and range and confidence interval data). A detailed summary of
the data compilation is available online on the NICEATMwebpage
dedicated to the collaborativemodeling project (NTP 2020).

To obtain chemical structure information, CASRNs served as
identifiers to search the U.S. EPA’s DSSTox database hosted in the
CompTox Chemicals Dashboard (Grulke et al. 2019; Richard and
Williams 2002; U.S. EPA-NCCT 2014a; Williams et al. 2017) as
well as other cross-checked online databases: ChemIDPlus (NIH
2016), PubChem (Bolton et al. 2008) and ChemSpider (Royal
Society of Chemistry 2015). The collected structures were then
processed using a standardization workflow developed for the pur-
pose of generating QSAR-ready structures compatible with most
modeling approaches (Mansouri et al. 2016a; McEachran et al.
2018). In fact, this workflow was first developed in KNIME
(Berthold et al. 2008) for the CERAPP project and was also
employed for CoMPARA (Mansouri et al. 2016a, 2018, 2020).
Theworkflow is a multistep process that includes:

• A filter to remove inaccurate chemical representations,
inorganics/metallo-organics, mixtures, and general represen-
tations that are not specific (Markush structures, repeating
monomers, connection points)

• A standardization step for ring representations, isomers/
mesomers, and other tautomeric forms

• A step to identify salts/solvents, counterions, and duplicate
structures.
The workflow can be downloaded from GitHub or KNIME hub

as KNIMEworkflow or used in command linewithin a Docker con-
tainer (https://github.com/NIEHS/QSAR-ready, https://kni.me/w/_
iyTwvXi6U3XTFW1, https://hub.docker.com/r/kamelmansouri).
After the standardization process, the final data set included 11,992

Table 1. Acute oral toxicity classification strategies used by U.S. regulatory
agencies.

Requirement Description Agencies

Binary LD50 values above or below specific
threshold

CPSC, DoD

Multi-class Multiple ranges of LD50 values EPA, OSHA, DOT
LD50 value Discrete LD50 values EPA, CPSC, DoD

Note: See (Strickland et al. 2018). CPSC, Consumer Product Safety Commission; DoD,
U.S. Department of Defense; DOT, U.S. Department of Transportation; EPA, U.S.
Environmental Protection Agency; OSHA, U.S. Occupational Safety and Health
Administration.

Table 2. U.S. EPA and GHS hazard labeling categories.

Categories EPA LD50 thresholds GHS LD50 thresholds

1 ≤50 mg=kg ≤5 mg=kg
II >50≤ 500 mg=kg >5≤ 50 mg=kg
III >500≤ 5,000 mg=kg >50≤ 300 mg=kg
IV >5,000 mg=kg >300≤ 2,000 mg=kg
V NA >2000 mg=kg

Note: NA, No EPA Cat V; See (Strickland et al. 2018). EPA, U.S. Environmental
Protection Agency; GHS, U.N. Globally Harmonized System of Classification and
Labeling of Chemicals; LD50,dose of a substance that would be expected to kill half the
animals in a test group.
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chemical structures amenable for themodeling projectwith encoded
SMILES and SDF formats.

This data set, complete with chemical structures and represen-
tative LD50 values, was further processed to ensure that each
chemical had only one representative value/call for all remaining
modeling end points (i.e., the different binary and multiclass cate-
gories). For categorical designations, limit test and range/confi-
dence interval LD50 data were integrated wherever possible. As
such, the number of chemicals with end point values/calls varies
across the modeling end points (Table 3) based on whether chem-
icals had representative LD50 values and/or other data. If a chem-
ical had both, the representative value was used to determine
categorical calls rather than limit test data. Some data were use-
able only for certain end points and categories depending on the
thresholds. For example, ranges that spanned multiple hazard cat-
egories were considered only for the binary (very toxic/nontoxic)
end points and omitted from rendering a determination for hazard
category assignment.

Training and evaluation sets: source, compilation, splitting.
The final data set comprising 11,992 chemicals was split into train-
ing and evaluation sets consisting of 75% (8,994 chemicals) and
25% (2,895 chemicals), respectively. This process was performed
semirandomly by ordering chemicals based on the five end points
(categorical and continuous LD50 values) and partitioning every
fourth record into the evaluation set accordingly. This approach
was taken to ensure an equivalent distribution of the LD50 values
and the different hazard categories between the training and the
evaluation sets without supervised sampling of the chemicals
based on structures (Figure 1A). The sources of the chemical

structures were also kept equivalent between the two sets, with
chemical structures obtained from DSSTox, being the highest
quality, representing over 75% of each set (Figure 1B).

The training set (Supplemental Material 1: TrainingSet.sdf,
TrainingSet.xlsx, TrainingSet_Original.sdf) was made available for
collaborators on the project webpage along with an explanation of
the proper use of the data for the modeling steps (https://ntp.niehs.
nih.gov/iccvam/methods/acutetox/model/qna.pdf). Modelers were
encouraged to use the provided training set but were given the flexi-
bility to make any modifications and apply post processing to suit
their own modeling approaches. For example, modelers might
choose to augment the data set with additional toxicity data or use
undersampling approaches to reduce the number of low-potency
chemicals to achieve amore balanced data set.

The empirical data (Supplemental Material 2: EvaluationSet.
sdf, EvaluationSet.xlsx, EvaluationSet_Original.sdf) of the evalu-
ation set were initially withheld from the project website so that
NICEATM could perform an independent assessment of the va-
lidity of the models submitted by the collaborators. The chemical
structures of this evaluation set were, however, provided to the
participants to generate model predictions that would serve as an
external validation set. These structures were provided as part of
a much larger prediction set of chemical structures, as described
below, ensuring that participants were not privy to the identities
of the evaluation set chemicals during model development.

Prediction set: structure collection and curation. The list of
evaluation set chemicals was contained within a comprehensive
chemical list for which participants were asked to generate pre-
dictions using their optimized models. This prediction set encom-
passed lists of interest to the ICCVAM ATWG regulatory
agencies who use acute oral LD50 data, as well as to stakeholders
and other chemical screening programs, including ToxCast™/
Tox21, EDSP, the Toxic Substances Control Act (TSCA), and a
general list of substances on the market from the U.S. EPA
CompTox chemicals dashboard (Dix et al. 2007; Grulke et al.
2019 p. 21; Kavlock et al. 2012; U.S. EPA-NCCT 2014b, 2019).

The QSAR-ready KNIME workflow was applied to standard-
ize the chemical structures and remove duplicates. After integra-
tion of the evaluation set, the final prediction set (see
Supplemental Material 3) included 48,137 chemical structures
(including the hidden evaluation set) and was made available for
download on the project webpage (NTP 2020). Participating

Table 3. Number of chemicals modeled for each end point, used for the
training and evaluation of models.

End point Number of chemicals

VT 11,886
NT 11,871
EPA categories 11,755
GHS categories 11,845
Discrete LD50 values 8,908

Note: See Supplemental Material 1 (training set) and Supplemental Material 2 (evalua-
tion set). EPA, U.S. Environmental Protection Agency; GHS, U.N. Globally
Harmonized System of Classification and Labeling of Chemicals; LD50, dose of a sub-
stance that would be expected to kill half the animals in a test group; NT, non-toxic/
toxic; VT, very toxic/not very toxic.

Figure 1. Characteristics of training (Supplemental Material 1) and evaluation sets (Supplemental Material 2). (A) Distribution of LD50 values. (B) Sources of
the chemical structures.
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groups were encouraged to generate predictions for as many
chemicals as possible.

Participants and Modeling Methods
Multiple modeling approaches were applied by the 35 interna-
tional participating groups to predict the above mentioned acute
oral toxicity end points. The list of participating groups with the
abbreviations that are used in this manuscript to identify the dif-
ferent models is provided in Table 4. The list of participants is
provided in Supplemental Material 4. For transparency, the mod-
elers were encouraged to use the provided training set and apply
free and open-source tools to develop new models. However, the
use of existing and proprietary commercial tools and/or other
data was also permitted. The various molecular descriptors/tools
and modeling approaches employed are summarized in Tables 4
and 5. For further information about the methods and detailed
descriptions of modeling processes as provided by the participat-
ing groups, see https://doi.org/10.22427/NTP-DATA-002-00090-
0001-0000-2 and the respective modeling references in Table 4.

Evaluation Procedure
The project timeline and guidelines for submission were pub-
lished in an online document posted to the project webpage on
the NICEATM website (NTP 2020). The guidelines included rec-
ommendations about the modeling process as well as detailed
instructions about information to be included with each submis-
sion. Qualitative and quantitative evaluation procedures for the
submitted models and predictions were based on the five OECD
principles for QSAR modeling (OECD 2005, 2007; OECD n.d.)
Models and predictions were evaluated by an organizing commit-
tee of scientists from NICEATM, CCTE, and industry.

Qualitative evaluation. The qualitative evaluation process
assessed the transparency of the submitted models. The criteria
used for this evaluation (Table 6) satisfied four of the five OECD
principles and added a category for general documentation, as
shown in Table 6. Participants who did not provide sufficient in-
formation for analysts to understand and interpret their results
were asked either to provide additional clarification until all
requirements were met or to withdraw/resubmit the model.

Quantitative evaluation. This step of evaluation satisfied the
OECD principle of QSAR validation addressing appropriate meas-
ures of goodness-of-fit, robustness, and predictivity. To be fully in-
clusive for high- and low-throughput modeling approaches, the
participating groups were not required to predict the entire predic-
tion set but were encouraged to provide predictions for as many
chemicals as possible. This approach was designed to ensure suffi-
cient predictions for the 2,895 evaluation set chemicals that were
hidden within the 48,137 structures of the prediction set. Although
this flexibility could lead tomodels being evaluated for varying por-
tions of the evaluation set, the results of the evaluation set were used
for comparison purposes and to check for mistakes and mismatches
so any corrections could bemade prior to consensusmodeling.

The quantitative evaluation considered only predictions
within the applicability domain (AD) of the models. Models pre-
dicting the binary and multiclass end points were evaluated sepa-
rately from those used to evaluate models predicting discrete
LD50 values using appropriate statistical parameters. The parame-
ters of the scoring functions included the three criteria from the
OECD principles:

• Goodness of fit: statistics on the training set (Tr)
• Predictivity: statistics on the evaluation set (Eval)
• Robustness: balance between goodness of fit and predictivity.
Based on these parameters, each model produced a score (S)

ranging from 0 to 1 for predictions of chemicals within its AD.

This score was used in the consensus modeling step as a weight-
ing scheme. The parameter multipliers (for the global and sub-
parameter functions) were assigned based on importance to the
evaluation procedure as established in the CoMPARA project
(Mansouri et al. 2020):

S=0:3× ðGoodness of fitÞ+0:45× ðPredictivityÞ+0:25

× ðRobustnessÞ (1)

Quantitative evaluation of binary and multi-class models.
The performance of models for binary and multiclass end points
was evaluated using statistical indices proposed in the literature
(Consonni et al. 2009; Dearden et al. 2009; Todeschini et al.
2016). The indices used were calculated from a confusion matrix,
which summarizes the number of observed and predicted classes
in the rows and columns, respectively. For the current evaluation,
classifications based on experimental LD50 data were used as
truth. The classification parameters were defined using the num-
ber of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). The performance measures calcu-
lated for consideration during the evaluation step included bal-
anced accuracy (BA), specificity (Sp), and sensitivity (Sn).

BA is given by:

BA=
Sn+ Spð Þ

2
(2)

Sn, or True Positive Rate (TPR), is given by:

Sn=
TP

TP+FN
(3)

and the Sp, or True Negative Rate (TNR), is given by:

Sp=
TN

TN +FP
(4)

For multicategory end points, these parameters were calcu-
lated for each category and then averaged. The balance between
Sn and Sp was also included in the calculation of goodness of fit
and predictivity. The three parameters of the scoring function S
were calculated as follows:

Goodness of fit=0:7× ðBATrÞ+0:3× ð1− gjSnTr − SpTrjÞ:
ð5Þ

Evaluation set predictivity=0:7× ðBAEvalÞ+0:3

× ð1− gjSnEval − SpEvaljÞ ð6Þ

Robustness=1− jBATr −BAEvalj ð7Þ
Quantitative evaluation of discrete LD50 prediction mod-

els: The performance of the discrete LD50 value predictions was
evaluated using the experimental LD50 values from the embedded
evaluation set. The commonly used parameter root mean square
error (RMSE) and the coefficient of determination (R2) were cal-
culated for all predictions (Consonni et al. 2009; Todeschini et al.
2016).

R2 = 1−
PnTr

i=1 yi − ŷið Þ2PnTr
i=1 yi −�yð Þ2 (8)

where ŷi and yi are the estimated and observed responses of the
ith element, respectively; �y is the mean; and nTr is the number of
training compounds.
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Table 4.Methods and tools applied by the different participating groups.

Group ID Institution Country Methods* Descriptors/tool References

ATSDR Agency for Toxic Substances and
Disease Registry, CDC

USA ANN+SVM ADMET

COLPHA Collaborations Pharmaceuticals,
Inc.

USA NB ECFP6 fingerprints Clark et al. 2015; Minerali et al.
2020

DOW The Dow Chemical Company USA Mechanistic profiler MACCS, KNIME Anderson 1984; Berthold et al.
2008

DOW_AGRO Dow Agrosciences USA XGBoost MOE, DataWarrior CCG 2016; Chen and Guestrin
2016; Sander et al. 2015

DUT Dalian University of Technology China RF DRAGON, Pipeline
Pilot

Mauri et al. 2006

ECUST East China University of Science
and Technology, China

China SVM+RF+DT+
kNN+NB+ANN

CDK

UFG Universidade Federal de Goiás Brazil RF RDKit, MACCS Anderson 1984
IRFMN (5

groups)
Istituto di Ricerche

Farmacologiche Mario Negri,
IRCCS

Italy GLM, RF, kNN,
SARpy

KNIME, H2O, CDK,
VEGA, DRAGON
7, Caret

Ferrari et al. 2013; Floris et al.
2014; Gadaleta et al. 2019;
Hussami et al. 2015; Kuhn
2008; Manganaro et al. 2016;
Vukovic et al. 2019

VCCLAB Virtual Computational Chemistry
Laboratory, Helmholtz Zentrum
München (GmbH)

Germany ASNN OCHEM, DRAGON,
ISIDA

Mauri et al. 2006; Salmina et al.
2015; Sushko et al. 2012; Tetko
and Tanchuk 2002; Varnek et
al. 2008

KU Kyoto University Graduate School
of Medicine

Japan AL MACCS fingerprint Anderson 1984; Reker et al. 2017

LOREAL L’Oréal R&I France Ctox-LD50 ACD, EPISUITE ACDLabs 2019; U.S. EPA 2015
LSINC LeadScope Inc. USA PLR+PLS Leadscope

fingerprints
Cross et al. 2003; Roberts et al.

2000; Yang et al. 2004
MSU Michigan State University USA ANN TensorFlow Google, Inc. 2019
NCATS National Center for Advancing

Translational Sciences, National
Institutes of Health

USA ANN Keras, TensorFlow,
ADAM, RDKit

Google, Inc. 2019; Kingma and
Ba 2017; Ramsundar et al. 2015

NCCT National Center for Computational
Toxicology (Currently Center
for Computational Toxicology
and Exposure), U.S. EPA

USA ANN Keras, SciKit-learn,
CORINA,
Toxprints, MOE,
RDKit

NCSTATE North Carolina State University USA RF RDKit, Caret Berthold et al. 2008; Kuhn 2008
NRMRL National Risk Management

Research Laboratory (Currently
Center for Computational
Toxicology and Exposure),
USEPA

USA NN+HC TEST Martin et al. 2008; Zhu et al. 2009

PNNL Pacific Northwest National
Laboratory

USA ANN RDKit, ToxNet Goh et al. 2017a, 2017c, 2017b,
2018

ROSETTAC Rosettastein Consulting UG Germany ASNN, kNN, MLR,
PLS, RF, SVM,
DT

OCHEM, CDK,
DRAGON, ISIDA,
Adriana,
ChemAxon

Berthold et al. 2008; ChemAxon;
Mauri et al. 2006; Sushko et al.
2011; Varnek et al. 2008

RUT (2
groups)

Rutgers University USA kNN, RF, SVM,
ANN

DRAGON, RDKit,
scikit

Mauri et al. 2006

SIMPLUS Simulations Plus, Inc. USA ANNE ADMET
UCOL University of Colorado USA RF Semantic

knowledgebase
Tripodi et al. 2017

UL Underwriters Laboratories USA RF PubChem finger-
prints, ULCT

REACHAcross software

UNC UNC Eshelman School of
Pharmacy

USA RF RDKit, ISIDA,
DRAGON 7,
KNIME

Berthold et al. 2008; Varnek et al.
2008

USAFSAM U.S. Air Force School of
Aerospace Medicine

USA ASNN+MLRA+RF OCHEM, ISIDA,
CDK, Dragon 6,
WEKA

Hall et al. 2009; Mauri et al. 2006;
Sushko et al. 2011; Varnek et
al. 2008; Willighagen et al.
2017

UNIBARI Università degli Studi di Bari Italy Similarity search RDKit, Pybel, CDK Alberga et al. 2019; O’Boyle et al.
2008

UNICAMB University of Cambridge UK NB, RF KNIME Berthold et al. 2008; Wedlake et
al. 2020

UNIMIB University of Milano-Bicocca Italy N3=kNN+NB+BNN DRAGON 7, ECFP,
MATLAB

Ballabio et al. 2019; Rogers and
Hahn 2010

UNISTRA Université de Strasbourg France SVM+RF ISIDA, MOE,
WEKA, KNIME

Bonachéra and Horvath 2008;
Varnek et al. 2005, 2008

*See Table 5 for definitions of abbreviations.
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The three parameters of the scoring function S were calcu-
lated as follows:

Goodness of fit=R2
Tr ð9Þ

Evaluation set predictivity=R2
Eval ð10Þ

Robustness=1− jR2
Tr −R2

Evalj ð11Þ

Consensus Modeling
After being evaluated according to the defined strategy, each
model was assigned a score (S) for the predictions within its AD.
This score was used in the consensus modeling step as a weight-
ing scheme to combine the predictions from all the submitted
models to produce a single consensus prediction for each end
point. The majority rule was applied for binary and multiclass
end points, whereas the weighted average value in the regression
was applied to generate the consensus predictions for the discrete
LD50 end point, as detailed below. This approach resulted in each
chemical in the prediction set being assigned a consensus predic-
tion for each of the five end points.

Consensus for binary and multiclass end points. For each
chemical in the prediction set, the consensus category/call was
decided by the weighted majority rule: the class with the highest
average score of the models predicting it. This average score was
calculated excluding the models that did not provide a prediction
within AD for the specific chemical.

Consensus for discrete LD50 predictions. For each chemical
in the prediction set, the consensus predicted LD50 value was cal-
culated as the average of the predictions within the AD from the
different models weighted by their S scores.

The predicted consensus value (C) of the chemical i was cal-
culated as:

Ci =
XN
j=1

wj � Pj, (12)

where N is the number of models that provided predictions within
AD for the chemical i, and Pj is the predicted LD50 from each
model. The weight (w), summing to 1, for each model j is calcu-
lated as:

wj = Sj=
XN
k=1

Sk (13)

The consensus model predictions for each end point were first
evaluated using the same evaluation set used to evaluate the indi-
vidual models. The defined ADs of the different models were
taken into consideration to investigate the accuracy of the final
predictions generated by the consensus model. Analysis of the
coverage trends and concordance among the individual models’
predictions were also conducted as part of the evaluation of the
consensus models.

WoE approach to combine all models. The consensus model-
ing combined the submitted single models for each of the five
end points, resulting in five consensus predictions for each

Table 5.Modeling approaches applied by the participating groups.

Abbreviation Approach References

ASNN Associative artificial neu-
ral networks

Tetko 2002; Tetko and
Tanchuk 2002

ANN Artificial neural networks Dreyfus 1990; Schmidhuber
2015

NN Nearest neighbor Martin et al. 2008
kNN k-nearest neighbors Cover and Hart 1967;

Kowalski and Bender 1972;
Todeschini et al. 2015

SVM Support-vector machines Cortes and Vapnik 1995
PLS Partial least squares Wold et al. 2001
MLR Multilinear regression
DT/RT Decision trees/Regression

trees
Breiman et al. 1984; Loh 2011

PLSDA Partial least squares dis-
criminative approach

Frank and Friedman 1993;
Nouwen et al. 1997

HC Hierarchical clustering Martin et al. 2008
DF Decision forest Hong et al. 2004, 2005; Tong

et al. 2003; Xie et al. 2005
RF Random forest Breiman 2001
SCR Self-consistent regression Lagunin et al. 2011
RBF Radial basis function Zakharov et al. 2014
NB Naïve Bayes Murphy 2006
BNN Binned-Nearest

Neighbors
Mauri et al. 2016; Todeschini

et al. 2015
GBM Gradient boosting method Berk 2008
GLM Generalized linear model Generalized Linear Model

(GLM)
AL Active learning Rakers et al. 2018; Reker et al.

2017
XGB Extreme gradient

boosting
Chen et al. 2019; Chen and

Guestrin 2016; XGBoost
2019

Table 6. Criteria for the qualitative evaluation.

Criteria Description

Documentation Documentation submitted to facilitate review of
the following criteria:

• Clear and concise title allowing the end user to
decide whether the model is relevant to their
needs

• Sufficient explanation of the workflow to deduce
the general approach

• Description of the training and data used to build
the model

• Description of data source(s), clean-up, and any
other preprocessing of data

• State model uncertainty, limitations, or confi-
dence measure(s)

Defined end point(s)
• Clearly state which of the five end points was
modeled

• Clarify end point units for LD50 (milligramsd per
kilogram, moles per kilogram, or any log
transformations)

Unambiguous
algorithm • Provide information about the machine learning

algorithm used
• Provide information about the reproducibility of
the modeling steps and the use of open-source
and proprietary code and appropriate versioning

• Provide information about the tool used for the
calculation and the selection of molecular
descriptors

Domain of
applicability • Define the limitations of the model(s)

• Define the approach used to assess applicability
domain

• Provide applicability domain in/out classification
with predictions

Mechanistic interpre-
tation, if possible • Provide mechanistic association between the

selected descriptors and the modeled end point
• Provide any available additional information
about modes of action and understanding of the
end point
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chemical in the prediction set. Because the respective models for
the five end points, were trained separately on the data set pre-
pared for each end point (Table 3), the consensus predictions of
each of the five end points could disagree for an individual chem-
ical. Examples of discordant predictions were especially likely
between the two multiclass end points (U.S. EPA and GHS cate-
gorizations), which are based on multiple LD50 thresholds with
overlapping ranges. Discrete LD50 value predictions could also
be slightly inconsistent with the predicted categories. To produce
final consensus predictions that were consistent across all five
end points for each chemical, it was important to apply correcting
rules for the outlier predictions that over or underestimated a spe-
cific end point. Thus, a WoE approach was developed to optimize
the consensus based on the majority rule and obtain more robust
predictions. The fact that there was an odd number of end points
and consequent predictions (five) also helped when applying the
majority rule to determine the predictions in agreement and mini-
mize the needed degree of correction. This WoE approach also
served to combine all five consensus model results into a single
prediction per chemical for acute oral toxicity.

In an effort to quantify inherent variability in the animal data
used in this work and to determine a confidence interval (CI) rep-
resenting the uncertainty that should accompany experimentally
derived LD50 values, we have leveraged our large compendium
of rat acute oral LD50 values to compute a 95% CI across stand-
ard deviations (SDs) for chemicals having multiple point estimate
LD50 values. SDs for 1,120 chemicals with at least three inde-
pendent LD50 values (excluding limit test data) were boot-
strapped 1 million times, and the result provided a representative
SD that takes into account the range of SDs in the data set.

Additional Evaluation of the Consensus Models
As a further evaluation step for the consensus predictions, highly
curated experimental in vivo acute oral toxicity data were used to
assess concordance between predictions and experimental out-
comes. Briefly, a data set was tandemly generated for the study
of variability in acute oral toxicity animal data (Nelms et al.
2020; Ly Pham et al. 2020). This data set was limited to chemi-
cals associated with multiple LD50 values (including discrete val-
ues, limit tests, and ranges/CIs) as well as additional entries
pulled from the European Chemicals Agency (ECHA) database
for risk assessment (ECHA 2020). The chemicals in this data set
were not used in the original CATMoS modeling project. After
an initial consistency analysis between the two data sets, a thor-
ough manual curation resulted in a total of 916 chemicals with at
least two discrete LD50 values to be used for the evaluation of the
predicted LD50 values, and a data set of 1,323 chemicals with at
least two LD50 entries including discrete LD50 values, limit tests,
ranges, and CIs to be used for the evaluation of the predicted bi-
nary and multiclass categories.

To adapt the curated in vivo experimental data to the five end
points studied in this project, the raw formatting was processed
using a KNIME workflow to convert the entries into a computer-
readable, format. For each chemical (unique CASRN), the repli-
cate data were processed to assign consistent hazard categories,
which were unanimous across replicates. Then, to produce high
confidence data for model evaluation, the entries were grouped
by CASRN to determine the final category based on the majority
rule where there was an agreement between the different entries
above a certain threshold. For each of the multiclass end points,
the agreement was calculated as a concordance percentage, and
the threshold for assigning a call was set to 75%. For example, if
a chemical A was associated with four entries, three of them in
U.S. EPA Category II and one in U.S. EPA Category III, the con-
cordance would be 75%, and the overall assignment would be

U.S. EPA Category II. For discrete LD50 values, the median of
only the discrete LD50 values was taken (within 1.5 log10 SD
threshold to account for outliers). The total number of chemicals
having in vivo consensus data, per end point, is summarized in
Table 7.

Generalization of the Consensus and Implementation in
OPERA
To apply the consensus models beyond the initial prediction set,
the combined predictions were used to train generalized models
capable of replicating the original consensus. This procedure was
achieved by applying a weighted k-nearest neighbor (kNN)
approach to fit the classification models based on the majority
vote of the nearest neighbors. This approach has the advantage of
resembling read-across, a broadly accepted data gap filling tool
within regulatory agencies (Cover and Hart 1967; Kowalski and
Bender 1972; Todeschini et al. 2015). kNN also fulfills the
OECD principles for QSAR modeling, given its nonambiguous
algorithm, high accuracy, and interpretability.

To increase the sensitivity of the models for more conserva-
tive predictions, all toxic chemicals from the prediction set
(LD50s less than or equal to 500 mg=kg, i.e., U.S. EPA
Categories I and II) were included, whereas less toxic chemicals
were included with an 85% concordance threshold among the
predicting models for the binary models (VT and NT) and 75%
for the remaining modeled end points. Each one of the data sets
was divided semirandomly into training and test sets representing
75% and 25%, respectively.

PaDEL (version 2.2) and CDK2 (CDK version 2.0) were first
used to calculate two-dimensional molecular descriptors.
Because PaDEL uses a previous version of CDK (1.5), duplicate
descriptors were excluded. The union of the PaDEL descriptors
(1,444) and CDK2 (287) resulted in a total of 1,616 variables that
were later filtered for low variance. Subsequently, kNN was
coupled with genetic algorithms (GAs) to select a minimized
optimal subset of molecular descriptors (form the combined
PaDEL-CDK list) for calculating the similarity in the kNN model
based on the Euclidean distance. GAs start with an initial random
population of binary vectors representing the presence or absence
of molecular descriptors. Then an evolutionary process is simu-
lated to optimize a defined fitness function in 5-fold cross-
validation, in which new vectors are created by coupling the bi-
nary vectors of the initial population with genetic operations such
as crossover and mutation (Ballabio et al. 2011; Leardi and
Lupiáñez González 1998).

This procedure was applied separately for each of the mod-
eled end points. The best models were selected and implemented
in combination using the WoE approach in the free, standalone,
open-source QSAR modeling suite OPERA (Mansouri et al.
2016b, 2018). Both OPERA’s global and local AD approaches,
as well as the accuracy estimation procedure, were applied to all

Table 7. Chemicals with in vivo experimental acute oral toxicity data used
for the additional predictivity analysis.

Modeled end point Total number of chemicals in curated data set

VT 1,296
NT 1,153
EPA categories 1,089
GHS categories 1,083
LD50 value 916

Note: The number of chemicals represents the total for that data set, not the number that
fell beneath the threshold (e.g. for Very Toxic). See Supplemental Material 8. EPA,
U.S. Environmental Protection Agency; GHS, U.N. Globally Harmonized System of
Classification and Labeling of Chemicals; LD50, dose of a substance that would be
expected to kill half the animals in a test group; NT, nontoxic/toxic; VT, very toxic/not
very toxic.
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predictions. The global AD is a Boolean index based on the le-
verage approach for the whole training set, whereas the local AD
is a continuous index in the 0–1 range based on the most similar
chemical structures from the training set (Mansouri et al. 2018;
Sahigara et al. 2012).

The extended, similarity-based predictive approach as well as
the WoE consensus are implemented as the CATMoS consensus
model in the OPERA application (version 2.5) (Mansouri et al.
2018). OPERA can be downloaded from the National Institute of
Environmental Health Sciences GitHub repository (https://
github.com/NIEHS/OPERA) and used locally via a command-
line interface or user-friendly graphical interface. The use of this
standalone application facilitates the generation of CATMoS pre-
dictions by providing different user input options. The simplest
way for the user to input chemicals would be via a text file with
chemical identifiers such as CASRN, DTXSID (U.S. EPA’s
DSSTox database public identifier) or InChIKey. In fact, OPERA
contains an internal database with the complete list of ∼ 800,000
DSSTox chemical structures (periodically updated) stored in
QSAR-ready format and ready to use for prediction with any of
its models. In addition, users can provide their own chemical
structures in SMILES or SDF formats as described in Mansouri
et al. (2018). Since version 2.6, OPERA has been equipped with
an embedded version of the above-mentioned structure standardi-
zation workflow and can generate QSAR-ready structures prior
to prediction. The local nearest neighbors–based and the global
leverage-based AD approaches implemented in OPERA help the
user determine whether their chemicals are within the model’s
interpolation space, where it is safe to generate predictions. In
fact, a local AD index of 1 means that the chemical being pre-
dicted was one of the 48,137 chemicals of the prediction set and
that the initial combined predictions of the single end point mod-
els were used to make the final consensus call.

Results and Discussion

Submitted ConsortiumModels: Prediction Review
The 35 participating groups submitted a total of 139 models
across the five end points, as summarized in Table 8. Each group
submitted predictions for the full or partial prediction set for at
least one end point. The two binary end points were predicted by
the highest number of models; fewer submitted models predicted
the multiclass end points and the LD50 value end point. The num-
ber of submitted models was likely an indication of the level of
difficulty for each end point, a finding consistent with the previ-
ous collaborative projects, CERAPP (Mansouri et al. 2016a) and
CoMPARA (Mansouri et al. 2020). The main difficulties that par-
ticipants faced while modeling these end points were generally
related to the skewed nature of the training set, a challenge
encountered in many toxicity modeling projects. As shown in
Figure 1, most of the data represented nontoxic and low toxicity
chemicals (i.e., high LD50 values), which was also reflected in
the binary and multi-categorical end points. However, 11/35 par-
ticipating groups still submitted models for all five requested end
points. The full list of submitted predictions files and model
details is available at https://doi.org/10.22427/NTP-DATA-002-
00090-0001-0000-2. A KNIME workflow (https://doi.org/10.
22427/NTP-DATA-002-00090-0001-0000-2) was used to pro-
cess the predictions from all models and combine them in a single
file per end point for further evaluation and analysis.

Results of Qualitative and Quantitative Evaluation
All submitted models were reviewed and evaluated by the organ-
izing committee using the criteria described above. The

qualitative evaluation ensured clarity of the submitted informa-
tion, confirmed that all models fulfilled the OECD requirements
for computational models as well as the goals of this project, and
provided a basis to facilitate the use of the predictions in the fol-
lowing consensus modeling (i.e., compute S score for weighing
schema). The subsequent quantitative evaluation step assessed
the quality of the predictions prior to the consensus modeling,
which was the main goal of the project.

This evaluation was not intended to provide comparisons
between the models, especially with the uneven coverages of the
prediction set (and consequently the hidden evaluation set) due to
AD differences. In fact, the total number of provided predictions
per model and the predictions within the AD varied substantially
depending on the type of model and the employed AD approach.
Thus, the quantitative evaluation served mainly as a first check-
point to reveal data mishandling issues that might have occured
during the initial modeling steps. These issues included mis-
matches between structures, identifiers, and associated data as well
as misinterpretation and inversion of the different data fields/end
points, which could potentially lead to a severe decrease in predic-
tion accuracy. Models with such issues were returned to partici-
pants to withdraw or replace their submission with updated
models. The final evaluated submissions were used to generate
summary statistics (Figure 2A; Supplemental Material 5 with
detailed parameters).

Most of the models achieved high predictivity scores on the
evaluation set (Figure 2A). The relatively low score for the Dalian
University of Technology (DUT) binary models was related to the
fact that the submitted predictions covered only small portions of
the evaluation set representing only one of two classes for both
modeled end points (VT andNT), which led to a BA of 0.5 that was
not directly informative as to the real predictivity of this model.
Although coveragewas not included as a qualifying parameter dur-
ing evaluation and did not affect quantitative scores, to be inclusive
for low-throughput approaches, models with limited coverage had
only a marginal influence on the consensus calls and statistics of a
prediction set with over 48,000 structures. The remaining models
covered most of the prediction set with median coverage ranging
from ∼ 41,000 to ∼ 44,000 chemicals (out of 48,137) per end
point. This showed that most of the employedAD approaches were
rather permissive. The coverage of the different models on the pre-
diction set for the five end points is summarized in Figure 2B and
inmore details in SupplementalMaterial 6.

In general, the binary and multiclass models achieved higher
scores (median S scores ranging from0.74 to 0.82) than the discrete
LD50 prediction models (median SLD50 0.66). This finding was
expected for such a challenging end point with high variability, a
low number of toxic compounds, and different data sources leading
to a decrease in precision. As noted with the total number of sub-
mitted models per end point, the relatively higher statistics of the
binary models confirmed that multiclass end points are more diffi-
cult to model. The median S scores for VT and NT reached 0.80

Table 8.Models received for the five end points from the different partici-
pating groups.

End point Number of models

VT 32 models
NT 33 models
EPA categories 26 models
GHS categories 23 models
LD50 value 25 models

Note: For additional information see https://doi.org/10.22427/NTP-DATA-002-00090-
0001-0000-2; EPA, Environmental Protection Agency; GHS, U.N. Globally
Harmonized System of Classification and Labeling of Chemicals; LD50, lethal dose,
50%, or dose of a substance that would be expected to kill half the animals in a test
group; NT, nontoxic/toxic VT, very toxic/not very toxic.
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and 0.82, respectively, whereas the median scores for the EPA and
GHS category end points were 0.75 and 0.74, respectively.

Consensus Modeling
Prior to combining the predictions into consensus calls for evalua-
tion, it was important to check the coverage and concordance

among the models. Figure 3A shows that all chemicals in the pre-
diction set were predicted by at least 10 models. Moreover, most
chemical structures were predicted by about 20models for themul-
ticlass and LD50 value end points and at least 25 models for the bi-
nary VT and NTmodels. This high coverage for all five end points
provided a solid basis for the consensus modeling step and
strengthened the statistical relevance of the combined predictions.

Figure 2. Evaluation scores (A) and coverage of the prediction set (B) by the submitted models. See Supplemental Material 5 and 6 for Figure 2A and B,
respectively. Modeling groups along the x-axis are defined in Table 4.

Figure 3. Distributions of the coverage of the prediction set chemicals (A) and concordance among the single models (B) across the five end points. See
Supplemental Material 7.
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The concordance among the models was an equally important
criterion for combining the predictions into consensus calls. In
fact, it was demonstrated during the previous collaborative mod-
eling projects, CERAPP and CoMPARA, that higher concord-
ance among numerous models built using different modeling
approaches corresponded to higher accuracy (Mansouri et al.
2016a, 2020). Figure 3B showed that the concordance among the
binary, multiclass, and LD50 value models was about 0.8 for
most of the prediction set chemicals. This high concordance sim-
plified the process of generating consensus calls for the prediction
set, especially for the binary and multiclass models for which the
consensus classification was largely driven by the majority rule.
The exceptions to this were chemicals with cross-model concord-
ance near 0.5, for which only a subset of all models would be
driving the classification. In sum, based on the analyses of cover-
age and concordance between models, it can be concluded that
the data were amenable to combining the different model predic-
tions into consensus predictions.

Consensus modeling step 1: combining predictions per end
point. The predictions from the five modeled end points were
first combined independently based on the defined rules. As
described, the models had different contributions in terms of
chemical coverage, and each prediction from each model was
associated with different weights across the prediction set. After
consensus calls were generated for each chemical in the predic-
tion set, the same evaluation procedure was applied for each
one of the five end points. The resulting statistical details are
reported in Tables 9–12 under the main heading “Step 1: End
point.”

The statistics on the consensus predictions for each of the
five end points followed the same general trend as for the sin-
gle models. The two binary models, VT and NT, showed the
highest accuracy for both training and evaluation sets. As the
end points increased in precision, going from binary to four or
five categories and ultimately to discrete LD50 value predic-
tion, the performance of the consensus predictions decreased
accordingly.

Consensus modeling step 2: WoE approach. The second
step of consensus modeling was to generate a single consistent
acute oral toxicity prediction per chemical by reconciling the
five independent consensus end point predictions. The WoE
approach combined predictions from the five end points based
on a majority rule. To use binary and multiclass end points with
different thresholds, the overlapping ranges of LD50 categories
were used as bins, resulting in a total of seven bins (Figure 4).

To extend the range of the discrete LD50 values, the inherent
animal data variability was considered. The resulting statistical
details are reported in Tables 9–12 under the main heading
“Step 2: WoE.” These statistics represent the evaluation of the
consensus model for that end point following the weight of evi-
dence integration of all consensus models across the five end
points.

After quantifying the inherent variability based on the boot-
strap analysis, the resulting margin of ± 0:3 log10ðmg=kgÞ was
considered the 95% CI for acute oral LD50 values. This approach
not only quantified and defined a confidence margin for the ex-
perimental values, but also informed on an acceptable LD50 range
to apply around LD50 predictions.

This CI was applied to computing a range for every predicted
LD50 value. Once the winning bin was determined based on the
maximum overlap among the five end points, corrections were
made on the outlier prediction(s) by adjusting the corresponding
category for the multiclass predictions. For the discrete LD50
value predictions, if the prediction did not fall within the range of
the winning bin, a new LD50 was calculated depending on the
reach of the extended LD50 CI range. To explain this further, an
example is illustrated in Table 13, with corresponding prediction
ranges represented by arrows in Figure 4.

To computationally automate this process, the concept was
translated by an algorithm that converted the bins within each
end point prediction ranges to “ones” and the remaining bins to
“zeros.” The winning bin of the WoE approach was determined
by summing the bins and selecting the maximum. In this exam-
ple, the 50− 300 mg=kg bin having a total of five overlapping
bins is the winner. This means that only the LD50 value requires
adjustment to ensure that the predicted value falls within the
WoE-identified “correct” bin range. In this case, the new LD50
is calculated by taking the average of the lower CI (160 mg=kg)
and the upper threshold of the winning bin (300 mg=kg), result-
ing in an adjusted LD50 of 230 mg=kg. In general, the rule for
adjusting the LD50 point estimate if it does not fall within the
winning bin would be the average of the covered threshold and
the corresponding CI boundary. For example, if the winning bin
here was 500− 2,000 mg=kg, the adjusted LD50 would be
ð500 + 613Þ=2= 556:5 mg=kg. If the CI should span the entire
winning bin or be completely nonoverlapping, then the adjusted
LD50 would be its center. In cases where there was more than
one winning bin, the most conservative bin was selected.

The statistics of the WoE-adjusted predictions were recalcu-
lated and are summarized in Table 9 (Step 2: WoE). In many
cases, the calculated parameters did not show a significant differ-
ence. However, the performance for the lower categories (highly
toxic) of the U.S. EPA and GHS multicategory end points
increased significantly, with the WoE approach demonstrating
higher sensitivity (Tables 11–12). This improvement is in part
because the available data were skewed toward the upper catego-
ries (less toxic). Thus, the difference was more noticeable in cate-
gories with a lower number of data points. All results of the
consensus analysis are available in Supplemental Material 7.

Table 9. Evaluation parameters for the LD50 consensus predictions after the
WoE approach.

Step 1: End point Step 2: WoE

Training Evaluation Training Evaluation

R2 0.83 0.67 0.85 0.65
RMSE 0.31 0.47 0.30 0.49

Note: R2, coefficient of determination; RMSE, root mean square error; WoE, weight of
evidence.

Table 10. Evaluation parameters for the VT and NT consensus predictions after the WoE approach.

Step 1: End point Step 2: WoE

VT NT VT NT

Training Evaluation Training Evaluation Training Evaluation Training Evaluation

BA 0.96 0.87 0.94 0.80 0.93 0.84 0.92 0.78
Sn 0.94 0.77 0.92 0.70 0.87 0.70 0.88 0.67
Sp 0.99 0.96 0.97 0.89 0.99 0.97 0.97 0.90

Note: Corresponding confusion matrices available in Supplemental Material 9. BA, balanced accuracy; NT, nontoxic/toxic; Sn, sensitivity or true negative rate; Sp, specificity or true
positive rate; VT, very toxic/not very toxic; WoE, weight of evidence.
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Generalization of the Consensus and Implementation in
OPERA
The two-step approach for combining predictions from the 139
submitted models resulted in a robust consensus model that cov-
ered the entire prediction set of 48,137 chemical structures. To
make the model applicable for further screening of new chemicals,
an additional step was required. A weighted-kNN modeling
approach was implemented in OPERA (version 2.5) to mimic the
initial consensus predictions and generate new ones. This was
achieved by training extendedmodels based on the existing experi-
mental data and predictions with high concordance. To facilitate
the training process, the five end points were processed separately.
Then, the WoE approach was similarly applied to the generated
predictions to make a final consistent consensus call. The prefil-
tered PaDEL and CDK descriptors were used in a GA-kNN proce-
dure to select the most informative variables in a supervised, end
point–dependent approach. The resulting minimized numbers of
descriptors selected during the training process and performance of
the best kNNmodels are summarized in Table 14.

The descriptors were selected based on the importance rank-
ing performed by the GA during multiple independent runs of
generation optimization. The selection of the best models was
simultaneously based on maximizing the performance in 5-fold
cross-validation as well as minimizing both the number of mean-
ingful descriptors and the model complexity.

The performance statistics of the models summarized in
Table 14 showed a high level of accuracy in training set cross-
validation in terms of BA and Q2. This high performance was
equally complemented, and confirmed, by performances on the
test set as further validation of the models. The balance, stability,
and robustness of the five end point models were sufficient to
simulate the original combined predictions without overfitting the
initial set. Thus, the resulting models could be combined via the
WoE approach and applied to generate predictions for new chem-
icals that have sufficient similarity to the original prediction set.

Additional Evaluation Using a Highly Curated Data Set
Preparation of the curation data set and consistency analysis.
Prior to combining the experimental data for chemicals with multi-
ple entries from the data collected for the CATMoS project and the
ECHAdata set to produce a curated data set, a reviewof the different
LD50 values revealed a number of inconsistencies between the two

data sets. This finding can be partly attributed to the variability of
animal data, but in some cases, were also due to errors thatmay have
been introduced and propagated during reporting, publishing, or
data retrieval. To estimate the disagreement between replicate LD50
studies per chemical, the different LD50 values and binary/multi-
class calls were compared using a representative from each of the
two data sets (as described above). As shown in Table 15, the dis-
cordance was highest for the very toxic compounds, as represented
by the Sn of the VT end point. This is due to the fact that 25 out of
the 38 chemicals that are considered very toxic in the CATMoS data
set are associated with an LD50 > 50 mg=kg in the ECHA data set.
Discordance between the Sn and Sp parameters was less apparent
for the NT end point. However, a closer look at the confusionmatrix
generated during the calculation of these parameters revealed a dis-
agreement on a total of 126 chemicals, with 109/126 classified as
toxic in the CATMoS data but not in the ECHA data set. A similar
level of disagreement was observed for U.S. EPA and GHS catego-
rizations; the confusion matrices in Tables 13 and 14 showed that
most of the discordant classifications differed by one category. Even
for the agreeing categories, there was disagreement between the cor-
responding LD50 values that increased with the wider range catego-
ries. These inconsistencies could be due to a number of factors,
including the sources and the data interpretation and processing. For
example, in the ECHA data set, CASRN 14,489-75-9 was associ-
ated with a range of 50− 300 mg=kg, which placed it outside the
“Very Toxic” class. However, in the CATMoS data, the same
CASRN is associatedwith a unique point estimate of 50 mg=kg and
was consequently classified as very toxic.

To help with the detection of the outlier entries and the assess-
ment of the data, CATMoS consensus predictions were also con-
sidered during the analysis. It was expected that the predictions
would diverge even further from the ECHA data set due to the dif-
ferences with CATMoS experimental data (i.e., data used to train
the CATMoS models), as noted above. However, an examination
of the LD50 values revealed several chemicals that were associated
with low LD50 values in ECHA but were predicted as less toxic by
CATMoS with a high concordance among the submitted models.
A closer look at 28 of these chemicals with available source toxic-
ity reports on the ECHA website revealed a number of reporting
errors in the source database, such as unit conversion (grams vs.
milligrams), typos, decimal misplacement (“,” vs. “.”) and esti-
mated doses using read-across, among others. Such findings high-
lighted how robust and highly concordant CATMoS predictions

Table 11. Evaluation parameters for the U.S. EPA category consensus predictions after the WoE approach.

Hazard category

Step 1: End point Step 2: WoE

EPA training EPA evaluation EPA training EPA evaluation

I II III IV Overall I II III IV Overall I II III IV Overall I II III IV Overall

BA 0.80 0.89 0.83 0.80 0.83 0.77 0.72 0.71 0.68 0.72 0.93 0.89 0.83 0.80 0.87 0.83 0.72 0.71 0.68 0.74
Sn 0.61 0.84 0.92 0.63 0.75 0.57 0.59 0.81 0.39 0.59 0.87 0.83 0.91 0.63 0.81 0.70 0.56 0.81 0.40 0.62
Sp 1.00 0.94 0.75 0.98 0.92 0.98 0.86 0.61 0.97 0.85 0.99 0.95 0.75 0.98 0.92 0.97 0.88 0.62 0.97 0.86

Note: Corresponding confusion matrices available in Supplemental Material 9. BA, balanced accuracy; EPA, U.S. Environmental Protection Agency; Sn, sensitivity or true negative
rate; Sp, specificity or true positive rate; WoE, weight of evidence.

Table 12. Evaluation parameters for the GHS category consensus predictions after the WoE approach.

Hazard
category

Step 1: End point Step 2: WoE

GHS training GHS evaluation GHS training GHS evaluation

I II III IV V Overall I II III IV V Overall I II III IV V Overall I II III IV V Overall

BA 0.68 0.74 0.79 0.81 0.84 0.77 0.52 0.73 0.68 0.69 0.73 0.67 0.83 0.87 0.89 0.85 0.92 0.88 0.74 0.75 0.72 0.7 0.78 0.74
Sn 0.37 0.49 0.63 0.91 0.71 0.62 0.04 0.50 0.45 0.77 0.55 0.46 0.67 0.76 0.85 0.80 0.88 0.79 0.50 0.53 0.56 0.66 0.67 0.58
Sp 1.00 0.99 0.96 0.72 0.98 0.93 1.00 0.97 0.91 0.62 0.92 0.88 0.99 0.99 0.94 0.90 0.97 0.96 0.99 0.97 0.89 0.74 0.90 0.90

Note: Corresponding confusion matrices available in Supplemental Material 9. BA, balanced accuracy; GHS, U.N. Globally Harmonized System of Classification and Labeling of
Chemicals; Sn, sensitivity or true negative rate; Sp, specificity or true positive rate; WoE, weight of evidence.
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are because they helped to identify where the compiled in vivo data
had typographical errors. These types of errors most likely affect
other chemicals in the data set and therefore affect the statistics in
Tables 15–17 even further. For this reason, a CI was applied to all
CATMoS predictions that covered the observed range of the ani-
mal data variability (i.e., estimated at ± 0:3 log values). When this
range was applied to the predictions, 96.6% of the ECHA in vivo
LD50 values fell within the confidence interval of the CATMoS
predictions. This could also be considered an indication that empir-
ical LD50 values should consistently be accompanied by a CI.

This assessment step also revealed certain CATMoS predic-
tions that were in high disagreement with the original CATMoS
empirical data but turned out to agree with the ECHA in vivo
data. For example, the LD50 of CASRN 108-91-8 was predicted
by CATMoS to have an LD50 of 352 mg=kg and reported on

the ECHA website as 432 mg=kg (https://echa.europa.eu/brief-
profile/-/briefprofile/100.003.300). However, in the experimental
data underlying the CATMoS training set, the LD50 of this chem-
ical was only 11 mg=kg, which was also the value reported for
the chemical on the U.S. EPA CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard/dsstoxdb/results?search=
DTXSID1023996#toxicity-values). This chemical, although
present in the training set and therefore seen by the fitting algo-
rithms during the learning process, was consistently predicted
differently by most models based on its structural features and
was initially counted as an inaccurate prediction in the evaluation
process. The fact that the other chemicals in the data set and the
modeling algorithms predicted a value closer to the true value
identified from the curated in vivo data set rather than the possi-
bly erroneous value that made its way into the training set
revealed that the size of the data set and approaches used could
overcome outlier values and that predictions are robust.

The noted differences and inconsistencies in the collected ex-
perimental values required a deeper manual curation effort to
remove the outlier entries for each chemical that could be errone-
ous. The resulting highly curated multientry data with an accepta-
ble degree of concordance were used as an additional evaluation
set (Supplemental Material 8).

Assessment of the consensus and WoE predictions vs. cura-
ted in vivo data. The curated in vivo data set was a subset of
chemicals with multiple (at least two unique) LD50 experimental
data entries that was used as an external set to assess the accuracy
of the binary, multiclass, and LD50 value CATMoS predictions.

Figure 4. Example of identifying the winning bin and reconciling the consensus predictions across five end points using the WoE (weight of evidence)
approach. The columns represent the different bins from the EPA and GHS categories combined. The rows represent the five different end points and the WoE
prediction. The arrows in each row represent the range of the prediction for each end point which were attributed a value of 1 and outside of it a value of 0.
For the LD50 end point, the range limits are calculated by adding and subtracting the confidence interval of 0.3 in log value to the original LD50 prediction of
316mg=kg resulting in a range of 160 to 613mg=kg. The winning bin is determined by the maximum of the sum of each column in the WoE row. Note: EPA,
U.S. Environmental Protection Agency; GHS, U.N. Globally Harmonized System of Classification and Labeling of Chemicals; LD50, dose of a substance that
would be expected to kill half the animals in a test group; NT, nontoxic/toxic; VT, very toxic/not very toxic; WoE, weight of evidence.

Table 13. Example of consensus predictions, corresponding to bins high-
lighted in Figure 4.

End point Prediction LD50 range ðmg=kgÞ
VT Not very toxic >50
NT Not nontoxic ≤2,000
EPA Category II (50–500)
GHS Category III (50–300)
LD50 316 mg=kg (160–613)
Note: EPA, U.S. Environmental Protection Agency; GHS, U.N. Globally Harmonized
System of Classification and Labeling of Chemicals; LD50, dose of a substance that
would be expected to kill half the animals in a test group; NT, Nontoxic/toxic; VT, very
toxic/not very toxic.
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The resulting classification and regression statistical parameters
are summarized in Tables 18–21. As for Tables 9–12 above, the
entries under the main heading “Step 1: End point” represent the
evaluation of the consensus model developed for the specific end
point, whereas entries under the main heading “Step 2: WoE”
represent the evaluation of the consensus model for that end point
following the WoE integration of all consensus models across the
five end points.

The statistical parameters in all four tables show high accu-
racy performances for all five end points, and these metrics are in
fact higher than the results on the evaluation set. A similar obser-
vation was also reported during the evaluation of the previously
mentioned collaborative projects, CERAPP and CoMPARA
(Mansouri et al. 2016a, 2020), which showed an increased agree-
ment between the predictions of the consensus models and the
evaluation data with the increase of concordant sources. This
finding can be also interpreted as an indication of the lower qual-
ity and noise in the single-source data points, which cause a
decrease in performance especially between training and evalua-
tion sets as noted earlier (Tables 9–12).

There was a slight decrease in the statistical parameters for
LD50 predictions after the application of the WoE approach
(Table 18). This could have been because some of the newly
assigned LD50 values were based on semi-arbitrary calculations
within the winning bin. The adjustment was intended to place the
LD50 value within the correct category, but there is always the
possibility that the value could become skewed further from the
experimental value in comparison to the initially predicted LD50
on the other side of the category threshold.

Table 19 showed similar statistics before and after the appli-
cation of the WoE approach, implying that the binary end point
consensus predictions did not require substantive adjustment.
However, higher predictive performances for the multiclass mod-
els were noted after the application of the WoE adjustments
(Tables 20–21). This was particularly clear for categories repre-
senting the most toxic compounds and indicated that the WoE
consensus predictions were more conservative than the initial
multiclass predictions. The GHS WoE (Table 21) seemed to have
more balanced predictivity/sensitivity in comparison with the
U.S. EPA WoE (Table 20), which showed a drop in sensitivity

for U.S. EPA Category IV similar to that observed in initial eval-
uation (Table 11). This was mostly due to the lower number of
chemicals tested in U.S. EPA Category IV (>5,000 mg=kg) in
comparison with GHS Category 5 (>2,000 mg=kg).

In addition to the demonstrated high performances, this evalu-
ation showed the utility of CATMoS both for providing accurate
predictions for new chemicals and for revisiting and filtering
existing data for additional curation. Regulatory agencies could
benefit from both application of the model to consider new pre-
dictions and associated confidence intervals as well as checking
previous decisions for additional assessment of the data and the
predictions. Both of these applications are currently being consid-
ered by members of ICCVAM and industry stakeholders.

Limitations
The predictive ability of CATMoS is limited to the quality of the
data used to train and evaluate the contributing models.
Certainly, the lack of metadata of the collected training and eval-
uation set is a limiting factor to delineate any study differences or
sources of variability in the in vivo assays. Although the predic-
tions are able to identify specific erroneous data points, it still
leaves uncertainty regarding the overall reliability of in vivo data,
which is still not well-characterized. As discussed, the skewness
of the in vivo data caused limitations in the predictivity of the sin-
gle models and the initial consensus for the highly toxic chemi-
cals. However, the data still contained more than 400 chemicals
in the very toxic class (<50 mg=kg), and as demonstrated in
Tables 11–12, these limitations at the lower end of the multiclass
prediction models were largely remediated by the final WoE
approach.

Similar to most QSAR/QSPR models, the CATMoS can be
applied only to single organic compounds. Mixtures of organic
chemicals should be studied separately. However, to accommo-
date mixtures of multiple compounds, the GHS system provides
an additivity rule to help classify chemicals that can use
CATMoS predictions as input (http://www.unece.org/fileadmin/
DAM/trans/danger/publi/ghs/GHS_presentations/English/health_
env_e.pdf).

Additionally, as most molecular descriptors are developed for
small- and medium-size molecules, CATMoS and other QSAR
models cannot process large biomolecules, long polymeric
chains, and nanomaterials. To help identify and use the most
adequate chemical structures for predictions and to avoid

Table 14. Parameters of the selected generalized weighted-kNN models as implemented in OPERA.

End point Number of chemicals from the prediction set Descriptors Training (5-fold cross-validation) BA=Q2* Test set BA=R2*

VT 23,767 21 0.79 0.77
NT 30,971 11 0.90 0.89
EPA categories 25,487 15 0.79 0.81
GHS categories 25,720 15 0.78 0.79
LD50 values 28,954 23 0.79 0.81
*Balanced accuracy (BA) values are reported for performance metrics, except for the LD50 value end point for which the coefficient of determination R2 and its equivalent for cross-
validation Q2 are reported for the training and test sets, respectively. Note: EPA, U.S. Environmental Protection Agency; GHS, U.N. Globally Harmonized System of Classification
and Labeling of Chemicals; LD50, dose of a substance that would be expected to kill half the animals in a test group; NT, nontoxic/toxic; VT, very toxic/not very toxic. The number of
prediction set chemicals represents the total for that data set, not the number that fell beneath the threshold (e.g., for VT).

Table 15. Concordance between ECHA and CATMoS data sets for the cate-
gorical end points.

VT NT EPA GHS

Sn* 0.34 0.98 0.70 0.56
Sp* 1.00 0.86 0.93 0.96
BA 0.67 0.92 0.82 0.76
*Sn and Sp of ECHA calculated based on CATMoS data.
Note: BA, balanced accuracy; CATMoS, Collaborative Acute Toxicity Modeling Suite;
ECHA, European Chemicals Agency; EPA, U.S. Environmental Protection Agency;
GHS, U.N. Globally Harmonized System of Classification and Labeling of Chemicals;
LD50, lethal dose, 50% or dose of a substance that would be expected to kill half the ani-
mals in a test group; NT, nontoxic/toxic; Sn, sensitivity or true negative rate; Sp, speci-
ficity or true positive rate; VT, very toxic/not very toxic.

Table 16. Concordance between ECHA and CATMoS experimental data
sets for U.S. EPA categories.

ECHA\CATMoS I II III IV Category concordance

I 13 16 4 2 37.14
II 0 175 92 2 57.56
III 0 2 1,126 46 95.91
IV 0 0 71 401 84.96

Note: CATMoS, Collaborative Acute Toxicity Modeling Suite; ECHA, European
Chemicals Agency; EPA, U.S. Environmental Protection Agency.
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unpredictable substances, OPERA users wishing to generate
CATMoS predictions can use either of two input options:

• Provide a text file with a list of chemical identifiers
(CASRN, DTXSID, InChI) and let OPERA pull the correct
QSAR-ready structure from its database of 830,000 highly
curated DSSTox chemicals; or,

• Provide their own structures but apply the embedded stand-
ardization workflow to generate QSAR-ready structures
prior to curation.
A possible limiting aspect of the OPERA standalone applica-

tion is that it must be installed locally, requiring access to the user’s
computer operating system and hardware to perform calculations.
Users can, however, avoid this process and access predictions by
visiting the Integrated Chemical Environment (ICE) dashboard of
the NTP (https://ice.ntp.niehs.nih.gov/) and querying its internal
database of predictions for the DSSTox chemicals. These predic-
tions will also be made available on the U.S. EPA CompTox
Chemicals Dashboard (https://comptox.epa.gov/dashboard/).

Conclusion
This project was organized by the ICCVAM ATWG as an imple-
mentation of the strategic roadmap for the development and valida-
tion of new alternative methods for acute oral toxicity testing. The
resulting CATMoS models provide consensus predictions for
48,137 chemicals of interest to regulatory agencies and stakehold-
ers. CATMoS combined contributions from 35 internationally re-
nowned groups in the field of in silico modeling. This is the third
such collaborative project for most of the consortium members,
following endocrine disruption modeling efforts CERAPP and
CoMPARA. However, the uniqueness of CATMoS comes from
the fit-for-purpose end points resulting from the upfront participa-
tion of regulatory agencies. Thus the needs of the ICCVAM
ATWG member agencies and international partners were consid-
ered when defining the end points for predictive modeling, ensur-
ing that there would be regulatory interest in potentially using the
predicted acute oral toxicity models, and supporting agencies’ in-
terest in alternativemethods.

This early stage involvement of regulators not only identified
the five modeled end points representing the different uses of the
data but also facilitated open stakeholder dialog during the proj-
ect’s workshop held at the National Institutes of Health in
Bethesda, Maryland (Kleinstreuer et al. 2018). At the workshop,
participating groups presented their approaches to overcoming

the different challenges of the project, such as the skewed data
distribution or tackling particular chemistries. The consensus
modeling and the implementation of the final CATMoS model
and its uses were also discussed among the modelers and the
stakeholders. Currently, consensus predictions on specific chemi-
cals of interest are being assessed by different regulatory agencies
for potential use as alternative sources of data. For example, a list
of more than 100 chemicals and corresponding LD50 values
derived from existing regulatory studies were identified by the
U.S. EPA and are being checked, curated, and compared with
CATMoS consensus predictions. The preliminary analysis shows
that in 96% of the cases, the CATMoS predictions are either over-
lapping or more conservative than the existing LD50. In the few
cases where the disagreement is highest, a closer look showed
potential issues with the considered sources of the in vivo studies
and in some cases disagreement with the in vivo LD50 values
used to train CATMoS models.

The details of the CATMoS model and predictions are avail-
able in a QSARModel Report Format (QMRF) that was submitted
to the European Commission’s JRC for review and publication on
their QMRF Inventory for easy access by the international commu-
nity (European Commission 2013; JRC 2017).

In addition to the initial prediction set, CATMoS was imple-
mented in OPERA and used to screen the list of 837,000 chemical
substances in the U.S. EPA’s DSSTox database (underpinning the
Dashboard application). These predictions are made available
via the Integrated Chemical Environment dashboard (https://ice.
ntp.niehs.nih.gov/) of the NTP and in the future via the U.S.
EPA’s CompTox Chemicals Dashboard (https://comptox.epa.
gov/dashboard/).

CATMoS is an example of how toxicological problems can
be solved collaboratively using computational approaches. In
fact, the resulting consensus models leverage the strengths and
overcome the limitations of any single approach, proving to be as
good as or better than animal data. Such successful collaborative
projects support international collaboration, a legacy of free and
open-source code and workflows, and increasing consideration
and adoption from regulators interested in implementing NAMs.
Finally, it is worth noting that the international aspect of these
collaborations can also help with harmonizing global regulatory
processes toward a universal system. We now have a solid

Table 18. Evaluation parameters for the LD50 point estimate consensus pre-
dictions of the curated in vivo data.

Step 1: End point Step 2: WoE

R2 0.76 0.73
r2 0.89 0.86
RMSE 0.36 0.37

Note: LD50, lethal dose, 50% or dose of a substance that would be expected to kill half
the animals in a test group; R2, coefficient of determination; r2, Pearson’s correlation
coefficient; RMSE, root mean square error; WoE, weight of evidence.

Table 19. Evaluation parameters for the VT and NT binary end point predic-
tions for the curated in vivo data set.

Step 1: End point Step 2: WoE

VT NT VT NT

BA 0.95 0.85 0.93 0.85
Sn 0.92 0.76 0.88 0.75
Sp 0.98 0.94 0.99 0.94

Note: Corresponding confusion matrices available in Supplemental Material 9. BA, bal-
anced accuracy; NT, nontoxic/toxic; Sn, sensitivity or true negative rate; Sp, specificity
or true positive rate; VT, very toxic/not very toxic; WoE, weight of evidence.

Table 17. Concordance between ECHA and CATMoS experimental data
sets for GHS categories.

ECHA\CATMoS I II III IV V Category concordance

I 0 0 0 0 0 —
II 0 12 13 3 4 35.29
III 0 0 84 40 5 65.11
IV 0 0 15 467 100 80.24
V 0 0 0 32 1,323 97.78

Note: —, no data; CATMoS, Collaborative Acute Toxicity Modeling Suite; ECHA,
European Chemicals Agency; GHS, U.N. Globally Harmonized System of
Classification and Labeling of Chemicals.

Table 20. Evaluation parameters for the U.S. EPA category predictions for
the curated in vivo data set.

Step 1: End point Step 2: WoE

I II III IV Overall I II III IV Overall

BA 0.84 0.81 0.79 0.67 0.78 0.93 0.79 0.79 0.67 0.80
Sn 0.70 0.76 0.84 0.36 0.66 0.88 0.72 0.84 0.36 0.70
Sp 0.99 0.86 0.75 0.98 0.89 0.99 0.87 0.75 0.98 0.90

Note: Corresponding confusion matrices available in Supplemental Material 9. BA, bal-
anced accuracy; EPA, U.S. Environmental Protection Agency; Sn, sensitivity or true
negative rate; Sp, specificity or true positive rate; WoE, weight of evidence.
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foundation for future collaborations to establish globally accepted
alternative methods for assessing acute toxicity end points.
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