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Abstract 

Background: The metabolic syndrome (MetS), defined by the simultaneous clustering of cardio-metabolic risk fac-
tors, is a significant worldwide public health burden with an estimated 25% prevalence worldwide. The pathogenesis 
of MetS is not entirely clear and the use of molecular level data could help uncover common pathogenic pathways 
behind the observed clustering.

Methods: Using a highly multiplexed aptamer-based affinity proteomics platform, we examined associations 
between plasma proteins and prevalent and incident MetS in the KORA cohort (n = 998) and replicated our results for 
prevalent MetS in the HUNT3 study (n = 923). We applied logistic regression models adjusted for age, sex, smoking 
status, and physical activity.

We used the bootstrap ranking algorithm of least absolute shrinkage and selection operator (LASSO) to select a 
predictive model from the incident MetS associated proteins and used area under the curve (AUC) to assess its per-
formance. Finally, we investigated the causal effect of the replicated proteins on MetS using two-sample Mendelian 
randomization.

Results: Prevalent MetS was associated with 116 proteins, of which 53 replicated in HUNT. These included previously 
reported proteins like leptin, and new proteins like NTR domain-containing protein 2 and endoplasmic reticulum 
protein 29. Incident MetS was associated with 14 proteins in KORA, of which 13 overlap the prevalent MetS associated 
proteins with soluble advanced glycosylation end product-specific receptor (sRAGE) being unique to incident MetS. 
The LASSO selected an eight-protein predictive model with an (AUC = 0.75; 95% CI = 0.71–0.79) in KORA.

Mendelian randomization suggested causal effects of three proteins on MetS, namely apolipoprotein E2 (APOE2) 
(Wald-Ratio = − 0.12, Wald-p = 3.63e−13), apolipoprotein B (APOB) (Wald-Ratio = − 0.09, Wald-p = 2.54e−04) and 
proto-oncogene tyrosine-protein kinase receptor (RET) (Wald-Ratio = 0.10, Wald-p = 5.40e−04).

Conclusions: Our findings offer new insights into the plasma proteome underlying MetS and identify new protein 
associations. We reveal possible casual effects of APOE2, APOB and RET on MetS. Our results highlight protein candi-
dates that could potentially serve as targets for prevention and therapy.
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Background
The metabolic syndrome (MetS) is a constellation of risk 
factors significantly increasing the risk of type 2 diabetes 
(T2D) and cardiovascular diseases (CVD) like coronary 
artery disease (CAD), stroke and heart failure [1, 2]. The 
respective risk factors are increased waist circumference, 
hypertriglyceridemia, reduced high-density lipoprotein, 
hyperglycemia and increased blood pressure. The preva-
lence of MetS has been steadily increasing in recent dec-
ades in conjunction with the obesity pandemic, driven by 
surplus eating and a sedentary lifestyle [3, 4]. It is esti-
mated that 25% of adults worldwide have MetS, causing 
significant financial impact on healthcare systems [5].

Since its conception, the nature of MetS has been 
under debate [6–9]. However, most researchers agree 
that the clustering of the above mentioned risk factors is 
more frequent than could be attributed to chance alone 
[6–9]. In the center of the debate is MetS’ pathogen-
esis, which remains in the hypothesis stage. Suggested 
common driving pathogenic pathways include visceral 
adiposity and insulin resistance with subsequent dyslipi-
demia and subclinical inflammation [6]. While the sug-
gested pathways help partly explain the clustering of risk 
factors and increased risk in some patients, they fail to 
explain the lack or incomplete clustering of those risk 
factors in others.

Recently, the introduction of omics data into CVD 
research has helped uncover molecular pathophysiologi-
cal players, an example being the identification of PCSK9 
as a drug target through genetic studies of CAD [10]. 
Omics studies with regard to cardio-metabolic risk fac-
tors have also been informative. Using the UK-Biobank 
data, a recent genetic study of MetS identified loci that 
are common to all MetS components as well as loci that 
are unique to the syndrome, i.e. not associated with the 
components themselves [11].

Proteomics, the study of proteins, can provide insight 
into the downstream players of genetics in the molecu-
lar pathogenic pathway of MetS and identify predic-
tive biomarkers or targets for drug development. 
Enabled by advances in proteomics, studies with MetS 
have expanded from single protein to multi-protein 
investigations, the largest to date featuring 249 proteins 
[12]. Reported protein associations with MetS include 
adipokines like leptin and adiponectin (ADIPOQ), liver 
secreted proteins like sex hormone binding globulin 
(SHBG) and inflammatory markers like C-reactive pro-
tein, tumor necrosis factor alpha and complement system 

proteins [13, 14]. These proteins indicate functional links 
to MetS-defining features such as insulin resistance and 
visceral adiposity, and help explain the increased risk of 
complications, like CVD, in MetS patients.

In the present study, we use a highly multiplexed, 
aptamer-based, affinity proteomics platform (SOMAs-
can™) to assess the association between 1095 blood 
plasma proteins and prevalent and incident MetS in the 
KORA cohort, and replicate our results in the HUNT 
study. The proteins assessed by the SOMAscan platform 
have been selected to represent markers of a broad range 
of biological pathways and tissue specific processes. We 
investigate the use of these proteins as biomarkers and 
explore their potential causal effects using two-sample 
Mendelian randomization (MR) [15].

Methods
Study populations
KORA cohort
The KORA study (Cooperative health research in the 
Region of Augsburg) is a population-based cohort study 
from Augsburg, southern Germany. The study was 
approved by the ethics committee of the Bavarian Medi-
cal Association. Written informed consent was obtained 
from each participant. We used KORA-F4 (conducted 
2006–2008) for cross-sectional analysis of prevalent 
MetS and its follow-up survey KORA-FF4 (conducted 
2013–2014) for the prospective analysis of incident MetS 
(mean follow-up time = 6.5, SD = 0.5  years). For both 
surveys, detailed clinical and demographic information 
was collected, as was peripheral blood for later omics 
analyses. Details on the KORA cohort have been previ-
ously published [16]. A random subsample of 1000 indi-
viduals was selected from the already deeply phenotyped 
KORA-F4 study participants for proteomics measure-
ment using the SOMAscan platform. One sample was 
excluded because it failed SOMALogic quality control 
and one participant was excluded due to the lack of suffi-
cient information to define MetS leaving 998 participants 
for the final cross-sectional analysis. For the follow-up 
analysis, 371 participants with prevalent MetS and four 
participants lacking sufficient information to define inci-
dent MetS were excluded leaving 623 participants for 
analysis.

HUNT cohort
The Nord-Trøndelag Health Study (HUNT) is a pop-
ulation-based cohort from Nord-Trøndelag County in 

Keywords: Metabolic syndrome, Proteomics, Blood proteins, Mendelian randomization analysis, Diabetes mellitus, 
type 2, Cardiovascular disease, Risk factors



Page 3 of 13Elhadad et al. Cardiovasc Diabetol          (2021) 20:111  

Norway. We used the HUNT3 survey (performed 2006–
2008, N = 1017 with proteomics measurements) for the 
replication of the KORA study cross-sectional results. 
The HUNT study collected detailed socio-demographic 
and clinical information for all participants [17]. Ten 
samples failed SOMALogic quality control and were 
excluded from further analyses. Moreover, fourteen par-
ticipants were excluded due to a lack of sufficient infor-
mation to define MetS and an additional 70 participants 
were excluded due to missing information for the covari-
ates smoking status and physical activity, leaving 923 par-
ticipants for the final cross-sectional analysis.

Proteomics measurement
The aptamer based SOMAscan platform was used to 
quantify proteins in both cohorts. Details on the platform 
[18] and its application to the KORA cohort have been 
described before [19]. In brief, each aptamer was selected 
to have high affinity toward a specific protein. Plasma 
was incubated with the aptamer mix and then exposed 
to multiple washing steps in the form of 2 bead-based 
immobilization steps to eliminate unbound or unspe-
cifically bound aptamers and proteins. Finally, aptamers 
were eluted from the proteins and quantified as prox-
ies to protein concentration by hybridization to custom 
arrays of aptamer-complementary oligonucleotides. The 
resulting raw intensities were processed with the help 
of standard samples included on each plate using a data 
analysis workflow consisting of hybridization normaliza-
tion, median signal normalization and signal calibration 
to control for inter-plate differences [18]. The raw inten-
sities are reported as relative florescence units.

Fasting plasma samples from the KORA study were 
sent to SomaLogic Inc. (Boulder Colorado, USA) for 
analysis [19]. Of the 1129 SOMAmer aptamers (SOMAs-
can assay V3.2) 29 failed SOMAscan quality control. We 
additionally removed five aptamers as recommended by 
the SOMAscan assay change log issued on December 22, 
2016, leaving 1095 aptamers for analysis. For replication, 
we used only the HUNT aptamers that passed quality 
control [20].

MetS definition in KORA
MetS was defined according to the harmonized definition 
by Alberti et al. [21] by the presence of three or more of 
the following criteria: (1) waist circumference ≥ 94  cm 
in men or ≥ 80  cm in women; (2) fasting serum triglyc-
erides ≥ 150  mg/dl or drug treatment for elevated tri-
glycerides (fibrates); (3) serum high density lipoprotein 
cholesterol (HDL) < 40  mg/dl in men or < 50  mg/dl in 
women or drug treatment for reduced HDL (fibrates); (4) 
systolic blood pressure ≥ 130  mmHg or diastolic blood 
pressure ≥ 85 mmHg or treatment with antihypertensive 

medication; (5) fasting serum glucose level ≥ 100  mg/dl 
or intake of antidiabetic medication.

MetS definition in HUNT
The same definition was used for HUNT with some dif-
ferences due to the unavailability of fasting measure-
ments and information on drug treatment for elevated 
triglycerides or reduced HDL. For defining lipid compo-
nents, we applied the cut-off levels suggested by Driver 
et  al. for the diagnosis of metabolic syndrome using 
non-fasting lipid measurements [22]. For defining the 
low HDL component of MetS, we applied the same cut-
off levels as for KORA [22]. For defining high triglycer-
ides, we used a cut-off of 200 mg/dl [22]. For defining the 
hyperglycemia component, we used a cut-off of 140 mg/
dl suggested by the American diabetes association diabe-
tes diagnosis guideline to diagnose impaired glucose tol-
erance [23] or intake of antidiabetic medication.

Statistical analysis
SOMAscan data was log2 transformed and each protein 
was standardized to have a mean of zero and a SD of 1 by 
subtracting its mean and dividing by its standard devia-
tion to allow easier interpretation of the results per SD of 
log-transformed protein level.

Baseline characteristics were compared between the 
two cohorts using t-tests for continuous variables and 
chi-square tests with continuity correction for categorical 
variables.

Proteome‑wide analysis
Proteome-wide analyses to test for associations between 
prevalent and incident MetS and proteins were carried 
out using logistic regression with one model per protein. 
Each model had prevalent or incident MetS as the out-
come, the log-transformed protein level as the explana-
tory variable, and was adjusted for age, sex, smoking 
status (categorized as never smoker, former smoker and 
current smoker) and physical activity (categorized as 
active vs inactive). We applied the Bonferroni method 
to correct for multiple testing throughout the paper. For 
the proteome-wide analyses this resulted in a significance 
threshold of p < 4.6e−05 (0.05/1095).

To replicate our results for prevalent MetS, we applied 
the same model in HUNT. We considered results repli-
cated if they had consistent effect direction and survived 
Bonferroni correction calculated based on the number of 
KORA significant proteins.

Furthermore, we assessed the association of individual 
prevalent and incident MetS components with replicated 
prevalent MetS proteins and KORA incident MetS sig-
nificant results, respectively. For incident components, 
analysis was done after removing participants with MetS 
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at baseline. For each component (increased waist cir-
cumference, hypertriglyceridemia, reduced HDL, hyper-
glycemia and increased blood pressure), we applied the 
same model with the component as an outcome using the 
KORA data.

Biomarker discovery for MetS
We investigated the predictive utility of the proteins sig-
nificantly associated with incident MetS in KORA by 
utilizing the bootstrap ranking algorithm of the least 
absolute shrinkage and selection operator (LASSO) for 
model selection using the “elasso” R-package version 1.1 
[24]. LASSO attempts to shrink the coefficients of the 
model covariates to zero thus selecting the covariates 
with the best predictive ability. We applied cross-valida-
tion to select the best LASSO constraint “lambda” within 
each bootstrap iteration.

We then used the area under the receiver operating 
characteristic curve (ROC-AUC) to test model perfor-
mance calculated using the “pROC” R-package version 
1.16.2 [25]. We further assessed performance using the 
calibration plot, which examines the agreement between 
observed and fitted values of the outcome [26] and by 
comparing the performance of LASSO selected protein 
model to a baseline model based on age and sex utilizing 
the DeLong test [27].

Additionally, we tested the performance of proteins 
associated with prevalent MetS as a biomarker panel 
using KORA as a training dataset and HUNT as a test 
dataset (full details in Additional file 1).

Enrichment and protein–protein interaction network 
analyses
We used STRING [28] to evaluate the protein–protein 
interaction network of the MetS associated proteins (full 
details in Additional file 1).

Mendelian randomization analysis
We used two-sample MR to investigate potential causal 
effects of replicated proteins on MetS. Mendelian rand-
omization analysis is an instrumental variable (IV) analy-
sis, in which genetic associations are used as anchors to 
assess causal effects of an exposure of interest on an out-
come of interest. Two-sample MR entails the use of pub-
lished genetic; i.e. single nucleotide polymorphism (SNP) 
association results to obtain IVs, thus allowing the use 
of the available bigger sample sizes and meta-analyses of 
genome wide association studies (GWAS).

First, we extracted SNPs associated with the protein 
of interest from already published genetic association 
studies using data of European ancestry. We extracted 
the IVs from SOMAscan GWAS studies by Suhre et  al. 
(n = 1000) [19] and Sun BB et al. (n = 3301) [29] and the 

cis only association study by Emilsson et  al. (n = 5457) 
[30].

We then identified ambiguous palindromic SNPs, 
which are SNPs with A/T or G/C alleles and an effect 
allele frequency around 0.5, using the cut-off points 
defined by the “TwoSampleMR” R-package [15]. We 
replaced the SNPs in question with an available proxy, 
defined as a SNP with r2 exceeding 0.85, or excluded 
them from further analyses [31]. To obtain a list of inde-
pendent SNPs to be used as IVs in further analyses, we 
clumped the list of SNPs using the r2 cut-off of 0.001. 
Selected IVs had to be in cis with the protein of inter-
est, i.e., within one Mb of the protein-coding gene as per 
the Human Genome Assembly GRCh37.p13. We sub-
sequently extracted the outcome summary statistics of 
the selected IVs or of one of their proxies from the MetS 
GWAS study by Lind (n = 291,107) [11].

We used the Wald ratio to estimate a causal effect if 
there was only one IV available [32]. In cases where more 
IVs were available, we applied a random effects model 
of the inverse variance weighted meta-analysis to com-
bine the Wald ratio estimates of all IVs [32, 33]. When-
ever there was more than one IV, we ran the MR‐Egger 
regression model to check for horizontal pleiotropy in 
our causal models [34], and we investigated scatter plots, 
leave-one-out analysis plots and forest plots to identify 
outliers among the IVs that could be driving the results in 
a certain direction.

All analyses were done in R version 4.0.2 (The R Foun-
dation for Statistical Computing). For MR analysis, the 
“TwoSampleMR” R-package version 0.5.5 was employed 
[15].

Results
Descriptive statistics of the study populations
Table  1 shows the baseline characteristics of both 
cohorts. The KORA sample comprised 998 participants 
with an age range of 43–75  years, of whom 515 were 
women, 371 had MetS at baseline and 147 developed 
it between baseline and follow-up. The HUNT sample 
compromised 923 participants with an age range of 31.6–
91.7 years, of whom 235 were women and 418 had MetS. 
KORA participants had significantly lower waist circum-
ference and triglyceride levels, and higher HDL levels, 
and were less often current smokers. Baseline character-
istics of the follow-up subset of KORA used in incident 
MetS analyses are shown in Table 1.

Association results of plasma proteins with prevalent MetS
The proteome-wide analysis of prevalent MetS yielded 
116 Bonferroni significant proteins, of which 51 are posi-
tively associated with MetS and 65 are negatively associ-
ated (Additional file 2: Table S1). Of these, 53 successfully 
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replicated in HUNT (Table 2; Fig. 1a). All of the 56 non-
replicated proteins available in HUNT showed concord-
ant direction of effect between the cohorts, and 35 of 
them were nominally significant in HUNT (Fig. 1b).

Among the replicated proteins, insulin-like growth fac-
tor-binding protein 2 (IGFBP2) had the lowest odds ratio 
(OR) in both cohorts per SD increase in log-transformed 
protein level, with values of 0.33 (95% CI 0.27–0.39) in 
KORA and of 0.52 (95% CI 0.44–0.62) in HUNT; and lep-
tin had the highest OR in both cohorts, with values of 3.7 
(95% CI 2.95–4.7) in KORA and 1.76 (95% CI 1.49–2.08) 
in HUNT. The correlation matrices of replicated proteins 
are shown in Additional file 1: Figure S1.

Association results of plasma proteins with incident MetS
The proteome-wide analysis of incident MetS in KORA 
yielded 14 significant protein associations at a Bonfer-
roni corrected threshold (Table  3; Fig.  2). IGFBP2 was 
the most strongly associated protein based on p-value 
(OR = 0.55; 95% CI = 0.44–0.68) and plasminogen acti-
vator inhibitor 1 (SERPINE1) had the largest magnitude 
of association (OR = 3.70; 95% CI = 2.95–4.70). The inci-
dent MetS significant proteins included 10 overlapping 
the replicated results and 13 overlapping the KORA sig-
nificant results of prevalent MetS (Fig. 2b). Only soluble 
advanced glycosylation end product-specific receptor 

(sRAGE) (OR = 0. 63; 95% CI = 0.51–0.77) was unique to 
incident MetS.

MetS components analysis
For each prevalent component, we tested whether the 
prevalent-MetS-replicated proteins were also associ-
ated with the component. Each component was associ-
ated with at least 33 of these proteins, with increased 
waist circumference and hypertriglyceridemia show-
ing the highest number of associations with 50 and 48, 
respectively (Fig. 3; Additional file 2: Table S2). In total, 
18 proteins were common to all prevalent components 
(Additional file 2: Table S2).

For the incident components, increased waist circum-
ference and high blood pressure were associated with 13 
and 8 proteins out of the 14 incident MetS KORA pro-
tein associations respectively (Additional file 2: Table S3). 
ADIPOQ and IGFBP2 were associated with the four 
incident components with significant results namely 
increased waist circumference, hypertriglyceridemia, 
hyperglycemia and increased blood pressure.

Biomarker discovery
We explored the utility of proteins associated with 
incident MetS as predictive biomarkers in KORA. The 
LASSO-selected predictive model included 8 proteins 
(Additional file  2: Table  S4) and had an AUC of 0.75 

Table 1 Baseline characteristics of the study populations

* Continuous variables were tested for a difference between the two populations using t-tests and categorical variables with chi-square tests with continuity 
correction, **Differences between cohorts could not be statistically tested as KORA was measured in fasting samples and HUNT in non-fasting samples
a Mean (range)
b Number (percentage)
c Mean ± standard deviation. Hypertension was defined as having systolic blood pressure ≥ 140 mmHg and diastolic ≥ 90 mmHg or known medication-controlled 
hypertension. In HUNT we additionally used the ICD-10 codes I10–I15 of the hospital and primary care data and the codes K86 or K87 of the International 
Classification of Primary Care, Second Edition, to identify participants with hypertension

Variable Prevalent MetS Incident MetS

KORA (n = 998) HUNT (n = 923) p value* KORA (n = 623)

Agea (years) 59.3 (43–75) 68.93 (31.6–91.7) < 0.001 58.15 (43–74)

Sex  femaleb 515 (51.6%) 235 (25.5%) < 0.001 379 (60.8%)

BMIc (kg/m2) 27.77 (4.58) 28.39 (3.97) 0.002 26.21 (3.87)

Waist  circumferencec (cm) 94.56 (14.05) 100.18 (11.04) < 0.001 89.07 (11.44)

Waist hip  ratioc 0.89 (0.08) 0.96 (0.07) < 0.001 0.86 (0.08)

Physically  activeb 620 (62.1%) 468 (50.7%) < 0.001 416 (66.8%)

Smokingb < 0.001

 Never smoker 423 (42.4%) 231 (25%) 277 (44.5%)

 Former smoker 427 (42.8%) 497 (53.8%) 244 (39.2%)

 Current smoker 148 (14.8%) 195 (21.1%) 102 (16.4%)

Total  cholesterolc (mg/dl) 221.99 (38.47) 178.50 (42.34) NA** 222.83 (37.11)

HDL-  cholesterolc (mg/dl) 57.35 (15.19) 45.05 (11.25) NA** 62.84 (14.45)

Triglyceride  levelc (mg/dl) 129.06 (87.68) 161.82 (86.81) NA** 96.59 (46.08)

Hypertensiond 398 (39.9%) 382 (41.4%) 0.544 143 (23.0%)
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Table 2 Replicated results of the proteome-wide analysis of prevalent MetS in KORA and HUNT, sorted by the magnitude of the OR in 
KORA

Protein full name UniProt Gene symbol KORA (n = 998) HUNT (n = 923)

OR (95% CI) P‑value OR (95% CI) P‑value

Leptin P41159 LEP 3.70 (2.95–4.70) 4.77E-28 1.76 (1.49–2.08) 3.76E−11

Plasminogen activator inhibitor 1 P05121 SERPINE1 2.51 (2.12–3.00) 2.24E−25 1.37 (1.19–1.57) 9.99E−06

Growth hormone receptor P10912 GHR 2.33 (1.97–2.78) 3.84E−22 2.08 (1.76–2.47) 9.44E−18

Tissue-type plasminogen activator P00750 PLAT 2.17 (1.82–2.61) 1.54E−17 1.36 (1.19–1.57) 8.57E−06

Aminoacylase-1 Q03154 ACY1 2.16 (1.83–2.56) 2.95E−19 1.93 (1.64–2.30) 2.71E−14

Dickkopf-like protein 1 Q9UK85 DKKL1 1.96 (1.63–2.39) 6.02E−12 1.31 (1.15–1.51) 9.54E−05

Galectin-3-binding protein Q08380 LGALS3BP 1.85 (1.59–2.16) 3.66E−15 1.52 (1.32–1.75) 6.81E−09

GDNF family receptor alpha-1 P56159 GFRA1 1.78 (1.52–2.09) 7.06E−13 1.46 (1.27–1.70) 1.99E−07

Complement factor H P08603 CFH 1.76 (1.51–2.06) 1.44E−12 1.67 (1.42–1.98) 7.71E−10

Apolipoprotein E (isoform E3) P02649 APOE 1.73 (1.49–2.02) 1.17E−12 1.47 (1.26–1.72) 1.16E−06

Retinoic acid receptor responder protein 2 Q99969 RARRES2 1.72 (1.48–2.01) 3.04E−12 1.54 (1.33–1.80) 1.84E−08

Endoplasmic reticulum resident protein 29 P30040 ERP29 1.71 (1.46–2.00) 1.39E−11 1.40 (1.21–1.61) 3.97E−06

Complement factor I P05156 CFI 1.70 (1.46–2.00) 1.81E−11 1.36 (1.18–1.58) 2.72E−05

Proto-oncogene tyrosine-protein kinase receptor P07949 RET 1.70 (1.46–1.99) 1.19E−11 1.87 (1.59–2.21) 1.71E−13

Bone morphogenetic protein 1 P13497 BMP1 1.68 (1.44–1.97) 8.25E−11 1.40 (1.17–1.68) 2.66E−04

Afamin P43652 AFM 1.66 (1.43–1.93) 4.89E−11 1.37 (1.19–1.58) 1.28E−05

Reticulon-4 receptor Q9BZR6 RTN4R 1.65 (1.42–1.92) 7.45E−11 1.65 (1.42–1.92) 6.57E−11

Scavenger receptor cysteine-rich type 1 protein M130 Q86VB7 CD163 1.59 (1.38–1.85) 5.75E−10 1.41 (1.23–1.62) 8.61E−07

C–C motif chemokine 25 O15444 CCL25 1.57 (1.36–1.82) 1.04E−09 1.33 (1.15–1.53) 7.50E−05

E-selectin P16581 SELE 1.56 (1.34–1.82) 1.29E−08 1.68 (1.45–1.94) 3.29E−12

Ficolin-3 O75636 FCN3 1.52 (1.30–1.77) 1.15E−07 1.31 (1.13–1.52) 3.72E−04

Lysosomal protective protein P10619 CTSA 1.51 (1.31–1.76) 4.55E−08 1.29 (1.12–1.49) 4.00E−04

Cathepsin Z Q9UBR2 CTSZ 1.49 (1.29–1.73) 9.24E−08 1.42 (1.24–1.65) 1.35E−06

Thrombospondin-2 P35442 THBS2 1.43 (1.24–1.65) 7.57E−07 1.38 (1.20–1.60) 1.33E−05

C–C motif chemokine 16 O15467 CCL16 1.42 (1.21–1.68) 3.69E−05 1.34 (1.16–1.55) 5.95E−05

Insulin-like growth factor-binding protein 2 P18065 IGFBP2 0.33 (0.27–0.39) 4.63E−33 0.52 (0.44–0.62) 4.04E−14

Sex hormone-binding globulin P04278 SHBG 0.42 (0.35–0.50) 6.47E−22 0.47 (0.40–0.56) 2.86E−18

Insulin-like growth factor-binding protein 1 P08833 IGFBP1 0.43 (0.37–0.51) 1.03E−23 0.55 (0.47–0.64) 1.98E−14

Endothelial cell-specific molecule 1 Q9NQ30 ESM1 0.47 (0.39–0.56) 1.20E−16 0.68 (0.57–0.80) 1.31E−05

Netrin receptor UNC5D Q6UXZ4 UNC5D 0.48 (0.40–0.56) 8.72E−18 0.75 (0.64–0.87) 1.92E−04

WAP, Kazal, immunoglobulin, Kunitz and NTR domain-
containing protein 2

Q8TEU8 WFIKKN2 0.48 (0.41–0.57) 2.52E−18 0.65 (0.56–0.75) 3.52E−09

Brevican core protein Q96GW7 BCAN 0.50 (0.42–0.59) 4.72E−15 0.61 (0.51–0.73) 1.87E−07

Neural cell adhesion molecule 1, 120 kDa isoform P13591 NCAM1 0.51 (0.44–0.60) 6.01E−17 0.63 (0.54–0.73) 1.10E−09

Tumor necrosis factor-inducible gene 6 protein P98066 TNFAIP6 0.51 (0.44–0.60) 2.05E−15 0.65 (0.56–0.75) 5.30E−09

Wnt inhibitory factor 1 Q9Y5W5 WIF1 0.52 (0.43–0.62) 2.39E−12 0.76 (0.66–0.88) 1.62E−04

Hepatocyte growth factor receptor P08581 MET 0.52 (0.44–0.60) 1.22E−16 0.73 (0.63–0.85) 4.76E−05

Osteomodulin Q99983 OMD 0.53 (0.45–0.62) 2.38E−14 0.75 (0.65–0.87) 1.21E−04

Transforming growth factor beta receptor type 3 Q03167 TGFBR3 0.53 (0.45–0.62) 9.27E−16 0.72 (0.62–0.84) 1.78E−05

Mast/stem cell growth factor receptor Kit P10721 KIT 0.56 (0.47–0.65) 9.54E−13 0.74 (0.64–0.86) 5.65E−05

Gelsolin P06396 GSN 0.57 (0.49–0.67) 1.83E−12 0.66 (0.57–0.76) 3.50E−08

Iduronate 2-sulfatase P22304 IDS 0.59 (0.51–0.69) 2.21E−11 0.76 (0.65–0.87) 1.70E−04

72 kDa type IV collagenase P08253 MMP2 0.60 (0.51–0.69) 2.09E−11 0.64 (0.56–0.74) 3.08E−09

Neural cell adhesion molecule L1-like protein O00533 CHL1 0.60 (0.51–0.69) 2.41E−11 0.73 (0.63–0.83) 6.26E−06

Epidermal growth factor receptor P00533 EGFR 0.60 (0.51–0.70) 7.17E−11 0.73 (0.62–0.86) 2.28E−04

Interleukin-1 Receptor accessory protein Q9NPH3 IL1RAP 0.60 (0.51–0.70) 1.61E−10 0.71 (0.62–0.82) 1.61E−06

Apolipoprotein B P04114 APOB 0.60 (0.52–0.69) 9.93E−12 0.77 (0.67–0.88) 1.66E−04
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(95% CI = 0.71–0.79). Comparing the LASSO selected 
predictive model to the age and sex model yielded 
a delta AUC of 0.12 in KORA, which was significant 
based on the DeLong test (Additional file 1: Figure S2). 
The top 2 performing protein were netrin receptor 
(UNC5D) with AUC = 0.66 (CI = 0.66–0.71) and ami-
noacylase-1 (ACY1) with AUC = 0.65 (CI = 0.60–0.70) 
(Additional file :2Table S5).

Our investigation in the utility of prevalent MetS 
protein associations as biomarkers yielded a 15-pro-
tein diagnostic model. The model yielded lower per-
formance in HUNT with an AUC-KORA of 0.87 (95% 
CI = 0.85–0.89) and an AUC-HUNT of 0.74 (95% 
CI = 0.71–0.77) (Additional file 1).

Mendelian randomization
We explored if the proteins were causal to MetS (Addi-
tional file  2: Table  S6). Of the 29 proteins for which 
we found IVs, 3 showed Bonferroni significant causal 
effects on MetS (Fig.  4), namely apolipoprotein E3 
(APOE3) (Wald-Ratio = − 0.12, Wald-p = 3.63e−13), 
apolipoprotein B (APOB) (Wald-Ratio = − 0.09, 
Wald-p = 2.54e−04) and proto-oncogene tyrosine-
protein kinase receptor (RET) (Wald-Ratio = 0.10, 
Wald-p = 5.40e−04).

All analyses were adjusted for age, sex, smoking status and physical activity

OR; odds ratio per 1 SD increase in log-transformed protein levels

Table 2 (continued)

Protein full name UniProt Gene symbol KORA (n = 998) HUNT (n = 923)

OR (95% CI) P‑value OR (95% CI) P‑value

Neurogenic locus notch homolog protein 1 P46531 NOTCH1 0.61 (0.52–0.70) 4.64E−11 0.77 (0.67–0.88) 1.63E−04

Plasma protease C1 inhibitor P05155 SERPING1 0.61 (0.53–0.71) 3.89E−11 0.66 (0.56–0.77) 1.80E−07

Chordin-like protein 1 Q9BU40 CHRDL1 0.67 (0.57–0.79) 2.86E−06 0.72 (0.60–0.86) 4.50E−04

Thrombin P00734 F2 0.68 (0.57–0.81) 2.65E−05 0.65 (0.55–0.75) 4.13E−08

Kallikrein-8 O60259 KLK8 0.72 (0.62–0.83) 5.94E−06 0.79 (0.69–0.90) 4.12E−04

Superoxide dismutase [Mn], mitochondrial P04179 SOD2 0.73 (0.63–0.84) 2.42E−05 0.74 (0.64–0.85) 3.13E−05

Muellerian-inhibiting factor P03971 AMH 0.74 (0.64–0.85) 4.28E−05 0.77 (0.66–0.88) 4.05E−04

Fig. 1 Results of proteome-wide analysis of prevalent MetS, with replicated proteins labelled by their gene name. a Volcano plot of the results in 
KORA. b Concordance plot examining effect sizes in KORA and HUNT. OR; odds ratio per 1 SD increase in log-transformed protein levels
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Discussion
We used aptamer-based proteomics to investigate plasma 
protein associations with prevalent and incident MetS 
and, for those proteins showing a relationship with this 
syndrome, examined their utility as biomarkers and 
assessed their causal relationship with MetS. Of the 116 

proteins associated with prevalent MetS in the KORA 
F4 study, 53 successfully replicated in the HUNT3 study. 
The proteins with the largest effect estimates were lep-
tin and IGFBP2, both of which have been previously 
reported to be associated with obesity, T2D and MetS 
[35–38]. The replicated results also included 30 new 

Table 3 Bonferroni significant results of the proteome-wide analysis with incident MetS in KORA (N = 623), sorted by the magnitude 
of the OR

All analyses were adjusted for age, sex, smoking status and physical activity

OR; odds ratio per 1 SD increase in log-transformed protein levels

Target full name UniProt Gene symbol OR (CI) P‑value

Plasminogen activator inhibitor 1 P05121 SERPINE1 1.82 (1.46–2.30) 2.28E−07

Growth hormone receptor P10912 GHR 1.65 (1.33–2.04) 4.63E−06

Aminoacylase-1 Q03154 ACY1 1.64 (1.30–2.09) 4.02E−05

C5a anaphylatoxin P01031 C5 1.62 (1.32–2.01) 6.52E−06

Adiponectin Q15848 ADIPOQ 0.55 (0.43–0.70) 1.83E−06

Insulin-like growth factor-binding protein 2 P18065 IGFBP2 0.55 (0.44–0.68) 8.36E−08

WAP, Kazal, immunoglobulin, Kunitz and NTR domain-
containing protein 2

Q8TEU8 WFIKKN2 0.58 (0.46–0.73) 4.09E−06

Netrin receptor UNC5D Q6UXZ4 UNC5D 0.61 (0.48–0.77) 2.82E−05

Sex hormone-binding globulin P04278 SHBG 0.61 (0.49–0.77) 3.43E−05

Iduronate 2-sulfatase P22304 IDS 0.63 (0.50–0.77) 1.84E−05

Hepatocyte growth factor receptor P08581 MET 0.63 (0.50–0.77) 1.78E−05

Advanced glycosylation end product-specific receptor, 
soluble

Q15109 AGER 0.63 (0.51–0.77) 1.10E−05

Insulin-like growth factor-binding protein 1 P08833 IGFBP1 0.63 (0.51–0.79) 4.26E−05

Interleukin-1 receptor type 1 P14778 IL1R1 0.64 (0.52–0.79) 2.64E−05

Fig. 2 Results of proteome-wide analysis of incident MetS in KORA. a Volcano plot with Bonferroni significant proteins labelled by their gene name. 
b Euler diagram showing extent of overlap between incident MetS results in KORA and prevalent MetS results in KORA and its replicated results in 
HUNT. OR; odds ratio per 1 SD increase in log-transformed protein levels
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protein associations, not previously reported to be asso-
ciated with MetS, including neural cell adhesion mol-
ecule L1-like protein (CHL1), complement factor I (CFI), 
GDNF family receptor alpha-1 (GFRA1), kallikrein-8 
(KLK8), brevican core protein (BCAN), dickkopf-like 
protein 1 (DKKL1), netrin receptor (UNC5D), NTR 
domain-containing protein 2 (WFIKKN2), and endoplas-
mic reticulum protein 29 (ERP29).

Replicated proteins overlap with the protein asso-
ciations with body mass index (BMI) and type 2 diabe-
tes. WFIKKN2, a protease inhibitor, was reported to be 
negatively associated with BMI with potential bi-direc-
tional causal effect as demonstrated by MR analysis [36]. 
ERP29, a chaperone protein, has been reported to be pos-
itively associated with BMI and to have a role in proinsu-
lin secretion [39]. Of the replicated proteins, endothelial 
cell-specific molecule 1 (ESM1), has been reported to be 
low in liver steatosis in MetS patients [40] and in macro-
albuminuria in T2D patients [41], both of which are in 
line with the negative association between ESM1 and 
MetS observed here. However, ESM1 was reported to be 
positively associated with atherosclerotic CVD [42].

Associations with incident MetS overlapped with prev-
alent MetS results, except for sRAGE, which was unique 

to incident MetS. sRAGE acts as a decoy of the RAGE 
cell surface receptor. sRAGE exogenously traps advanced 
glycation end products, therefore decreasing their harm-
ful inflammatory effects through the blockage of their 
action on RAGE. sRAGE has been previously reported 
to be inversely associated with T2D, BMI and MetS [36, 
43, 44] and was reported to lower the risk of CVD in 
T2D patients through the modulation of cardiovascular 
cell apoptosis [45]. RAGE-knockout mice were shown 
to suffer from accelerated weight gain, hypercholester-
olemia and increased insulin levels pointing to the poten-
tial complex role of the RAGE family of receptors in the 
pathogenesis of insulin resistance and obesity [46].

To assess which of the MetS components are driv-
ing our observed results, we explored potential associa-
tions between our replicated protein associations with 
prevalent MetS and the respective MetS components 
and between incident MetS significant proteins and the 
respective MetS components. In total, 18 of the 53 rep-
licated proteins were associated with all prevalent com-
ponents. Of them, five were previously reported to be 
associated with all MetS components namely leptin, 
IGFBP1, IGFBP2, tissue-type plasminogen activator 
(PLAT) and SERPINE1 [12]. Ten of these 18 proteins 

Fig. 3 Barplot showing protein associations of prevalent and incident individual MetS components with replicated prevalent MetS results (n = 53 
proteins) and KORA incident MetS results (n = 14 proteins) respectively. The abbreviations used in the y-axis for the MetS components are: Waist 
(increased waist circumference); dysglycemia (increased blood glucose level); TGs (hypertriglyceridemia); HDL (reduced HDL); BP (increased blood 
pressure)
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(leptin, IGFBP1, IGFBP2, SHBG, growth hormone recep-
tor (GHR), hepatocyte growth factor receptor (MET), 
galectin-3-binding protein (LG3BP), APOB and Wnt 
inhibitory factor 1 (WIF-1)) were previously reported to 
be associated with T2D, reflecting the shared pathogenic 
pathways between the two entities [47, 48]. Moreover, 
4 of the 18 proteins (PLAT, SERPINE1, 72  kDa type IV 
collagenase (MMP2), NCAM1) have been reported to 
be associated with CVD, providing further evidence for 
the link between CVD and MetS. However, in the present 
study MMP2 showed a negative association with MetS, 
contradicting previous reports [49]. While MMP2 has 
been reported to be increased in metabolic syndrome 
and cardiovascular disease, its deficiency has also been 
reported to be associated with metabolic and inflamma-
tory pathologies, pointing toward a complex relationship 
of MMP2 with cardiometabolic disorders [50, 51].

Of the incident MetS components, ADIPOQ and 
IGFBP2 were common to all incident components except 
for reduced HDL, which showed no protein associations. 
ADIPOQ and IGFBP2 were reported before to be associ-
ated with T2D and obesity [36, 52, 53].

Moreover, we evaluated the performance of the pro-
teins as prediction biomarkers, both as a risk score and 

as individual biomarkers. As predictors of future MetS, 
the risk score had moderate performance in KORA 
(AUC = 0.75). As single predictive biomarkers the top 
five proteins included UNC5D, ACY1, SERPINE1, 
sRAGE and C5a anaphylatoxin. The lower performance 
of the proteins as biomarkers could be partly attrib-
uted to the differences in baseline characteristics of 
both cohorts and to the definition of the MetS, which 
relies on arbitrarily defined cut-off points based on risk 
assessment of its different components.

The investigation into the causal effects of proteins 
on MetS showed evidence for 2 protective casual pro-
teins—APOE3 and APOB—and one harmful, RET. 
Except for APOE3, the causal effect of the proteins had 
the same effect direction as their observational results. 
APOE3 is an isoform of the APOE gene, which is a 
protein-coding gene with two other isoforms, namely 
APOE2 and APOE4. The APOE isoforms are encoded 
by two SNPs namely rs429358-C/T and rs7412-C/T. 
The combination of rs429358-T and rs7412-T is char-
acteristic of the second isoform, of rs429358-T and 
rs7412-C is characteristic of the third isoform and of 
rs429358-C and rs7412-C is characteristic of the fourth 
isoform [54].

Fig. 4 Mendelian randomization results with MetS as outcome compared with observational effect estimates. Effect estimates represent odds 
ratios for association results and represent beta coefficients for MR with proteins as exposure
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The discrepancy between MR and observational results 
of APOE3 could be due to the fact that the causal effect 
represents lifetime exposure in comparison to the obser-
vational time point effect. Additionally, the IV used in 
the MR analysis rs1065853 with the effect allele T, is in 
LD with the T allele of the SNP rs7412. The T allele of 
the SNP rs7412 characterizes the genotype of the APOE2 
polymorphism, indicating that the MR result reflects 
the effect of APOE2 and not APOE3.APOE2 has been 
reported to be associated with lower risk of MetS in 
Uyghur ethnic men [55], with longevity [56] and with 
lower risk of Alzheimer’s disease.

Strengths and limitations
Through the use of the high throughput aptamer based 
SOMAscan platform, we assessed the association of 
MetS with a large number of proteins (1095 in total). 
The use of plasma samples allowed us to find associa-
tions which may reflect the processes of multiple tissues 
and pathways that may be involved in the pathogenesis 
of MetS; as plasma is easily accessible, our discovered 
associations may be more readily transferable for use as 
clinical biomarkers. The replication in the HUNT study 
indicates broader generalizability of our results. The 
application of MR to decipher the causal framework gov-
erning these associations will enable future investigators 
to prioritize our results toward drug target identification 
and further functional investigation of MetS.

There are a number of limitations to our study. We 
were not able to apply the same MetS definition in the 
replication study HUNT as in the discovery KORA as the 
former lacked fasting blood sample collection; however, 
we used clinically defined cut-off points of non-fasting 
measurements that reflect the same pathologies identi-
fied using fasting measurements. Notably, a study com-
paring MetS-scores defined using fasting vs. non-fasting 
samples found that both scores were linked to the devel-
opment of coronary artery disease and diabetes [57]. The 
aptamer-based technique could suffer from cross-reac-
tivity; however, our results included proteins replicating 
previously reported associations measured using tech-
niques other than SOMAscan [58]. The analysis of inci-
dent MetS were conducted in a smaller sample size than 
prevalent MetS and we could not investigate replication 
in HUNT due to the lack of follow-up data.

We applied rigorous methods in our causality analy-
sis using MR to use only valid IVs and to apply sensi-
tivity analyses to evaluate pleiotropy. However, MR is 
dependent on multiple assumptions that are hard to 
verify and test and its results should be interpreted with 
caution. Moreover, the studies we used in the causal 
analyses differed in power for the exposures and the 
outcome, with MetS GWAS having a bigger sample size 

and subsequently more power than the protein GWAS 
studies.

Conclusion
Our results provide a comprehensive analysis of the 
associations between plasma proteins and MetS. Rep-
licated results included proteins previously reported to 
be associated with cardio-metabolic traits, thus pointing 
to pathogenic pathways they share with MetS, includ-
ing insulin resistance and CVD. These proteins include 
leptin, GHR, SHBG, IGFBP1 and IGFBP2. Replicated 
results also included proteins involved in the pathogen-
esis of CVD, such as PLAT, SERPINE1 and members of 
the complement system. Our replicated results identi-
fied new proteins including ERP29, KLK8, DKKL1 and 
WFIKKN2. We identify sRAGE to be uniquely associ-
ated with the incidence of MetS, which is in line with the 
observed phenotype in sRAGE knockout mice models.

Biomarker analysis identified an eight proteins predic-
tive panel with an AUC of 0.75. Moreover, causal analysis 
using Mendelian randomization suggested causal effects 
of APOE2, APOB and RET on MetS. Further functional 
studies are needed to clarify their roles in the pathogen-
esis of MetS.
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