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Coffee and tea are extensively consumed beverages worldwide which have received con-

siderable attention regarding health. Intake of these beverages is consistently linked to,

among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action

remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and

lifestyle factors on disease onset. Here we report the results from epigenome-wide

association studies (EWAS) on coffee and tea consumption in 15,789 participants of

European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee

consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value

<1.1×10−7), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes.

Among them, cg14476101 is significantly associated with expression of the PHGDH and risk

of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with

expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in

hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant

association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive

association (P-value <5.0×10−6). These findings indicate that coffee-associated changes in

DNA methylation levels may explain the mechanism of action of coffee consumption in

conferring risk of diseases.
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Excluding water, coffee and tea are the most commonly
consumed beverages around the world. The preference for
one or the other and the quantity of coffee and tea con-

sumed vary between individuals1, which can be influenced by the
geographical region as well as cultural and personal preference. In
addition, both coffee and tea are sources of complex compounds
with different chemical classes, the most commonly known is
caffeine2. Caffeine belongs to the methylxanthines family, which
consists of frequently ingested pharmacologically active sub-
stances, for example, through the stimulation of the central ner-
vous system3. Although caffeine is present in both coffee and tea,
its concentration in tea is much lower4. Moreover, both beverages
differ on the bioavailability of polyphenols and other chemical
compounds5. The biochemistry of coffee and tea has been
extensively documented, indicating that different roasting, tem-
peratures, or brewing of the two can impact the abundancy and
bioavailability of their complex compounds6,7. Moreover, it has
been shown that the lipid content of boiled un-filtered coffee may
be as much as 60 times higher than the lipid content of filtered
coffee8. There has been an ongoing debate as to whether habitual
consumption of coffee9 and tea10 is beneficial or harmful to
health. The conclusion varies among outcomes; for example:
lowering the risk for type 2 diabetes (T2D), cardiovascular
diseases11,12, liver diseases13,14, and overall mortality15; or
increasing serum levels of low-density lipoprotein (LDL) and total
cholesterol16. These contradictory findings in observational stu-
dies seem to be determined by the presence of different com-
pounds in the two beverages, especially regarding coffee
consumption9. Yet, the biological mechanisms underlying asso-
ciations of coffee and tea consumption with risk of diseases
remain to be understood.

Epigenetics represents modifications to DNA that do not
change the underlying DNA sequence, but can influence gene

expression17. The most extensively studied epigenetic mechanism
so far is DNA methylation, where a methyl group (–CH3) is
added to or removed from the cytosine nucleotide that is followed
by a guanine nucleotide in the DNA sequence, known as
Cytosine-Phosphate Guanine (CpG) site17, resulting in altered
gene expression. The DNA methylation levels differ by age, sex
and lifestyle factors, including dietary exposures18–20. Here we
postulated that alteration of DNA methylation via coffee or tea
consumption is an underlying mechanism linking the intake of
these beverages to health outcomes. Previous epigenome-wide
association studies (EWAS) have reported suggestive association
of some CpGs with tea or coffee consumption21,22; however, these
studies were limited by the modest sample sizes. In this work, we
conduct large-scale EWAS meta-analyses of coffee as well as tea
consumption in 15,789 participants of European and
African–American ancestries from 15 cohort studies. For the
associated CpGs, we evaluate their correlations with genetic
variation and gene expression. Additionally, we seek to identify
the potential causal effect of coffee consumption on the associated
CpGs and different health outcomes. Finally, we perform
experimental studies for a gene annotated to a coffee-associated
CpG to investigate its link to lipid metabolism and liver diseases.

Results
Figure 1 depicts an overview of the study flow. Characteristics of
the cohorts participating in the discovery (n= 9612) and repli-
cation phase (n= 6177) are presented in Table 1. The mean age
across all participating cohorts ranged from 41.1 years in the
Airwave cohort to 78.6 years in the CHS_EA cohort. The majority
of the study participants were women (61.44%). Mean total coffee
intake among cohorts ranged from 0.6 cups/day in the CHS_AA
cohort to 3.5 cups/day in the RS-III-2 cohort, while mean total tea

Fig. 1 Overview of the study flow. The flowchart summarizes our study design including EWAS meta-analysis to identify DNA methylation sites
associated with coffee and tea consumption, and post-EWAS in silico and in vitro experiments. QQ quantile–quantile, eQTM cis-expression quantitative
trait methylation, meQTL methylation quantitative trait loci, RS Rotterdam Study, FHS Framingham Heart Study, ALSPAC The Avon Longitudinal Study of
Parents and Children, CHS Cardiovascular Health Study, ARIC The Atherosclerosis Risk in Communities Study, EPIC Prospective Investigation into Cancer
and Nutrition, KORA Cooperative Health Research in the Augsburg Region Study.
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intake ranged from 0.3 cup/day in the EPIC_Italy cohort to 3.4
cups/day in TwinsUK (Table 1).

Quantile–quantile (QQ) plots were generated and the corre-
sponding lambda value computed for the overall meta-analysis of
the discovery and replication panels combined, indicated no
statistical inflation in the fully adjusted models for coffee or tea
consumption (Supplementary Fig. 3). Furthermore, we inspected
the effect-size distribution plots indicating that one cohort
(Lifelines, n= 186) had an effect-size scale non-comparable to
other participating cohorts (Supplementary Fig. 4). As the Life-
lines cohort had a high standard deviation for coffee consump-
tion, and also no data on tea consumption, we excluded this
cohort from further analysis.

EWAS meta-analysis of 9612 participants with European
ancestry in the discovery phase identified 11 CpG sites associated
with coffee consumption at the suggestive significance threshold of
P < 5.0 × 10−6 in Model 2 (Table 2). We sought replication of these
CpGs in independent cohorts of both ancestries (EA and AA)
comprising 6177 participants, where seven CpGs were successfully
replicated with P < 4.5 × 10−3 (0.05/11 CpGs) in the same direc-
tion. In the combined meta-analysis of all participants in the dis-
covery and replication cohorts, 11 CpGs passed the epigenome-
wide significance threshold (P < 1.1 × 10−7) (Table 2). A Man-
hattan plot showing the EWAS on coffee consumption is depicted
in Fig. 2A. Forest plots for the significantly associated CpGs
showed small effects, but an overall consistency in direction across
the participating cohorts (Supplementary Fig. 5). Heterogeneity
was also assessed; for those CpGs showing a nominal evidence of
heterogeneity (P < 0.05), we additionally provided results from
random-effects inverse-variance meta-analysis (Supplementary
Table 4). The CpG with the most significant association with coffee
consumption was cg05575921 (P= 2.17 × 10−15, β=−0.0016)
annotated to AHRR, a repressor of the AHR (Aryl Hydrocarbon
Receptor) gene (Fig. 3A). After excluding the largest contributing
cohort (FHS) from the meta-analysis of European cohorts, four
CpGs namely cg05575921 (P= 1.2 × 10−14, β=−0.003),
cg25648203 (P= 5.4 × 10−10, β=−0.001), cg21161138 (P= 5.7 ×
10−10, β=−0.001) and cg03636183 (P= 4.1 × 10−8, β=−0.001)
remained significant.

We observed no significant association with tea consumption
at the epigenome-wide significance threshold (P < 1.1 × 10−7)
even in the EWAS meta-analysis of all participating cohorts
(n= 15,789). The most significant associations observed for
two CpGs cg20099906 (annotated to CACNA1A) and cg0584170
(annotated to PRDM16) at the borderline threshold of P < 5.0 ×
10−6 (Table 3). The Manhattan plot showing the EWAS results
on tea consumption is depicted in Fig. 2B.

In order to further examine the novelty of our findings, we
investigated whether the loci identified for coffee and tea con-
sumption have been reported previously by GWAS or other
EWAS. None of the loci had been associated before with either
coffee or tea consumption (Supplementary Table 5). In addition,
we looked up the association of cis-meQTLs of the coffee-
associated CpGs in the publicly available GWAS of coffee intake,
published with UK-Biobank data (n= 358,093)23 and available
through GWAS ATLAS (https://atlas.ctglab.nl/). We did not find
any of the lead SNPs of CpGs-meQTLs to be associated with
coffee intake (Supplementary Table 6).

When excluding the cohorts with different time points of
collection between methylation and beverage intake data, the
results of association between DNA methylation and coffee or tea
consumption did not change substantially (Supplementary
Table 7). For investigating the potential ancestry effects, we
performed an EWAS meta-analysis of coffee consumption sepa-
rately in EA (n= 12,868) and AA (n= 2921) participants. Out of
the 9 CpGs significantly associated with coffee consumption inT
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EA participants (n= 12,868), none were replicated in AA parti-
cipants at P < 0.005 (0.05/9). Conversely, EWAS in AA partici-
pants (n= 2921) showed one CpG site (cg05822739) to be
associated with coffee consumption (P= 1.08 × 10−7, β=
−0.0015), which was not identified in EA participants despite the
larger sample size (Supplementary Table 8).

To minimize the possible confounding effect of smoking on the
association between coffee consumption and DNA methylation,
we also conducted EWAS on participants who self-reported as
never smokers (n= 2123). The results of these analyses are shown
in Supplementary Table 9. When analysing current and former
smokers, the effect sizes did not change substantially compared to
the overall sample. In contrast, the results from the subset of
never-smokers indicated that the effect sizes of six out of the 11
lead probes, namely: cg09935388, cg21161138, cg25648203,
cg06126421, cg05575921, and cg03636183, were increased com-
pared to the beta estimates of the whole meta-analysed samples.
As the smoker-status covariate in our study was discrete (never,
former or current smoker), the adjusted EWAS model might have
been not adequately controlled for smoking exposure (e.g.,
duration of smoking, amount of smoking for a period of time and
second hand smoking). Therefore, we looked up the coffee-
associated CpGs in the published EWAS on smoking behaviour
(Supplementary Table 10). Eight of the lead coffee-associated
CpGs have been previously linked to smoking, suggesting that the
residual smoking exposure may remain as a potential con-
founding factor for the probe associations with coffee
consumption.

Among the subjects with low coffee consumption, only one
association remained nominally significant (cg14476101, P=
0.03). Likewise, we observed that four of the coffee-associated
CpGs remained nominally significant in moderate drinkers.
When adjusting by tea consumption, the effect estimates of the
majority (eight) of the identified CpGs, did not change sub-
stantially. We observed a similar pattern (same direction in the
effect estimate) for the rest of CpGs that had somewhat change in
the effect estimate compared to the main model (Supplementary
Table 9). For example, the main model showed a β=−0.001 for
cg21161138 (P= 6.66 × 10−12), while the additional adjustment
for tea consumption in the FHS and RS showed a smaller effect
(β=−0.0003). The forest plot for this CpG (Supplementary
Fig. 5) showed a negative effect estimate of the CpG in many
of the contributing cohorts, which are not in our sensitivity
analysis. Hence, we postulate that the observed change of the
effect estimates could be the result of this, rather than inadequate
adjustment for tea consumption. Additionally, three of the coffee-
associated CpGs (cg21161138, cg25648203, and cg03636183)
showed nominal significant association with tea consumption
(Supplementary Table 11). Lastly, when assessing males and
females separately, five CpGs were nominally significant among
males and four among females that could be attributed to power,
as the effect sizes remained similar compared to the overall
sample (Supplementary Table 9).

Of the 11 CpGs significantly associated with coffee consump-
tion, nine have been annotated to the following genes: AHRR,
F2RL3, FLJ43663, HDAC4, GFI1, and PHGDH (Fig. 3). A heatmap
depicting average expression of these genes across 53 human tis-
sues, available on the “Functional Mapping and Annotation of
genetic associations with FUMA” webtool24, is provided in the
Supplementary Fig. 6A, B. Based on the tissue specificity of dif-
ferential expression using FUMA, PHGDH shows higher relative
expression, while HDAC4 and SLC7A11 show moderate expres-
sion compare to the other coffee-associated genes in some tissues
(Supplementary Fig. 6A). Furthermore, adipose subcutaneous
and minor salivary gland show up-regulation of these genes
(Supplementary Fig. 7A). The pathway analysis using IPA forT
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6 of the annotated genes showed enrichment for Serine bio-
synthesis (P= 1.36 × 10−3) and Xenobiotic metabolism signalling
(P= 2.71 × 10−3) and association with Inflammatory response
(P-value between 4.48 × 10−2 and 4.42 × 10−5) (Supplementary
Table 12). Pathway analysis for CACNA1A and PRDM16, the two
genes suggestively associated with tea consumption, showed
enrichment for white Adipose tissue browning (P= 3.2 × 10−5),
nNOS signalling in skeletal muscle cells (P= 3.6 × 10−3) and
Maturity onset diabetes of young (MODY) (P= 5.2 × 10−3)
(Supplementary Table 13).

The 11 coffee-associated CpGs as well as the two CpGs sug-
gestively associated with tea were further explored in association
with genetic variations (meQTL) or expression levels of their
nearby or distant genes (eQTM) using the BIOS-BBMRI data-
base. Eight of the coffee CpGs and one of the tea CpGs were

associated with genetic variants in the neighbouring genes (cis-
meQTLs) (Supplementary Table 14). By overlapping cis-meQTL
variants with GWAS results in the NHGRI-EBI GWAS Catalo-
gue, we did not find cis-meQTLs or their proxies (LD R2 > 0.8) to
be associated with any traits in previous GWASs. Furthermore, 6
of the 11 coffee-associated CpGs showed relationship with
expression levels of their nearby genes (eQTM) (Supplementary
Table 14), including 3 CpGs annotated to AHRR that were
associated with expression of EXOC3. The most significant
association with eQTM was between cg14476101 and expression
levels of PHGDH (P= 2.05 × 10−55). Literature search for the
association between the 11–coffee CpGs and any phenotypes or
diseases in PubMed showed overlap with some traits that are
shown in Supplementary Table 15 and Supplementary Fig. 8. In
particular, the CpGs annotated to AHRR have been associated
with smoking in multiple studies. We did not find eQTM for the
two CpGs potentially linked to tea consumption.

We next assessed the causal association between coffee con-
sumption and the 11 identified CpGs in the RS and FHS. The
weighted GRS-based MR analysis did not support the causal
association, which might be due to lack of statistical power. For
example, we observed non-significant results between coffee
consumption and cg14476101 (GRS-β=−3.42 × 10−5, GRS-P=
0.22). Additionally, our results from the multi-IVs, conventional
and sensitivity MR analyses for this CpG also did not show sig-
nificant evidence for causality (IVW-β= 0.01, IVW-P= 0.1)
(Supplementary Table 16 and Supplementary Fig. 9).

We also tested the potential causal association of the coffee-
associated CpGs with cardiovascular disease and metabolic traits.
Multi-instrument MR analyses showed that cg01940273 could be
causally associated with T2D, BMI, WHR, LDL-C and total
cholesterol (Supplementary Fig. 10); cg05575921 with BMI, WHR
and HDL-C (Supplementary Fig. 11); cg09935388 with T2D and
HDL-C (Supplementary Fig. 12); cg11550064 with BMI, WHR,
HDL-C, LDL-C, total cholesterol, triglycerides and CHD (Sup-
plementary Fig. 13); and cg23916896 with T2D, BMI, HDL-C and
total cholesterol (Supplementary Fig. 14 and Supplementary
Table 17). The causal association between cg14476101 and fatty
liver disease has been previously confirmed by the MR analysis in
FHS, where hypermethylation at the locus was associated with
lower fatty liver risk (P= 0.01)25.

The inverse association of coffee consumption with liver dis-
eases has been well documented by different researchers13,26,27.
The CpG cg14476101 and its annotated gene (PHGDH) have been
reported in previous studies to be associated with fatty liver dis-
ease and adiposity28,29. Moreover, methylation-gene expression
association between cg14476101 and PHGDH has been verified in
liver tissue29. The expression level of the PHGDH gene is shown to
be associated with liver fat25. Also, an intronic genetic poly-
morphism in PHGDH (rs454510, P= 3 × 10−6) has been linked to
alcohol-related liver cirrhosis30. Thus, we sought to identify a
three-way association between coffee consumption, DNA methy-
lation of cg14476101 and liver function in the Rotterdam
Study (Supplementary Fig. 2). To this end, we tested the asso-
ciation of coffee consumption and three liver enzymes (n= 4756)
adjusted for potential confounders, which showed a negative
association between coffee consumption and serum levels of AST
(P= 0.008, β=−0.005) and GGT (P= 0.004, β=−0.011) (Sup-
plementary Table 18). In addition, we tested the association of
DNA methylation at cg14476101 with the liver enzymes (n=
1406) adjusted for age, sex, BMI, smoking, whole blood cells
proportion, batch effects and excessive alcohol consumption, and
observed a nominal association with the serum levels of AST (P=
0.016, β=−0.26) and a suggestive association with GGT (P=
0.06, β=−0.43). These data suggest that the link between coffee
consumption and fatty liver disease could be mediated by
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Fig. 2 Epigenome-wide association study Manhattan plots for coffee and
tea consumption. The plots depict the results of EWAS fixed-effects
inverse-variance meta-analysis with the overall sample for coffee (A) (n=
15,789) and tea (B) consumption (n= 15,069) in the fully adjusted model.
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PHGDH expression via altering DNA methylation levels at
cg14476101.

To gain further insight into the biological mechanism linking
PHGDH to fatty liver disease, we conducted experimental studies.
We measured the expression level of PHGDH in several human
liver cell lines and, subsequently, related it to the expression levels
of a panel of lipid-associated genes. Figure 4a displays the
PHGDH expression level in seven liver cell lines. From this, we
selected SNU398 cells, with the highest expression levels of
PHGDH, and SNU449 cells, with the lowest expression levels of
PHGDH, and compared the relative expression levels of PHGDH
with nine known lipid-related genes, reported in the previous
GWAS and experimental studies to be involved in lipid
metabolism31–33. The PHGDH expression level was correlated

with the expression levels of five of these lipid-associated genes
(Fig. 4b). Next, we knocked down the PHGDH expression in
PLC/PRF/5 cells using lentiviral shRNA vectors (Fig. 4c). After
silencing PHGDH, we observed a significant decrease of the LPL
expression and a significant increase of the LDR and ABCA1
expression (P < 0.05) in both knocked down cells (Fig. 4d), in line
with the observed correlations in SNU398 and SNU449 cells.
These results suggest a potential role of PHGDH in lipid meta-
bolism and fat accumulation in the liver, which could occur
through regulating the expression of lipid-associated genes.

Discussion
In this study, we conducted the largest EWAS meta-analyses of
coffee and tea consumption to date comprising more than 15,000
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Fig. 3 The CoMET plots depicting genomic regions where the CpGs annotated to AHRR (A) and PHGDH (B) are located. The x-axis indicates the
position in base pair (bp) (hg19) for the region, while y-axis indicates the strength of association from EWAS with coffee consumption. The red line
indicates the Bonferroni threshold for epigenome-wide significance (P= 1.1 × 10−7). The figure was computed using the R-based package CoMET, while
the Ensembl is a genome database resource (http://ensemblgenomes.org/). The correlation of the surrounding CpGs was computed using methylation
measures in the Rotterdam Study.

Table 3 Inverse-variance weighted fixed effects meta-analysis of EWAS with tea consumption.

CpG CHR Position Gene Overall meta-analysis (n= 15,069)

Β (SE) P-value I2 Direction Het P-v

cg20099906 19 13344820 CACNA1A −0.0008 (2E−04) 1.06E−06 17.7 -+-+--++--+--+-- 0.25
cg05804170 1 3121514 PRDM16 −0.0002 (2E−04) 2.11E−06 0 -+--+-+-+----++- 0.98

The model is adjusted for sex, age, smoking, WBCs, technical covariates, BMI, and alcohol consumption. The epigenome-wide significance threshold for association of DNA methylation sites with tea
consumption sets at 1.1 × 10−7. The table depicts two CpGs suggestively associated with tea consumption with a borderline p-value between 2.0 × 10−6 and 1.1 × 10−7.
CpG DNA methylation site, CHR chromosome, Gene annotated gene, β effect estimate, I2 heterogeneity.
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participants. We found that coffee consumption was associated
with differential methylation of peripheral blood-derived DNA at
11 CpG sites, while tea consumption was not significantly asso-
ciated with changes in DNA methylation. The genes annotated to
some of the coffee-associated CpGs have potential relevance in
pathways underlying coffee metabolism and have been linked to
different health outcomes34–36.

Seven of the 11 coffee CpGs were inversely associated (i.e.
higher coffee consumption was associated with lower levels of
DNA methylation in these CpGs), four of which are annotated to
the Aryl-Hydrocarbon Receptor Repressor (AHRR). This gene
encodes a repressor of AHR, which itself has been previously
associated with coffee consumption in a large-scale GWAS (n=
91,462)37. Both AHRR and AHR genes, alongside with CYP1A1
and CYP1A2, belong to the Xenobiotic metabolism pathway, in
which AHR is activated via various ligands such as polycyclic
aromatic hydrocarbons (PAHs) or with ligands of natural origins
(e.g., food)38. PAHs are carcinogenic substances found in tobacco
smoke39, which can also be formed during coffee roasting
processes40. It has been established that PAHs mediate their
impact on the cell via AHR41. Nevertheless, the AHRR CpGs
identified in our analysis associated with coffee consumption have
been reported in previous EWAS of smoking42,43. When we

restricted our analysis to never smokers, the effect sizes of six out
of the 11 lead probes were increased. The differences in the effect
sizes and the overlap of some of these coffee-CpGs with findings
from previous large-scale EWAS on smoking may indicate that
our results could be yet affected by some residual confounding of
smoking. Although we accounted for smoking status in our
analyses, given that cigarette smoking is associated with coffee
consumption44 and smoking has a notable effect on DNA
methylation42, the association between these CpGs with coffee
consumption might warrant cautious interpretation. We spec-
ulate that methylation at the AHRR locus might influence the
Xenobiotic pathway via functionally related genes (AHR, CYP1A1
and CYP2A2) identified previously in the coffee consumption
GWAS37. We also found that the four CpGs annotated to AHRR
are associated with expression of a neighbouring gene, EXOC3 in
blood. However, due to tissue-specific expression patterns of
genes, it is still possible to see eQTM for AHRR gene in a different
tissue (e.g. liver) that needs to be investigated in future studies.

The other three CpGs inversely associated with coffee con-
sumption in our study are annotated to F2RL3, GFI1 and IER3.
These genes are involved in a wide range of phenotypes from
inflammatory response45,46, to cancer47,48 and cardio-metabolic
diseases49,50. Because of the strong association between coffee

Fig. 4 PHGDH gene expression levels in liver cell lines and relative to expression levels of lipid-associated genes. a Relative expression levels of PHGDH
against a reference gene (GAPDH) in 7 human liver cell lines. Gene expression levels were quantified by qRT-PCR. Data were normalized to the PLC cell line
(PLC, set as 1). b Relative expression levels of 9 lipid-associated genes in SNU499 cell line (with the lowest level of PHGDH expression) and SNU398 cell
line (with the highest level of PHGDH expression) are shown. Relative gene expression levels were quantified by qRT-PCR. GAPDH serves as a reference
gene, and gene expression levels in SNU449 cell line set as 1. This figure shows that, compared with SNU449 cells, SNU398 cells differentially express five
of the lipid-associated genes (FDFT1, HMGCR, LDLR, LPL, and ABCA1). c Established PHGHD knockdown cell lines (shPHGHD-1 and -2), PLC cells transduced
with lentiviral shRNA vectors targeting PHGDH or scramble control. qRT-PCR analysis of PHGDH expression were performed in stable knockdown or
scramble control PLC cells. Data are normalized to the scramble control (scramble, set as 1). d Expression levels of five lipid-associated genes in stable
PHGDH knockdown or scramble control PLC cells. Data were normalized to the scramble control (scramble, set as 1). The figure demonstrates that
knockdown of PHGDH gene expression by lentiviral shRNA vectors resulted in significant decrease in the expression level of LPL and significant increase in
the expression levels of LDLR and ABCA1 in both knockdown cells. Data in the figures are presented as mean values ± SEM of n= 3 biologically independent
experiments. The Mann–Whitney U-test (two-sided) was used to compare differences between two independent groups. Differences were considered
significant at P < 0.05, which indicated by * (**P < 0.01 and ***P < 0.001).
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intake and cardiovascular disease51 as well as cancer52, further
experimental studies are warranted to show whether alteration of
DNA methylation levels at the identified CpGs could change gene
expression and confer risk for these complex diseases.

Besides, five of the 11 CpGs were positively associated with
coffee consumption. Four of these are annotated to FLJ43663,
HDAC4 and PHGDH. To date, little research has shown the link
between FLJ43663 and disease predisposition. A recent study
showed the involvement of FLJ43663 as a risk factor for Behçet’s
disease53, while another study reported FLJ43663 gene poly-
morphisms to be associated with risk of breast cancer in a Han
Chinese population54. The second gene, HDAC4 encodes histone
deacetylase with a molecular role of deacetylation of lysine resi-
dues of the core histones55. As histone modifications are another
known epigenetic mechanism, this might be an indication of the
potential interplay between two epigenetic modifications. More-
over, HDAC4 gene is involved in cocaine-related behaviours56,
with a proposed mechanism that cocaine-induced nuclear export
of HDAC4 could promote development of cocaine reward
behaviours. Furthermore, animal studies have shown that
HDAC4 inhibition increases sensitivity to cocaine, whereas
overexpression of the gene has opposite effect, which further
supports the importance of HDAC4 in conditioned place pre-
ference in addictive behaviour57. It is interesting to note that
HDAC4 and HDAC5 belong to the same HDAC classification55,
and HDAC5 gene has been associated previously with cocaine
dependence in recent EWAS of cocaine and crack dependents58.

Among all genes annotated to the 11 coffee-associated CpGs,
PHGDH is of particular interest. This gene encodes the phos-
phoglycerate dehydrogenase enzyme that catalyses the first and
rate-limiting step in the phosphorylated pathway of serine bio-
synthesis. A methylation-gene expression association between
cg14476101 and PHGDH has been demonstrated in blood and
liver29. The CpG site has been reported to be negatively associated
with the levels of liver enzymes in serum28 and the risk of non-
alcoholic fatty liver disease (NAFLD)25. Furthermore, methyla-
tion of cg14476101 has been linked to adiposity measured by BMI
and waist circumference29. Another EWAS has also reported the
association between this CpG and blood concentration of steroid
hormones, which are upregulated in obesity59. In line with our
findings in the Rotterdam Study, several studies have shown an
inverse association between coffee consumption and liver
enzymes, including ALT, AST, and GGT60. Moreover, previous
studies have associated coffee consumption with reduced risk of
chronic liver disease26, hepatocellular carcinoma61, and
cirrhosis62. Together, these findings strongly proposed a link
between the expression of PHGDH gene and liver function that
can be modified by coffee intake via altering the DNA methyla-
tion levels of cg14476101.

We attempted to provide additional evidence of directionality
of the effect of coffee consumption on cg14476101 using MR
methods; however, the power of our MR analyses was attenuated
due to the small sample size of our DNA methylation data. The
lack of strong genetic instruments for coffee exposure might also
be an important determinant of the results observed. In line with
this reasoning, a recent review of the MR studies on coffee and
caffeine consumption63 has indicated the need of substantial
sample sizes to assess the causality when it comes to coffee. The
non-significant results from our MR analyses could also be
explained by some other reasons. Firstly, population stratification,
albeit we used genetic information from a large GWAS performed
mainly in European population and adjusted by population
substructure64. Secondly, pleiotropy, since some of the SNPs used
as IVs have also been associated with lipid traits and body size
which might influence the causal estimates. Yet the results of MR
excluding potential pleiotropic variants were fairly similar and

MR-Egger, implemented in this study, is an useful approach to
account for pleiotropy65. Thirdly, the genetic variants for coffee
consumption were associated with number of cups of coffee
per day among coffee drinkers, and the effect estimates might not
relate to DNA methylation observed among ever/never coffee
drinkers66. An alternative conclusion could be that the methyla-
tion patterns reflect pathways of coffee consumption effects on
the body, but are not necessarily causal. As the analyses have been
explored using meQTL data obtained from blood, we cannot rule
out that the potential differences might be observed in other
relevant tissues (e.g., liver). Unfortunately, important resources
have not reported meQTL data from other tissues different than
blood and this may warrant further investigation in future
studies.

We additionally knocked down the expression of PHGDH in
human liver cells and revealed a correlation between expression
of this gene and some lipid-associated genes (LPL, LDLR and
ABCA1), suggesting a potential role of PHGDH in hepatic-lipid
metabolism. In this line, previous GWAS have associated SNPs
near PHGDH with serum levels of total cholesterol67, some
metabolites68 and metabolic traits30,69. Also, previous evidence
has indicated that a reduced expression of PHGDH is linked to
the development of fatty liver disease36. In an independent study,
we previously showed that a CpG (cg06690548) annotated to
SLC7A11 is associated with liver enzymes and NAFLD25,28. Then,
performing similar knock-down experiments we demonstrated
the involvement of SLC7A11 in hepatic-lipid metabolism28. The
SLC7A11 gene is known as transporter of cysteine and glutamate,
whereas caffeine promotes glutamate release in the posterior
hypothalamus70. The same CpG (cg06690548) showed a bor-
derline association (β= 0.0008, P= 2.0 × 10−7) with coffee con-
sumption here. Thus, more experimental studies are merited to
further elucidate in what way epigenetic modification of PHGDH
and SLC7A11 could explain the beneficial effect of coffee con-
sumption on lipid metabolism and liver diseases.

Our EWAS meta-analysis of tea consumption showed no sig-
nificant association, despite having the advantage of much larger
sample size compared to the previously published EWAS21.
When including coffee consumption in the adjusted EWAS
model of tea, in the earlier study, Ek et al. reported two CpGs
associated with tea consumption in women, nevertheless, those
CpGs were not replicated in our study21. The lack of statistically
significant associations between tea consumption compared with
coffee in our analysis can be explained by specific nutrients that
are present only in coffee (or present in higher abundance
compared to tea) such as caffeine or various phenolic
compounds5. Moreover, data collection of tea consumption might
introduce more heterogeneity compared to coffee. It is also worth
mentioning that there is extensive literature on GWAS with
coffee consumption (Supplementary Table 5), but only one with
tea consumption (in Japanese population)71. Although we cannot
deduce with certainty the reasoning behind this, one might sus-
pect the weaker effect of tea consumption and potential existence
of publication bias due to the lack of non-significant findings. In
the future, perhaps bigger sample size would provide more
understanding in tea consumption EWAS. Given the well-
powered EWAS conducted here, it is also possible that tea con-
sumption has no discernible impact on peripheral blood DNA
methylation.

DNA methylation can differ across continental ancestries72,
challenging replication across populations of varying descent in
epigenetic studies73,74. Here we observed this discrepancy in our
results for some CpGs. In particular, none of the coffee-associated
CpGs in EA cohorts were replicated in AA. Moreover, the AA
participants showed one CpG site (cg05822739) associated with
coffee consumption that was not replicated in EA. These
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discrepancies between continental ancestries may be explained by
the following reasons. First, some CpGs might be ancestry-
specific. Second, given the strong influence of culture on coffee
drinking habit, its frequency may differ among different ancestry
groups. For example, in the EA cohorts, the mean coffee con-
sumption intake was 2.3 cups/day, while in the AA cohorts this
number dropped to 0.79 cups/day. Finally, the difference in
sample sizes in our meta-analysis (EA= 13,146; AA= 2921)
might also play a role in the discrepancies observed among the
populations.

The main strengths of this study are the large sample size and
multi-ethnic contribution. All contributing cohorts had DNA
methylation measured in whole blood, and adjustment for white
blood cell heterogeneity allowed us to account for different epi-
genetic markers within cells present in the blood. Incorporation
of different adjustment models also allowed us to limit con-
founding to a certain extent. The findings of this study should
also be considered in light of some limitations. One important
concern regarding this analysis is smoking, given that the effect of
smoking on DNA methylation has been recognized42 and pre-
vious studies have shown that heavier smokers tend to drink
more coffee44. Even though we adjusted for smoking in our
analysis, there is likely to be some residual confounding. Fur-
thermore, smoking status might be misclassified or the possibility
of second-hand smoke cannot be ruled out. The results presented
could reflect potential pleiotropy, confounding or both, or it
could provide insight into the potential causal role of coffee on
DNA methylation and disentangling these would merit further
investigations. In addition, coffee was assessed and used as a
continuous variable (cups/day), and some cohorts have different
cup sizes. However, we believe that this limitation would rather
dilute the findings, attenuating any association rather than falsely
inflating it. We also did not include information on coffee
brewing methods, which might have a large effect on what
compounds are in the final beverage (e.g. filtered vs non-filtered
coffee). It is also important to address the potential limitation of
this study resulting from the method of dietary data collection via
FFQ. While the FFQ are the most cost-effective way to collect the
dietary data, they are subject to some inaccuracies (e.g. partici-
pants might have a recall bias when filling in the questionnaires).
Nevertheless, when compared to the other dietary assessment
methods (e.g. 24-h recall or food diary), the FFQ usually reports a
lower within-person variation75. Finally, since our study consists
mainly of middle aged and elderly individuals of two ancestries,
other studies are needed to assess the generalizability of our
findings to other age groups and ancestries.

In summary, we found that coffee consumption is significantly
associated with differential DNA methylation at multiple CpG
sites, the genes annotated to some of these CpGs are involved in
pathways underlying coffee metabolism. Our findings may pro-
vide insights into the mechanism of action of coffee intake in
conferring risk of diseases. Future studies are warranted to further
explore the biological relevance of the associated DNA methyla-
tion sites and genes in relation to different health outcomes.

Methods
Study population. This study was conducted within the framework of the Cohort
for Heart and Aging Research in Genomic Epidemiology (CHARGE consortium)76

and additional participating cohorts, resulting in a total sample size of 15,789
participants. Clinical characteristics of the participants included in our study are
presented in Table 1. The discovery phase included 9612 participants of European
ancestry (EA) from the following cohorts (listed in alphabetical order): Airwave77,
Avon Longitudinal Study of Parents and Children (ALSPAC)78, two independent
datasets from the ESTHER Study (ESTHER_a and ESTHER_b)79, Framingham
Heart Study (FHS)80, Cooperative Health Research in the Augsburg Region Study
(KORA)81, two cohorts of the Rotterdam Study (RS-II and RS-III)82 and
TwinsUK83. We sought replication of the associated CpG sites from the discovery
phase, in an independent population consisting of 6,177 participants of European

(EA) and African American (AA) ancestries (18.3%). The replication phase
included two ethnically different sub cohorts of Atherosclerosis Risk in Commu-
nities Study (ARIC_EA and ARIC_AA)84, two ethnically different sub cohorts
from the Cardiovascular Health Study (CHS_EA and CHS_AA)85, and two inde-
pendent studies from the European Prospective Investigation into Cancer and
Nutrition (EPIC_Italy and EPIC_IARC)86. All participants provided written
informed consent, and all contributing cohorts confirmed compliance with their
local research ethics committees or Institutional Review Boards. Detailed infor-
mation of the participating cohorts are provided in Supplementary Information.

Assessment of coffee and tea consumption. Data on coffee and tea intake was
collected either by interview or using food frequency questionnaires (FFQs). As
some FFQs collected beverage intake over different periods of time (monthly,
weekly or daily), data was harmonized among the cohorts to cups per day by taking
the average intake of coffee/tea over the period of time specified by the FFQ utilized
by each cohort. For instance, if the beverage consumption was collected over the
period of one month, daily consumption was estimated from the available data and
multiplied with the frequency of consumption. Furthermore, if the beverage intake
data was collected categorically, the median value was taken from the available data
(e.g. 2.5 cups/day was used for the 2-3 cups/day category). If applicable, we
excluded herbal tea and others, as green and black tea are derived from the dif-
ferent processing and harvesting of leaves from the same plant -Camellia sinensis10.
Herbal tea does not contain any caffeine and green tea contains approximately half
the caffeine compared to black tea (3.1 mg/fluid ounce, 5.9 mg/fluid ounce)37. In a
subset of cohorts (RS-III-2, ALSPAC, EPIC_IARC, CHS_EA and CHS_AA), coffee
and tea consumption data were collected a few years prior to the collection of
whole blood, from which DNA methylation data was measured. Due to evidence
from a previous research showing that coffee and tea consumption tend to be stable
over longer periods of time87, we used these data for our analysis.

DNA methylation profiling. All participating cohorts measured DNA methylation
in peripheral blood using the Infinium Human Methylation 450K Bead-Chip
(Ilumina, San Diego, CA, USA) except Airwave cohort, where the Infinium
Methylation EPIC (850K) Bead-Chip was used88. DNA methylation status was
calculated with the β-value, signal from the methylated probe divided by the overall
signal intensity. The methylation percentage of CpG sites was reported as a con-
tinuous β-value range between 0 (no methylation) and 1 (full methylation).
Additional details are outlined in Supplementary Information. Cohort specific
methods of normalization are shown in Supplementary Table 1.

EWAS of coffee and tea consumption. DNA methylation was considered as the
dependent variable with coffee or tea consumption each as predictors of interest.
Conventionally, each participating cohort performed an EWAS as a set of mixed
effects linear-regression models, one CpG site at a time. In total, two linear mixed
effects regression models were computed for each of the two exposures of interest.
In the basic model (Model 1): we included age, sex, smoking status (never, former,
and current), white blood cells (either measured or imputed based on the
Houseman algorithm89) as fixed effects, and technical covariates as random effects
to control for batch effects. In the second model (Model 2), we additionally
adjusted for body mass index (BMI, kg/m2) and alcohol consumption (g/day). The
findings from Model 2 were considered as the primary results. All potential con-
founders were collected at the same time point of blood sampling for DNA
methylation. Genetic principal components were included as covariates to account
for population stratification, if required. A detailed description of the covariates
included in the models by each cohort is provided in Supplementary Information.
Tea and coffee consumption were added as covariates to Model 2 of EWAS on
coffee and tea, respectively, in order to assess potential confounding effects on
DNA methylation. This analysis was conducted on FHS, the largest cohort, and
the RS.

EWAS meta-analysis. Since data originated from multiple sources, we performed
quality control (QC) centrally. Each participating cohort submitted the EWAS
summary statistics for the QC followed by meta-analysis. For this step, we used a
specific package in R developed for QC within EWAS, namely “QCEWAS“90. We
computed the genomic inflation factor (lambda) and checked quantile-quantile
(QQ) plots for Model 2 for both coffee and tea consumption EWASs. Additionally,
we computed effect-size distribution plots to assess the effect-size scale of each
participating cohort. Prior to their inclusion into the meta-analysis, all probes with
a SNP, non-CpG probes and cross-reactive probes were removed as suggested by
Chen et al. 91. Results across independent cohorts were combined in both discovery
and replication phase by using inverse variance fixed effects meta-analysis,
implemented in METAL v.2011-03-2592. Moreover, we assessed heterogeneity of
effect estimates among cohorts using Cochran’s Q-test for heterogeneity imple-
mented in METAL92. If there was nominal evidence for heterogeneity (P < 0.05),
we performed random-effects inverse-variance meta-analysis using the method
implemented in GWAMA93. We created Manhattan plots using the qqman
package in R. In addition, we stratified two of the largest cohorts (FHS and RS) by
sex, smoking status and coffee consumption frequency. Smoking status was eval-
uated on current vs never smokers; coffee consumption frequency was determined
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as none or infrequent drinkers (<1 cup/day), moderate drinkers (>=1 and <4 cup/
day) and high or frequent drinkers (>=4 cup/day) using a large-scale GWAS on
coffee consumption as a reference for categorization of the variable37.

The discovery EWAS meta-analysis was conducted in 9,612 EA participants and
differentially methylated CpGs at the suggestive threshold of P < 5.0 × 10−6 were
interrogated. The CpGs that passed this threshold were tested for replication in the
independent panel comprising 6177 participants of European and African
American ancestries, using the same models as implemented in the discovery phase
and with a Bonferroni corrected p-value threshold, defined as 0.05 divided by the
number of associated CpGs in the discovery phase. The significantly associated
CpGs were retrieved from the combined meta-analysis with the whole samples at
the epigenome-wide significance threshold (P < 1.1 × 10−7). If the CpG was missing
from more than 4 participating cohorts, it was removed from the analysis. Forest
plots of the study-specific effect estimates were computed for significantly
associated CpG sites using the metaviz package (https://github.com/Mkossmeier/
metaviz) in R environment.

Due to potential discrepancy in DNA methylation patterns between different
ethnicities, we conducted meta-analysis EWASs separately in EA (n= 12,868) and
AA (n= 2921) participants. We first examined whether the significantly associated
methylation sites in EA participants passed the Bonferroni-corrected p-value
threshold in the AA participants. Next, we tested whether the significant methylation
sites in the AA participants replicated in the meta-analysis of the EA participants.

Furthermore, we examined the potential impact of time varying exposure in
cohorts that had different time points for methylation and coffee/tea consumption
data collection. For this analysis, we excluded four cohorts (RS-III-2, ALSPAC,
CHS_EA and CHS_AA) with different time points of data collection from the
overall sample and meta-analysed the remaining cohorts.

Integration of EWAS results with genetic variation and gene expression. DNA
methylation may have an impact on the transcription of genes; hence we used
genetic variants and gene expression data from five Dutch biobanks (BIOS-BBMRI
database) in a total of 3841 whole blood samples (http://www.genenetwork.nl/
biosqtlbrowser/), and explored whether DNA methylation levels of the significant
CpGs affect expression levels of their annotated/nearby genes (cis-expression
quantitative trait methylation (eQTM). The BIOS-BBMRI database was also used
to seek genetic variants influencing methylation levels of nearby or far-away genes
(cis- and trans-methylation quantitative trait loci (meQTL).

Functional and regulatory annotation of CpG sites. We conducted hypergeo-
metric tests with a Bonferroni correction to compare the genomic characteristics of
the replicated CpGs with the whole set of analysed CpGs, using the Infinium
Human Methylation 450 Bead-Chip annotation files. Further, we queried cis-
meQTLs in the platform of Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA GWAS)24. Using this platform, we examined the
overlap between cis-meQTLs with signals in the NHGRI-EBI Catalogue of pub-
lished GWAS94. As epigenetic signatures are tissue dependent, and our analysis was
limited in blood samples, we used the GTEx expression database - which provides
an insight into differential expression of relevant genes across different human
tissues. For this analysis, we used genes annotated by Illumina 450 K (or the nearest
gene) to the significantly associated CpGs. Moreover, we searched PubMed using
the ‘CpG id’ as the keyword to search any potential links between significant CpGs
and a range of health outcomes. Pathway analysis for the annotated genes was also
performed using the IPA software (https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/).

Mendelian randomization (MR) study. We implemented a two-sample MR
approach to evaluate the potential causal effect of coffee consumption on the
identified CpGs, investigating whether the DNA methylation changes are a con-
sequence of coffee consumption (Supplementary Fig. 1). To this end, we used 50
independent SNPs, reported in previous GWASs on coffee consumption, as
instrumental variables (IVs) (Supplementary Table 2)64,95.

In addition, we assessed the potential causal association of coffee-related CpGs
with a number of cardiovascular and metabolic traits, including coronary heart
disease (CHD), T2D, BMI, waist–hip ratio (WHR), lipid traits (HDL-C, LDL-C,
total cholesterol, triglycerides), and fatty liver disease. For each CpG, we calculated
IVs for DNA methylation levels based on methylation quantitative trait loci (cis-
meQTL) obtained from FHS cohort (N ~ 4170)96. Two methods were used to
explore causality. First, a weighted genetic risk score (GRS) was constructed for
coffee consumption. The other MR approaches implemented were the inverse
variance weighting (IVW) method, and sensitivity MR analyses: the weighted
median and MR-Egger methods. We used MR-PRESSO (MR pleiotropy residual
sum and outlier) to identify horizontal pleiotropic outliers in multi-instrument
summary-level MR testing (https://github.com/rondolab/MR-PRESSO)97. All MR
methods for multiple genetic instruments were conducted using the statistical
“MendelianRandomization” R-package98. Additional information of the MR
methods implemented in this study is outlined in Supplementary Information.

Association of coffee consumption, DNA methylation and liver function. Due
to the well-documented association between coffee consumption and liver

function13,26, we also ran a three-way association to assess the correlation of a
coffee-associated CpG with liver enzymes and fatty liver disease in the Rotterdam
Study (Supplementary Fig. 2). We first tested the cross-sectional associations
between coffee consumption and liver enzymes in the Rotterdam Study (n= 5192).
Serum GGT, ALT and AST levels were determined using Merck Diagnostica kit on
an Elan Autoanalyzer (Merck, Darmstadt, Germany). The liver enzymes were log
transformed to obtain normal distribution. Linear regression models were imple-
mented where each liver enzyme was an outcome, and the main exposure was
coffee consumption (cups/day) adjusted for sex, age, smoking, BMI and excessive
alcohol consumption. Excessive alcohol consumption was defined as >14 units/
week for women and >21 units/week for men. Next, we tested the association of the
coffee-related CpG with liver enzymes in the Rotterdam Study (n= 1406)13.
Generalized linear mixed effects models were fitted using the R package lme4 and
liver enzymes were log transformed to obtain normal distribution. Three models
were analysed, where each liver enzyme was an outcome, adjusted for age, sex,
BMI, smoking, whole blood cells proportion, batch effects and excessive alcohol
consumption. All analyses were performed using the statistical package R,
version 3.0.2.

Quantitative RT-PCR and knockdown of PHGDH in liver cell lines. Seven
established human hepatoma cell lines (including PLC/PRF/5, HepG2, HepRG,
Hep3B, SNU398, SNU449 and Huh6) were cultured separately. HepG2, Hep3B,
SNU398, SNU449 and Huh6 were cultured in Dulbecco’s modified Eagle’s medium
(Invitrogen-Gibco, Breda, the Netherlands) complemented with 10% (v/v) foetal
calf serum (Hyclone, Lonan, UT), 100 IU/ml penicillin, 100 μg/ml streptomycin,
and 2 mM L-glutamine (Invitrogen-Gibco). The hepatoblastoma cell line PLC/PRF/
5 was cultured on fibronectin/collagen/albumin-coated plates (AthenaES) in Wil-
liams E medium (Invitrogen-Gibco, Breda, the Netherlands) complemented with
10% (v/v) foetal calf serum, 100 IU/ml penicillin, 100 μg/ml streptomycin, and 2
mM L-glutamine. The human liver progenitor cell line—HepaRG was cultured in
William’s E medium supplemented with 10% (v/v) foetal calf serum, 100 IU/ml
penicillin, 100 μg/ml streptomycin, 5 μg/ml insulin (Sigma-Aldrich, St. Louis, MO),
and 50 μM hydrocortisone hemisuccinate (Sigma-Aldrich, St. Louis, MO). The
identity of all cell lines was confirmed by STR genotyping.

RNA was isolated using the Machery-NucleoSpin RNA II kit (Bioke, Leiden,
The Netherlands) and quantified using a Nanodrop ND-1000 (Wilmington, DE,
USA). cDNA was synthesized from total RNA using a cDNA Synthesis Kit
(TAKARA BIO INC). The cDNA of all target genes was amplified for 50 cycles and
quantified with a SYBRGreen-based real-time PCR (Applied Biosystems) according
to the manufacturer’s instructions. GAPDH was considered as a reference gene to
normalize gene expression. Relative gene expression was normalized to GAPDH
using the formula 2−ΔΔCT (ΔΔCT= ΔCTsample−ΔCTcontrol). All primer
sequences are included in Supplementary Table 3.

Lentiviral pLKO knockdown vectors (Sigma-Aldrich) targeting PHGDH or
control were obtained from the Erasmus Biomics Center and produced in
HEK293T cells. After a pilot study, the shRNA vectors (Supplementary Table 3)
exerting optimal gene knockdown were selected. Stable gene knockdown cells were
generated after lentiviral vector transduction and puromycin (2.5 μg/ml; Sigma)
selection. The relative expression levels of PHGDH with nine lipid-associated genes,
reported in the previous GWAS and experimental studies31–33, were examined.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary statistics from EWAS meta-analysis of coffee and tea consumption will be
made available upon publication on the CHARGE dbGaP site under the accession
number phs000930. The dataset used to extract genetic variants and gene expression data
is based on the BIOS-BBMRI database (freely available at: http://www.genenetwork.nl/
biosqtlbrowser/). Functional mapping and annotation was performed using FUMA
GWAS (freely available at https://fuma.ctglab.nl/), which also includes GTEx data. All
other relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author upon
reasonable request. All the software and programmes used to conduct these analyses are
freely available through the links mentioned in the manuscript.
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