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Abstract
Regenerative approaches have made such a great progress,
now aiming toward replacing the exact neurons lost upon injury
or neurodegeneration. Transplantation and direct reprogram-
ming approaches benefit from identification of molecular pro-
grams for neuronal subtype specification, allowing engineering
of more precise neuronal subtypes. Disentangling subtype di-
versity from dynamic transcriptional states presents a chal-
lenge now. Adequate identity and connectivity is a prerequisite
to restore neuronal network function, which is achieved by
transplanted neurons generating the correct output and input,
depending on the location and injury condition. Direct neuronal
reprogramming of local glial cells has also made great prog-
ress in achieving high efficiency of conversion, with adequate
output connectivity now aiming toward the goal of replacing
neurons in a noninvasive approach.
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Introduction: concepts and criteria for
neuronal replacement
Loss of neurons is at the core of cognitive and functional
failures in various neurological conditions spanning
www.sciencedirect.com
from acute injuries, such as traumatic brain injury and
stroke, to a multitude of neurodegenerative diseases,
such as Alzheimer disease, Huntington disease, and
Parkinson disease (PD). Pioneering transplantation ap-
proaches in patients with PD showed an amelioration of
symptoms by ectopic transplants of dopaminergic neu-
rons into the basal ganglia, the target region of the lost
neurons in the substantia nigra pars compacta (SNpc)

[1]. The target site of SNpc dopaminergic neurons (i.e.
basal ganglia) was chosen owing to the uncertainty that
axons of transplanted neurons would have grown properly
in an adult brain. Now we know that young neurons can
readily extend axons in an adult brain and even find their
correct target regions [2e5] d a crucial and promising
prerequisite for achieving adequate functional repair
of neural network activity. This and the knowledge
gained in the last decades on transplanted neuron dif-
ferentiation and integration in adult brains set the stage
toward successful neuronal replacement therapies, by

replacing the lost neuronal subtypes at their appropriate
sites. This would encompass not only the generation of
the exact lost neuronal subtype (either from exogenous
or endogenous sources) but also the appropriate inte-
gration into the pre-existing network, including correct
input and output connectivity (Figure 1).

This grand aim also prompts grand questions d first of
all, how many neuronal subtypes exist in a given brain
region and how many do we need to replace to restore
the function of that region. The first question has

recently been boosted by advances at the single-cell
level that have revealed a plethora of neuronal subtypes,
defined by their molecular, electrophysiology,
morphology, and connectivity identities [6e8]. How-
ever, the results of brain-wide connectivity studies are
still incomplete, especially at single-neuron resolution
and for humans and even more so for diseased brains.
The latter is highly relevant for a successful repair as
symptoms often appear only after a significant loss of
neurons, for example, in PD when 70% of the dopami-
nergic neurons are lost in the SNpc [9,10]. This resil-

ience implies a high degree of plasticity in some
neuronal networks, prompting the question of how
many neurons need to be replaced for repair of neural
network function. The second main question is how
newly transplanted neurons integrate into such an
altered circuitry, especially given the recent data
showing that the input connectome highly depends on
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Fig. 1

Neuronal replacement therapies. (a) Neuronal loss and network degeneration are major hallmarks of both acute brain injuries and neurodegenerative
disorders. Regenerative approaches have made great progress, aiming nowadays toward replacing the exact lost neurons and restoring the correct
network. Neuronal replacement therapies have mainly focused their efforts on two promising approaches: (b) cell transplantation takes advantage of
different types of neuronal progenitors as sources of donor cells and (c) direct reprogramming of in loco glial cells to a neuronal fate by introducing
proneural factors via viral vectors.
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the transplantation site and injury condition, which we
review in the following section. Importantly, achieving
the correct connectivity is still a major challenge for
neurons obtained by direct reprogramming in vivo, but
recent progress has been made on the output axonal
projections of induced neurons [11e13]. Moreover,
neurons reprogrammed from local glial cells in the
forebrain can now be instructed with great efficiency
(Figure 2). The fidelity of the induced neurons is sub-

ject to further improvement by comparing single-cell
RNA sequencing (scRNA-seq) data from endogenous
and induced neurons. This allows correcting the dif-
ferential gene expression for a more efficient reprog-
ramming, by multiplexing gRNAs using CRISPR-
mediated gene activation (Clustered Regularly Inter-
spaced Short Palindromic Repeats, Figure 3) [14]. It is
therefore timely to review the achievements and chal-
lenges of the major approaches of neuronal replacement
therapy d the use of exogenous cells, such as trans-
plantation of neuronal progenitors (including those of

human origin), and the more recent approach of direct
conversion of non-neuronal cells to neurons.
Transplantation approaches: generating
specific neuronal subtypes that integrate
adequately into the pre-existing circuits
To achieve best results for repair, the correct neuronal
subtypes have to be regenerated. Embryonic progenitors
of a certain brain region were most efficacious in gener-
ating the correct neuron subtypes of that region and
manage to generate neurons in the adult brain
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environment that is rather gliogenic [15], while other
cells such as adult neural stem cells convert into glial cells
when transplanted into the adult brain [1,16,17]. Thus,
fetal neuroblasts are role models for cells able to differ-
entiate into neurons upon transplantation into the adult
brain parenchyma and hence serve as a blueprint to
better understand and implement the mechanisms un-
derlying fate specification. Accordingly, their molecular
specification can be used to instruct the differentiation of

induced pluripotent stem cells (iPSCs) to the desired
neuronal subtype. For example, La Manno et al [18] used
scRNA-seq of murine and human fetal ventral midbrain
cells to better understand and refine transcriptional
networks specifying dopaminergic neurons from this
region [19,20]. This matters for the success of trans-
plantation therapies: the better the match to the SNpc
type of dopaminergic neurons, the better the reported
functional recovery, at least in the mouse models that are
used as preclinical readouts [21e23]. This prompts the
key question of how many neuron subtypes exist and are

lost in the considered human brain region and whether
some are more critical to achieve the best functional
repair. This question is at an exciting state nowadays, as
single-cell omics techniques allow probing for virtually all
neuronal subtypes in adult and fetal human brains. For
example, human fetal ventral midbrain regions comprise
various neuronal clusters, including different develop-
mental stages and maturity identities [24]. It is thus not
yet known if there are also several subtypes of dopami-
nergic neurons within the SNpc region, and if so, it is not
known whether these have different functional rele-

vance. However, comparison of scRNA-seq data of fetal
www.sciencedirect.com
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Fig. 2

Combinations of neurogenic factors used for in vivo reprogramming in the neocortex and striatum. In vivo direct reprogramming of glial cells can
be achieved using different cocktails of factors promoting fate conversion into neurons [11–13,35,36,38,39,41,43–45,47,56–66].
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cells and iPSC differentiation protocols clearly allows
fine-tuning and optimization to gain specificity in the

transplanted neuronal subtype [25].

Therefore, the discovery of a plethora of neuronal
subtypes in the first wave of brain scRNA-seq prompts
the question of their functional relevance. Are the
clusters of cells sharing similar gene expression pat-
terns functionally distinct types of neurons, or do they
reflect different states of a same subtype (e.g. firing
versus not firing neurons or different metabolic states)?
If they were molecularly distinct subtypes of neurons,
to what extent does each of them matter for function

and hence for repair? For example, in the cerebral
cortex, a large number of neuronal subtypes have been
suggested from pioneering scRNA-seq analyses [7,26],
while more recent analysis combining single-cell
patching (i.e. electrophysiological properties), filling to
examine morphology, and RNA sequencing came to the
conclusion that only 3 major subtypes of projection
neurons are discernible [6] d even fewer than sub-
types classically associated with different cortical
layers [27]. This may imply that the more classical
parameters, such as neurotransmitter subtype and
www.sciencedirect.com
proper firing patterns, combined with the adequate
input connectivity and axonal projection to connect

with the correct target may be most relevant for suc-
cessful repair. Notwithstanding, scRNA-seq provides a
unique opportunity to identify the exact transcrip-
tional state of the transplanted neurons [25], in com-
parison with the endogenous neurons, that are aimed at
being replaced.

On a broader level, regenerative neuroscience meets
neural network analyses to improve repair strategies
with the challenge to integrate new neurons into pre-
existing circuits that normally do not integrate new

neurons d notably different from development or sites
of ongoing adult neurogenesis [28]. The ability to
monitor the brain-wide input connectome of a given
neuron, owing to development of viral synaptic tracing
methods [29], has provided revolutionary and surprising
insights into crucial aspects of neuronal functions.
Neurons transplanted into the visual cortex upon se-
lective ablation of upper layer neurons could indeed
receive the adequate brain-wide input connectome
[3,5]. This occurred with precise topographic arrange-
ment and appropriate quantitative differences, with
Current Opinion in Neurobiology 2021, 69:185–192
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Fig. 3

Current Opinion in Neurobiology

Single-cell RNA-sequencing (scRNA-seq) and CRISPR-mediated gene activation (CRISPRa) technologies can improve in vivo reprogramming.
With scRNA-seq, we can now examine the patterns of gene expression in glial cells (a), induced neurons (b), and endogenous neurons (c) at the single-
cell level. The comparison of these data sets could ultimately highlight the differences between induced and endogenous neurons, improving the ac-
curacy of reprogramming. This could be achieved by multiplexing viral-transduced gRNAs for selected genes, using CRISPRa (d).
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higher innervation density from specific brain regions,

closely reflecting the input connectome of the endoge-
nous neurons from this region [3]. Likewise, human
iPSC-derived neurons transplanted into a stroke model
receive appropriate input connectome despite their
rather immature state [23]. This seems to be very
different when murine neurons were transplanted into
the aging brain or into models of amyloidosis, a hallmark
of Alzheimer disease, with highly exuberant local inputs
observed in this condition (Thomas, Conzelmann,
Grade, Götz, unpublished). Thus, homotopic trans-
plants profoundly differ in their input connectome

depending on the host environment, which represents
therefore a crucial parameter to bear in mind for thera-
peutic approaches that in most cases will take place in
the aged brain environment.

Interestingly, the input connectome to transplanted
ventral midbrain dopaminergic fetal cells has been
compared in the homotopic location of ventral
midbrain and heterotopically in the striatum [30,31].
This comparison showed that transplanted neurons
receive the innervation present in the respective
region d input from striatal inhibitory neurons and

striatal afferents when transplants were placed in the
striatum [30], while receiving ventral midbrain neuron
inputs when transplants were placed there [31]. The
Current Opinion in Neurobiology 2021, 69:185–192
most striking finding was the extensive input connec-

tome that young and immature neurons received
already at 6 weeks after transplantation, a stage at
which hardly any axons have yet reached the target
region of the striatum [31]. These data also suggest
caution about the rabies virus tracing and call for veri-
fication by physiological techniques. Taken at face
value, afferents seem able to connect to any type of
available neurons, at least young transplanted and
hence easily excitable neurons. This is good news for
replacement therapies, but caution needs to be exerted
with regard to whether more fine-tuned intraregional

specificity, such as layer-specific connections within
the cerebral cortex, could be achieved. Moreover, most
of these observations have been probed in experi-
mental conditions of acute neuronal ablation (also in
PD models, most of the studies were conducted on
acute ablation of SNpc dopaminergic neurons), while
the actual chronic disease environment may lead to
very different pre-existing connectivity and provide a
very different environment for the integration of new
neurons, as mentioned previously.

Taken together, replacement therapy via transplantation

has entered a new age of scrutiny, allowing the optimi-
zation of neuronal subtype specification at an unprece-
dented fine-tuned level with regard to both gene
www.sciencedirect.com
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expression and brain-wide connectome analyses.
Excitingly, human cell transplantations into preclinical
models allow probing at least some of these aspects of
in vivo connectivity also for human cells [32].
Direct neuronal reprogramming: high
efficiency conversion and call for further
controls
The exciting progress in our knowledge of subtype-
specific gene expression and connectivity likewise ap-

plies to the neuronal replacement approach that takes
advantage of endogenous non-neuronal sources, by
direct conversion of local glial cells into induced neurons
[33]. Indeed, also the quality of induced neurons has
made a breakthrough from initially obtaining very few
immature neurons to now achieving fully mature neu-
rons with long axonal projections to their correct target
sites [11,34e39]. It appears that we have even reached
the stunning stage of requiring only a single-factor
knockdown, to achieve the conversion of astrocytes into
the correct neuronal subtype in the respective region

[12,13]. These amazing results prompt caution for
conceptual and experimental reasons. Conceptually, the
apparent ease of reprogramming raises the important
issue of how cell fate is normally maintained in an adult
organ. If cells can be so readily converted by knocking
down a single factor (PTBP1 in this case), how is the
physiological downregulation of this factor avoided (or at
least controlled), to not have spontaneous cell conver-
sion? Indeed, research on fate maintenance has been
boosted by the identification of reprogramming hurdles
[40]. At the experimental level, the use of novel viral

vector tools requires caution to ensure real reprogram-
ming of glial cells versus overexpression/downregulation
of the selected factors in endogenous neurons.

The first in vivo reprogramming into neurons was
achieved by targeting the proliferating glial cells after
acute brain injury, using retroviral vectors that selec-
tively integrated their genome only in dividing cells to
express the proneural factors such as Pax6, Neurogenin
2, NeuroD1, or Ascl1 (Figure 2) [34,38]. This clearly
targeted non-neuronal cells, as neurons do not divide,
and reported an efficiency of up to 90% by combining

Neurogenin 2 and Bcl-2 [35]. Intriguingly, young
induced neurons die preferentially by ferroptosis [35], a
cell death mediated by increased lipid peroxidation,
which is caused by late or missing conversion of the
mitochondrial proteome [14]. Other viral vectors,
lentiviral or adeno-associated viral (AAV) vectors, can
integrate their genome also in postmitotic cells or
remain episomal, respectively. Therefore, transduction
depends either on the cells that they infect or on the use
of specific promoters. AAV vectors seem best suited
as they have high infectivity and the advantage of

not integrating into the host cell genome, eliciting a
much less inflammatory and reactive gliosis response
www.sciencedirect.com
[11,41]. However, the AAV2/5 vectors used for
reprogramming infect dividing and nondividing cells,
with a preference for neurons [42]. Glial promoters
driving the expression of the Cre recombinase in oligo-
dendrocyte progenitors, astrocytes, or microglia have
therefore been used to target expression of the reporter
gene and the neurogenic factors to each of these glial
cell types, respectively [11e13,43e47]. However, this

required very stringent controls to ensure that expres-
sion is not aberrantly activated in endogenous neurons,
as recently reported to happen in the case of the
expression of NeuroD1 under GFAP promoter [48]. So
far, only one study has labeled virtually all endogenous
neurons before reprogramming, to reveal that most of
the induced neurons originated from nonlabeled
endogenous non-neuronal cells, namely, astrocytes [11].

To resume with the aim to replace SNpc dopaminergic
neurons discussed previously in regard to trans-

plantation, recent publications claimed for astonishing
reprogramming of local astrocytes to dopaminergic
neurons by knocking down a single factor, namely,
PTBP1 [12,13]. In this case, the authors modeled PD
loss of dopaminergic neurons in this region by injecting
6-hydroxydopamine, which induces the selective loss of
the vast majority of this neuronal subtype [49]. How-
ever, other neuronal subtypes such as neighboring in-
terneurons or projection neurons could still be present
in the substantia nigra and therefore be infected. Those
potentially nonspecifically targeted cells could turn on

the expression of the reprogramming constructs and
hence change their gene expression. Keeping this in
mind, even the elegant experiment of functional
silencing of the induced neurons resulting in behavioral
impairment [12], does not help clarify whether the
neurons responsible of the behavioral ameliorations
were silenced endogenous neurons or truly induced
neurons. Therefore, it is essential to label endogenous
neurons of all types before reprogramming protocol, to
distinguish pre-existing neurons from induced neurons.
Ideally, this could be combined with genetic fate map-
ping of the cell types of origin of induced neurons, for

example, oligodendrocyte progenitors, astrocytes, or
microglia. These controls should help understand if
in vivo conversion of glial cells into specific dopaminergic
neuronal subtypes is indeed so readily possible with just
one factor [12,13] or rather requires indeed several
factors to be activated [36,47]. Even in the case that
more factors are needed, CRISPR-mediated gene acti-
vation now allows multiplexing by the use of several
gRNAs to activate simultaneously several factors [50].
Using CRISPR technology, Zhou et al [13] reported the
intriguing finding that the knockdown of PTBP1 would

elicit the conversion into different neuron subtypes as
per the targeted CNS regions. Likewise, differences in
neuronal subtypes emerging from astrocytes were also
observed for different cortical layers [11] and between
the cortex and midbrain [12,13]d not only highlighting
Current Opinion in Neurobiology 2021, 69:185–192
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the importance of astrocyte heterogeneity between
regions but also reassuring the aforementioned raised
concerns about artefactual labeling of endogenous neu-
rons [51].

New technologies can now further provide insights
into the heterogeneity of cells converting into
neurons and the mechanisms underlying this conver-

sion. At the same time, they aim at tackling the con-
trol issue, to ensure a real reprogramming rather than
activating gene expression in endogenous neurons. For
example, scRNA-seq combined with lineage tracing
[52] would probe the cell of origin, while simulta-
neously monitoring the transcriptional process of fate
conversion and the identity of the emerging neurons.
Likewise, chronic in vivo imaging should allow watch-
ing the conversion of a glial cell into a neuron live and
thereby unequivocally identifying the reprogramming
process. Indeed, this has been carried out for trans-

planted neurons uncovering key principles of their
differentiation, dendrite pruning and synaptogenesis
[3,53].

In regard to axonal connectivity, direct reprogramming
has also made great achievements as axons projecting
to the correct target regions have been detected from
induced neurons [11e13]. Even more importantly,
retrograde tracing from the target region initially
labels no converting neurons, but at several months
into the conversion process, the induced neurons can

be back-traced from their target region [11,12]. This
not only is exciting evidence for correct axonal navi-
gation by induced neurons but also strongly supports
the idea that these neurons emerge from reprog-
rammed astrocytes rather than from endogenous
neurons.

Therefore, this is an exciting time for the alternative
approach to replace lost neurons from endogenous
sources, especially also as increasing numbers of
reprogramming protocols of human cells have been
developed in vitro (see, e.g. the study by Nolbrant et al.

[37]), and promising efficient conversion has been
instructed also in vivo.
Conclusions and perspectives
Both these approaches of neuronal replacement for brain
repair pave the way to a future with causative treat-
ments of neuronal loss conditions.

The transplantation approach has reached the clinics,
and several clinical trials are ongoing. It should be soon
extended to further neurological disease applications,
such as stroke [22,23], taking into account the recent
results discussed previously about the effect of the

environment on network integration. Moreover, iPSC
technology encompasses the perspective for autologous
Current Opinion in Neurobiology 2021, 69:185–192
transplants, as recently shown for treatment of a patient
with PD [32].

Regarding reprogramming of endogenous glial cells, the
conversion into neurons seems to occur with high effi-
ciency in vivo. Despite the caveats described in the
previous section, AAV vectors represent one of the safest
vectors for clinical use in patients as they remain

episomal and have a low immunogenicity. Thus, using
AAV vectors for neuronal reprogramming offers a trans-
lational opportunity, especially because some serotypes,
such as AAV9, can be systemically delivered and still be
able to selectively target glial cells in the central nervous
system [54,55]. All these advantages set up neuronal
reprogramming as a promising strategy to pursue in the
future, to ultimately treat neuronal loss. However,
caution is essential not to prematurely excite the hopes
of patients.
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