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Abstract 15 

We here report a comprehensive non-targeted analytical approach to describe the 16 

Maillard reaction in beer. By Fourier-transform ion cyclotron mass spectrometry (FT-17 

ICR-MS), we were able to assign thousands of unambiguous molecular formulae to 18 

the mass signals and thus directly proceed to the compositional space of 250 analyzed 19 

beer samples. Statistical data analyses of the annotated compositions showed that the 20 

Maillard reaction is one of the driving forces of beer’s molecular diversity leading to key 21 

compositional changes in the beer metabolome. Different visualization methods 22 

allowed us to map the systematic nature of Maillard reaction derived compounds. The 23 

typical molecular pattern, validated by an experimental Maillard reaction model system, 24 

pervades over 2,800 (40%) of the resolved small molecules. The major compositional 25 

changes were investigated by mass difference network analysis. We were able to 26 

reveal general reaction sequences that could be assigned to successive Maillard 27 

intermediate phase reactions by shortest path analysis. 28 

Keywords: FT-ICR-MS, Maillard reaction, Foodomics, Beer metabolomics, Molecular 29 

networking, Mass difference network  30 
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1. Introduction 31 

Beer belongs to the oldest fermented beverage in the world (Michel & McGovern, 32 

1993). Thousands of years ago, humankind already commenced to purposefully 33 

produce durable and nutrient-rich beverages timely concordant with the domestication 34 

of cereals (Dietrich et al., 2020). While the shelf life of beer is notably due to hops 35 

constituents, the alcohol content and the stable pH value, the raw material’s durability 36 

is maintained by reducing the water content. The underlying process of malting was 37 

widespread in ancient Egypt, where the good taste of heat-treated cereals already was 38 

valued (Meußdoerffer & Zarnkow, 2014). It still represents one of the manifold guided 39 

processes that make up modern beer brewing, the complexity of which is mirrored in 40 

the diverse molecular composition of beer. Beer can be considered as an exceedingly 41 

complex organic mixture in an aqueous solution, to which the brewing process 42 

contributes as considerably as the ingredients themselves. The heat treatment of the 43 

carbohydrate source is a unique step that notably lifts the molecular complexity of beer 44 

from that of other beverages. Malting the grain (steeping, germination, kilning/roasting) 45 

leads to a series of chemical reactions that are reflected in the “beer’s metabolome”. 46 

Brewing science and beer analysis has been integrating empirical knowledge about its 47 

chemical composition over centuries (Pieczonka et al., 2021). Using numerous 48 

analytical approaches including UHPLC-MS, GC-MS and NMR spectroscopy, both 49 

targeted and non-targeted strategies described the beer composition with regard to 50 

metabolic profiles characteristic for beer types (Duarte et al., 2004), brewing sites 51 

(Almeida et al., 2006), beer quality (Lachenmeier et al., 2005), ageing (Rodrigues et 52 

al., 2011) or the evolution of hops derived compounds (Haseleu et al., 2010). Recently, 53 

our group was able to demonstrate the power the ultrahigh resolution mass 54 

spectrometric approach of flow injection Fourier transform ion cyclotron mass 55 

spectrometry (FI-FT-ICR-MS) providing a comprehensive picture of the beer’s 56 

metabolome (Pieczonka et al., 2020). Out of the resolved molecular diversity, 57 

molecular networks of plant secondary metabolites that differentiate beer types and 58 

raw materials used could be made visible and characterized. Research on the driving 59 

force of chemical changes during the roasting process, the Maillard reaction (MR), is 60 

more so dominated by targeted approaches. Brewing research focused on 61 

understanding the series of complex reactions by studying reaction mechanisms of 62 

certain marker molecules and aroma compounds. For example, 5-hydroxymethyl-2-63 

furfuralaldehyde (HMF) is generated by multiple pathways including caramelization 64 
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and the MR starting from numerous possible precursors (Capuano & Fogliano, 2011). 65 

By comparison, the formation of maltol, characteristic for eponymous dark malt and 66 

beer, only occurs in disaccharide systems favored by stereochemistry and hindered 67 

dehydration of respective monosaccharide precursors (Yaylayan & Mandeville, 1994). 68 

Many studies followed this approach and studied new non-volatile or aroma active 69 

compounds including their formation pathways (Hellwig & Henle, 2010; Hellwig et al., 70 

2016; Mavric & Henle, 2006). However, a comprehensive and holistic approach 71 

remains inadequately pursued. Comprehensive and molecular-level detection of 72 

Maillard derived compounds in beer forms the basis to describe general reaction 73 

sequences, driving forces and key intermediates. It carries the potential to guide the 74 

MR related brewing processes towards desired attributes of the beer as Maillard 75 

reaction products (MRPs) play a major role in its organoleptic, physical and chemical 76 

properties. Melanoidins as MR end products determine the color of beer (Kuntcheva & 77 

Obretenov, 1996), they contribute to the stabilization of aroma compounds (Obretenov 78 

et al., 2002), have foam stabilizing properties (Lusk et al., 1995) and show anti-79 

oxidative properties (Spreng & Hofmann, 2018). The shelf life of beer is further 80 

increased due to the inhibition of bacterial growth (Dack et al., 2017). Overall, beer 81 

quality could benefit from optimizing the MR not only towards the formation of a few 82 

targeted molecules, but addressing and eventually controlling the entire compositional 83 

space, including the many still unknowns. 84 

We have recently developed an analytical pipeline based on high-resolution mass 85 

spectrometry and data visualization that allows to comprehensively study the early 86 

Maillard reaction network on a molecular level in sugar-amino acid model systems 87 

(Hemmler et al., 2019; Hemmler et al., 2017). Studying exact mass differences as 88 

proxy for the reactome was shown to be a valuable tool to monitor the formation of 89 

MRPs and to better understand their chemical interplay. In this study, we apply this 90 

analytical strategy to better understand non-enzymatic browning reactions in beer. We 91 

aim to capture the huge diversity of the beer metabolome, assess the contribution of 92 

MR products and extract related accurate masses. Visualization and integration of 93 

molecular compositions into molecular networks will enable us to capture a 94 

comprehensive picture of the Maillard reaction as it may occur in the (bio)chemically 95 

complex beer system. 96 

 97 
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2. Materials and methods 98 

 99 

2.1 Beer samples and Maillard model system 100 

A total of 250 samples of bottled beers from over 40 different countries were analyzed. 101 

They represent the variety of different beer styles, fermentation types (lager, wheat, 102 

craft, geuze, abbey) and raw materials available. The samples were purchased at local 103 

grocery stores between 2018 and 2020 and stored at -20 °C prior preparation for 104 

analyses. 105 

For the model system, the concentration of 19 amino acids, accessible for 106 

derivatization with o-phthaldialdehyde, and 5 saccharides were analyzed in a biological 107 

triplicate and technical duplicate of green malt as described in Supplementary Table 108 

S1. The concentration of the amino acids and sugars, as described in Supplementary 109 

Table S2, were recreated in Milli-Q purified water (Merck Millipore, Darmstadt, 110 

Germany) immediately prior to thermal treatment. The concentration of all amino acids 111 

added up to 0.12 M and the sum of saccharides’ concentration was 0.26 M. The sample 112 

was heated in a closed glass vial until the increase in mass features flattened out and 113 

the final phase of the MR was reached (20 hours at 100°C). The model system was 114 

created and measured in triplicates.  115 

2.2 UV-Vis measurements 116 

The beer samples and Maillard model system were diluted 1:40 in Milli-Q purified water 117 

and centrifuged (14.000 rpm, 4 min.). An aliquot of 100 µL of the supernatant was used 118 

for UV/Vis analysis in Nunc UV-transparent 96-well microtiter plates (Thermo Fisher 119 

Scientific, Waltham, MO, USA).  The absorption values at 294 nm and 420 nm were 120 

measured on a Multiskan Sky UV-Vis reader (Thermo Fisher Scientific, Waltham, MO, 121 

USA) with temperature control (23°C). 122 

2.3 FI-FTICR-MS measurements 123 

High-resolution mass spectra were acquired on a Bruker solariX ion cyclotron 124 

resonance Fourier transform mass spectrometer (Bruker Daltonics GmbH, Bremen, 125 

Germany) equipped with a 12 Tesla superconducting magnet (Magnex Scientific Inc., 126 

Yarton, GB) and a APOLO II ESI source (BrukerDaltonics GmbH, Bremen, Germany) 127 

operated in negative ionization mode. To minimize ion suppression while allowing 128 

detection of a maximum number of monoisotopic signals, we carefully optimized 129 
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sample dilution. Best compromise could be achieved, when beer samples and model 130 

systems were diluted 1:500 in methanol prior to injection into the micro electrospray 131 

source. The samples were measured over a period of 24 months in randomized order 132 

using a representative lager beer as quality control. 80 % of all detected monoisotopic 133 

signals could be assigned to a molecular formula within an error range of ± 0.2 ppm 134 

and the mass resolution was stable at 400,000 at m/z 400 between and within 135 

measurement days. The used reagents, sample preparation and instrumental 136 

parameters are given in Supplementary Table 3. 137 

2.4 FT-ICR-MS Data processing 138 

The FT-ICR spectra were exported to peak lists with a cut-off signal-to-noise 139 

ratio (S/N) of 6 using DataAnalysis 4.2 software. Only singly charged ions were 140 

included. Spectra were first externally calibrated by ion clusters of arginine prior to 141 

internal calibration by a calibration list of 2000 compositions commonly found in beer. 142 

Possible space charge effects were recalibrated by mass difference mapping (Smirnov 143 

et al., 2019).  Processing and filtration of the peak lists (FT-side loops and isotopologue 144 

filtering) were performed by an in-house R-based software tool on basis of single 145 

spectra. Peak alignment was performed within a threshold of 0.5 ppm as described by 146 

Lucio et al. (2001). Thereby an overall matrix of 11,500 masses was created. To obtain 147 

molecular formulae, the accurate masses were subjected to mass difference network 148 

(MDiN) analysis using the in-house NetCalc software tool (Tziotis et al., 2011). The 149 

network calculation was repeated five times and coinciding formula assignments were 150 

kept, which led to approximately 9,500 unambiguous molecular formulae in the 151 

CHNOSPCl space. [M+Cl]- adducts were converted into the respective [M-H]- ion. Of 152 

those, all annotations that are featured in at least three beers were kept for statistical 153 

analysis (6,750). A full mass difference statistic was computed on the theoretical 154 

neutral masses of each sample. The set of unique mass differences existing within all 155 

full mass difference graphs was computed and the relative abundancies of each mass 156 

difference was obtained. Mass differences that occurred at least 100 times in a single 157 

beer sample (15,500) were used for further statistical analysis (PCA, OPLS) on the 158 

relative abundancies of each mass difference within the different samples. 159 

2.5 Statistical analyses 160 

Firstly, we used an unsupervised Principal Component Analysis to separate the beer 161 

samples based on the molecular signatures that determine the biggest variance. In the 162 
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second step, an OPLS-DA was performed to extract the molecular pattern which 163 

correlates with the absorption at 294 nm. The Hotelling’s T2 test (95%) was applied to 164 

prohibit the influence of strong outliers on the models. The lists of the most important 165 

masses and mass differences were defined choosing the highest loadings values. The 166 

top characteristic masses were selected within the 90th percentile (674 masses for each 167 

dark and pale beers) and referred to as dark and pale markers in the following, 168 

respectively. The goodness of the fit and of the prediction were evaluated with the R2Y 169 

and Q2 values. To exclude overfitting, we computed the p-value of the Cross-Validation 170 

Analysis of Variance (CV-ANOVA). The same approach was carried out with the 171 

relative abundancies of mass differences occurring in the beer samples. Additionally, 172 

based on the robustness of the models, we performed a prevision on the Maillard 173 

model system. The recognition of compositional pattern could verify the MR origin of 174 

the found patterns and set both models in relation. Those elaborations were done in 175 

SIMCA 13.0.3.0 (Umetrics, Umeå, Sweden). The statistical parameters of the beer 176 

samples and Maillard model system (Supplementary Table S4) and PCA and OPLS 177 

models (Supplementary Table S5) can be found in the Supplementary information. 178 

2.6 Mass difference network analysis 179 

Besides the mass difference network that was used for the annotation of the FT-ICR-180 

MS data (FT-ICR-MS data processing), a second MDiN was created, which includes 181 

all compositions found in both the beer samples and the model system. These nodes 182 

were connected by edges representing transformations from the Hodge’s scheme 183 

(Hodge, 1953) and expanded by reactions including MR fission products 184 

(Supplementary Table S6). They are referred to as small Maillard intermediate phase 185 

reactions and mass differences in the following. In total ~65,000 connections were 186 

received. Based on this second network, the nine most significant compositional 187 

changes elucidated by OPLS statistical treatment of the first full MDiN were broken 188 

down into smaller individual reaction sequences. More precisely, we computed the 189 

shortest paths connecting any source-target pair of the statistically significant, 190 

composite mass differences using the unweighted Dijkstra algorithm in the Python 3.7 191 

programming environment on a compatible network library (Hagberg et al., 2008). For 192 

each statistically significant mass difference, a dominant combination of small 193 

reactions of the modified Hodge’s scheme was determined. The chronological orders 194 

of the individual reactions were compared, giving us a dominant reaction sequence. By 195 
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this approach, we received a chronological reaction sequence that build up the ten 196 

statistically most significant compositional changes during the MR. 197 

2.7 Data visualization 198 

The marker formulae were depicted in van Krevelen. By plotting H/C versus O/C atomic 199 

ratios it is possible to depict common compositional patterns within observations’ 200 

markers (Hertkorn et al., 2008). The degree of unsaturation of the compositions was 201 

calculated as double-bond equivalents (DBE, sum of rings and double bonds in a 202 

molecule) and plotted against the number of carbons. A modified Kendrick mass defect 203 

analysis (Kim et al., 2003) was applied to visualize the role of dehydration reaction 204 

cascades in both marker subsets. The DBEs, modified KMDs and length of 205 

homologous series were calculated as described recently (Hemmler et al., 2018; 206 

Hemmler et al., 2017). The assignment of corresponding chemical spaces to markers’ 207 

compositions, their number of nitrogen and their number of oxygen atoms were plotted 208 

according to the respective frequency. The developed mass difference network was 209 

visualized by the open accessible Gephi Viz Platform (Bastian et al., 2009) using the 210 

Force Atlas algorithm. 211 

3. Results 212 

3.1 Contribution of the MR to the beer’s molecular complexity 213 

In our study, we investigated the chemical diversity of a total of 250 bottled beer 214 

samples that cover the many facets of beer brewing by FI-FT-ICR-MS. As shown in a 215 

previous study (Pieczonka et al., 2020) our non-targeted analytical approach can 216 

resolve the entire molecular complexity of beer in a single measurement. Covered 217 

compounds include carbohydrates, peptides, lipids, polyphenols, hop bitter acids, 218 

sulfates and phosphates as well as mostly yet inadequately characterized Maillard 219 

reaction products (MRP). The richness and diversity of the selected beer samples 220 

capture the great chemical space of the beer metabolome and provide a well-suitable 221 

basis to study the contribution of the MR. We were able to assign 7,000 unambiguous 222 

molecular compositions to the accurate monoisotopic masses (Fig. 1A) within the 223 

sample set reaching from very dark (Fig. 1B) to very pale (Fig. 1C) beers (EBC color 224 

values reaching from 5 to 150, Supplementary Table S1). The m/z values reached from 225 

100 to 1000. The molecular formulae were annotated in the CHNOSP chemical space 226 

and subjected to further statistical analyses. 227 
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We used Principal Component Analysis (PCA) to assess the impact of MRPs on the 228 

molecular beer composition (Figure 2A). The unsupervised statistical treatment reveals 229 

the greatest molecular differences between the beer samples as well as their 230 

underlying brewing principles and techniques. The PCA score plot was colored 231 

according to each beer’s absorption at 294 nm, measured by UV-Vis spectroscopy and 232 

reported characteristic to follow the evolution of MR (Yu et al., 2012).  The plot reflects 233 

the samples’ degree of browning with the tendency to lower left positions. Therefore, 234 

non-enzymatic browning can be considered to be of major importance for the 235 

chemodiversity in beer. It leads to key compositional changes already visible in 236 

unsupervised statistics. 237 

We applied a second statistical analysis, a supervised OPLS-DA, to generate in depth 238 

knowledge of compositions driving the differentiation of dark beers (Figure 1B) and 239 

pale beers (Figure 1C). Compared to PCA, OPLS-DA allowed the extraction of 240 

accurate masses without an influence of orthogonal metabolic information, which does 241 

not contribute to the compositional changes affected by the MR. The received R2Y-, 242 

Q2- and ANOVA p-value indicate a highly significant multivariate model (Eriksson et 243 

al., 2008; Golbraikh & Tropsha, 2002; Westerhuis et al., 2008) (Supplementary 244 

information Table S5). The gradient of absorption values, already visible in the PCA 245 

and established as driving Y-variable, is reflected in the first component of the OPLS 246 

score plot (Figure 2B). The comparison of both statistical models’ loading plots shows 247 

that the OPLS is capable to extract the same features that drive the MR related 248 

separation of the beer samples in the PCA (Figure 2C). We further analyzed an 249 

experimental Maillard reaction model system and integrated the results into the OPLS-250 

DA. According to the amino acid and carbohydrate profiles and concentrations of 251 

analyzed green malt (Supplementary Table S2), we designed the MR model system, 252 

which we heated to 100°C in order to simulate the processes during malting and 253 

brewing. To a certain extent, this model represents Maillard reactions between multiple 254 

sugars and amino acids in beer. The experimental model system allowed us to validate 255 

the assumption that monitoring the absorption at 294 nm can be used to study the MR 256 

in beer. The prediction of the model system’s position in the OPLS score plot locates 257 

it to the far right validating that our OPLS model is capable to recognize the intrinsic 258 

nature of Maillard derived complex systems (Figure 2B). The MR molecular pattern in 259 

beers, which is extracted by the statistical treatment and classified with regard to the 260 

compounds’ significance, matches the chemical space of the MR model system 261 
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(Supplementary Fig. S2). We could reproduce 80% of the most significant 262 

compositions found in beer (90th percentile of most positive loadings) in the saccharide 263 

and amino acid experimental model system (Supplementary Figure S2). The overlap 264 

between the masses found in beer and those of the model system decreased with 265 

decreasing loading values of the respective masses. In comparison, compositions 266 

characteristic for pale beers (90th percentile of most negative loadings) showed an 267 

overlap of less than ten percent.  268 

 269 

3.2 The compositional nature of the MR in beer 270 

The OPLS loadings plot allowed to extract compositions related to the MR from the 271 

rich diversity of beer metabolites and rank them according to their significance. To 272 

study the molecular pattern of MRPs, we focused on the top ten percent (90th 273 

percentile) of the most significant marker compositions for both the dark and pale beer 274 

characteristic. Yet, the typical compositional pattern of the Maillard reaction, reported 275 

by Hemmler et al. (2017) and reflected in the MR model system, pervades at least 40% 276 

(2.800) of all annotations (Supplementary Figure S1). 277 

Several plots and visualizing tools can be used to depict and describe the 278 

compositional nature of complex (bio)chemical systems (Hemmler et al., 2019; 279 

Hemmler et al., 2018; Hertkorn et al., 2008; Kim et al., 2003). The annotations of the 280 

dark beer markers are almost exclusively limited to the CHO (52 %) and CHNO (48 %) 281 

space (Figure 3A-I). The number of molecular formulae that contain nitrogen atoms 282 

decreased linearly with the number of nitrogen atoms which implies a compositional 283 

space built up by chemical kinetics (Figure 3B-I). The frequency of molecular formulae 284 

is gaussian-like distributed against the number of oxygen contained, but lacks 285 

compositions with less than four oxygen atoms (Figure 3C-I). Compounds with very 286 

low oxygen numbers that can be detected by FT-ICR-MS in negative electrospray 287 

mode are most commonly annotated as fatty acids or lipids (Pieczonka et al., 2020; 288 

Schmitt-Kopplin et al., 2019). Such compositions can be found in the marker masses 289 

of pale beers (Figure 3C-II). Overall, in contrast to the dark beer markers, the plots of 290 

beer metabolites that are characteristic for pale beers and do not come from the MR 291 

do not share a distinct compositional space, as comparatively described in other 292 

fermented beverages missing heat load (Gougeon et al., 2009; Roullier-Gall et al., 293 

2014) (Figure 3A-C-II). 294 
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Furthermore, the comparison of marker masses of pale and dark beer markers in the 295 

van Krevelen diagram shows substantial differences (Figure 3D). The Maillard reaction 296 

leads to a highly organized compositional pattern of compounds which is mainly formed 297 

through consecutive dehydration, carbonyl cleavage and redox reactions (Hemmler et 298 

al., 2018) Interestingly, the extracted molecular formulae of the dark beer marker 299 

masses indicate the same compositional pattern. Compositions corresponding to well-300 

known MRPs like 5-hydroxymethylfurfural (HMF, C6H6O3), pronyl-lysine (C15H24N2O6) 301 

or Maltosine (C12H18N2O4) as well as early intermediates like desoxyosones (e.g. 302 

C6H10O5) and Amadori rearrangement products (deoxyhexosylglycine, C8H15NO7) can 303 

be found in both the model system and the dark beer markers. This systematics is 304 

contrasted with the van Krevelen diagram of pale beer compounds (Figure 3D-II). The 305 

generally more saturated molecular formulae do not cluster in a discrete area. Merely, 306 

the areas in the van Krevelen diagram indicate thermolabile lipids and peptides 307 

(Pieczonka et al., 2020) which may function as MR precursors. The degree of 308 

unsaturation of MR derived compounds, expressed as double-bond equivalents (DBE), 309 

follows a highly systematic structure compared to markers for pale beers (Figure 3E). 310 

Only a group of early MR intermediates of higher-chain saccharides (e.g. C24H40O20, 311 

C24H38O19, C24H36O18 at C>20 and DBE<8) resist the clear, almost linear trend of higher 312 

DBEs for higher masses (Fig. 3E-I). The biggest difference between the highly 313 

structured MR compositions, which are based on defined chemical reaction cascades, 314 

and other beer metabolites are shown in the modified Kendrick mass defect (KMD) plot 315 

(Figure 3F). Both, in the CHO and CHNO chemical space homologous series of water 316 

elimination reactions can be observed. The maximum length of water elimination 317 

cascades equals seven with an average of 3.9. This is in agreement with values for 318 

MR models reported in literature (7 and 3.9) (Hemmler et al., 2017) and values 319 

computed for our model system (8 and 4.0). By contrast, the pale beer markers do not 320 

exceed a homologous series of more than three consecutive dehydration events. 321 

By these visualization methods, we could confirm the MR origin of hundreds to 322 

thousands of compositions in beer attributed significant for darker beers in the 323 

statistical data evaluation and describe their intrinsic compositional structure. The 324 

modified KMD plot furthermore implies that the reaction cascade of the MR is captured 325 

in the marker compositions. 326 

 327 

3.3 The Maillard reaction molecular network in beer 328 
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To get deeper insights into the Maillard reaction cascade that leads to the deciphered 329 

molecular complexity, we applied a mass difference network (MDiN) analysis. Based 330 

on the relative abundancies of mass differences that connect the elementary 331 

compositions of each sample and represent chemical reactions or reaction sequences, 332 

both PCA (Figure 2D) and OPLS (Figure 2E) statistical analyses were used. Similar to 333 

the statistics on the compositions above, the PCA plot shows a gradient of darkening 334 

colors with the tendency to lower positions of the beers in the score plot (negative PC2 335 

values). Using the absorption values of beers at 294 nm as Y-variable in an OPLS-DA, 336 

we were able to extract the most significant mass transformations for dark beer 337 

samples. This is in agreement with the mass differences (MDs) driving the separation 338 

in the PCA (Figure 2F). Again, the MDs match the dominant ones of the Maillard model 339 

system (Figure 2E). 340 

These exact mass differences can be equated with changes in the molecular formulae 341 

and therefore compositional changes. They describe the compositional change a 342 

source compound undergoes to build a target composition. The ten most significant 343 

compositional changes are almost exclusively limited to the CHO chemical space and 344 

reach from 68 Da to 154 Da. Based on the shifts in the respective molecular formula, 345 

there are no single reaction equivalents that describe these changes. Consequently, 346 

they rather represent (reaction) sequences of individual smaller compositional changes 347 

and are referred to as composite mass differences in the following. 348 

The van Krevelen diagram of the reaction pairs show that higher weight reactants 349 

appear in the area of early MR products (Figure 4A). The associated compounds with 350 

lower m/z values can be assigned to the area of unsaturated advanced MRPs (Figure 351 

4B). Accordingly, source compounds of the composite reactions have higher masses 352 

than the target compounds. The most significant reactions could be defined as 353 

degradation processes.  354 

To decipher the individual reactions, a MDiN analysis was applied on all annotated 355 

compositions (N = 7000). The nodes in the network shown in Fig. 4C represent 356 

compositions annotated in both beer samples and the model system. The 357 

compositions are connected by edges representing the mass differences typical for the 358 

MR intermediate phase. This includes transformations, such as dehydration, 359 

decarboxylation, and carbonyl cleavage reactions (full list of 11 transformations see 360 

Supplementary Table 1). Due to the lack of a universally applicable nitrogen-containing 361 

mass transition, the tenth MD was omitted. We were able to connect the majority 362 
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(>95 %) of source-target pairs of the statistically significant composite mass 363 

differences by individual small reactions and define the shortest paths by the 364 

unweighted Dijkstra algorithm. For each big compositional change, a certain 365 

combination of intermediate phase reactions was dominant (Table 1). The 366 

chronological order of the respective individual Maillard intermediate phase reactions 367 

was compared (Supplementary Figure S3). The order can be assumed to represent 368 

the evolution of the composite MR compositional changes. With up to 175 different 369 

chronological orders, for each composite mass difference one reaction sequence was 370 

very dominant. An overview of the ten most significant compositional changes and their 371 

break down into chronological reaction sequences is given in Figure 5. They share a 372 

similar structure: all feature a dehydration cascade, whereas most of them end with a 373 

decarboxylation reaction. Fission products of early MR intermediates such as glyoxal, 374 

methylglyoxal and diacetyl mark the beginning of the reaction sequence in many cases. 375 

 376 

4. Discussion 377 

The progress of the early MR was followed by the absorption at 294 nm. The UV 378 

absorbance at 294 nm is commonly used to indicate Maillard reaction products of the 379 

intermediate phase (Yu et al., 2012). Absorption values of the beer samples measured 380 

at 294 nm (MR intermediates) and 420 nm (advanced MR products) showed a very 381 

strong correlation (Pearson correlation coefficient: 0.98). Consequently, our identified 382 

marker candidates include MRPs from the entire reaction network (initial, intermediate 383 

and final MRPs). The MR-correlating compositions lead to a differentiation of the beers 384 

already in the first principal components of the unsupervised statistical analysis. It 385 

shows that the reaction of sugars and amines define a large part of the beer 386 

metabolites. Besides the OPLS statistical parameters (R2 > 0.92, Q2 > 0.79 and 387 

ANOVA p-value << 0.05), the decreasing coverage of the marker’s chemical space by 388 

the MR model system with decreasing loading values confirm the power of our 389 

approach. The typical Maillard reaction signature (Hemmler et al., 2017) is dominant 390 

and shows up to at least 40% of the whole chemical diversity resolved by FT-ICR-MS. 391 

Different plots and visualization techniques confirm that the markers we found 392 

represent a highly systematic and distinct chemical space within the big variety of beer 393 

metabolites. Consistent with literature findings, the CHNOS chemical space did not 394 

significantly contribute to the universal signature of the MR in beer. This agrees with 395 
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low cysteine and cystine concentrations reported in malt, wort and beer (Otter & Taylor, 396 

1976). Confirmatory, an inhibiting effect on the progression of the MR and the formation 397 

of final MRPs is described for sulfur containing amino acids (Friedman & Molnar-Perl, 398 

1990). The difference in the chemical signature of compositions specific to dark and 399 

pale beers could be attributed to their different origins. MRPs arise from chemical 400 

reactions, which follow kinetic and thermodynamic laws, and are not influenced by 401 

enzymatic catalysis. As already described in model systems (Hemmler et al., 2018), 402 

Maillard derived CHNO compositions can carry multiple nitrogen atoms based on 403 

multiple condensation reactions of amino compounds to a sugar backbone. These 404 

reactions depend on the reactivity of amino acids involved and the MR intermediate’s 405 

tendency towards carbonyl cleavage, resulting in new reducing ends of the sugar 406 

backbone. The formation of such nitrogen-rich compositions are described to 407 

accumulate with the progress of the MR (Hemmler et al., 2017). In the complex beer 408 

system, involving numerous and interacting amino compounds, we detected 409 

compositions with up to four nitrogen atoms (CHN1O to CHN4O). Interestingly, we 410 

could observe a linear decrease in the composition frequencies with increasing 411 

nitrogen number. This agrees with the formation of nitrogen-rich compositions in the 412 

later stage of the MR and might confirm the kinetic nature of the dark beer markers. 413 

The number of oxygen atoms, not in the focus of previous studies, was also found to 414 

be highly systematic. With oxygen numbers exceeding 20 oxygen atoms and mass 415 

values over m/z 650, both oligosaccharide precursors and condensation reactions can 416 

be regarded as important factors in the formation of MRPs in beer. These high-mass 417 

compounds also could be classified in the MR scheme. The evolution of the MR is 418 

characterized by dehydration reactions, which are reflected in the van Krevelen 419 

diagram where early MRP (1.5<H/C<2; 0.75<O/C<1) evolve to highly unsaturated and 420 

aromatic compositions (H/C<1.5; O/C<0.5). The dehydration reactions inevitably come 421 

with introducing a DBE to the respective target formula. Both the increasing number of 422 

DBEs with higher mass and dehydration cascades for compositions with Kendrick 423 

nominal mass > 400 reinforce the meaning of higher mass, non-volatile MRPs in the 424 

complex food system. 425 

Studying exact mass differences, which represent certain compositional changes, we 426 

were able to reveal general and conceptual reaction sequences that can describe a 427 

part of the Maillard reaction in beer. Condensation reactions lead to compounds with 428 

higher mass and lead to a change in the composition, which always depends on both 429 
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the carbonyl and amino compounds. Although the condensation of glycine (C2H5NO2) 430 

and isoleucine (C6H13NO2) with a carbonyl moiety are very similar in their underlying 431 

reaction mechanism, they lead to different compositional changes (C2H3NO and 432 

C6H10NO, respectively). The same is true for the condensation and interaction of MR 433 

intermediates. Other reactions like a simple dehydration or glycation are characteristic 434 

to the MR but not specific as a multitude of biochemical transformations includes a loss 435 

of water or glycation as well. Accordingly, compositional changes that neither depend 436 

on amino acids nor correspond to the condensation of complex intermediates or very 437 

simple reactions were to be expected. 438 

Therefore, the ten most significant compositional changes are changes including CHO-439 

transformations coming with a loss of mass. Consequently, at this point, our data do 440 

not allow drawing conclusions about the role of single amino compounds but describe 441 

the complex system holistically. What was found to be statistically significant can be 442 

referred to very general chemical changes that early MRPs or intermediates of diverse 443 

origins undergo to build a Maillard reaction end product. By our network and shortest 444 

path approach, we furthermore were able to decipher the combination and 445 

chronological order of Maillard intermediate phase reactions that match these 446 

compositional changes. All intermediates were found in either beer or the Maillard 447 

model system and despite of hundreds of possible combinations, the chronological 448 

order was consistent within the source and target pairs. This leads us to regard the 449 

results of the network approach as reaction sequences. 450 

These sequences share a common inherent structure: Starting with the condensation 451 

of a small MR fission product, a dehydration cascade and finally a decarboxylation 452 

reaction occurs. These fission products like glyoxal, methylglyoxal or diacetyl arise 453 

from retro-aldolization of sugar molecules or cleavage of respective dicarbonyls 454 

(Hollnagel & Kroh, 2000). Dehydration cascades are well described to play a major 455 

role in the formation of MRPs. In several ribose-amino acid model systems, we were 456 

able to highlight the role of early diketosamine formation and its subsequent 457 

degradation in the MR (Hemmler et al., 2018). Molecular formulae equivalent to six 458 

consecutive dehydration products could be described. Our presented results indicate 459 

that such a degradation process might also be caused by the condensation of a fission 460 

product, when describing a complex system in general. In the context of the MR, loss 461 

of CO2 likely occurs due to a α-dicarbonyl assisted oxidative decarboxylation (e.g. 462 
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Strecker degradation) (Yaylayan, 2003). In this case, the resulting imine is hydrolyzed 463 

to give the so-called Strecker aldehyde. The hydrolysis reaction leads to the loss of the 464 

specific amino acid residue at the initial dicarbonyl unit. These reactions would be no 465 

longer tangible for our general approach. Purely thermally induced decarboxylation 466 

reactions, on the other hand, could occur during the roasting process. They require 467 

very high temperatures (> 200°C) (Bagdonaite et al., 2008) and thus naturally happen 468 

at the end of the heating process and reaction sequences. It is worth noting that the 469 

presented pathways and their interpretation are restricted to compositional information 470 

obtained by accurate mass measurements. They describe very general and 471 

conceptual patterns within a complex food system. Mechanistic studies including 472 

various model systems, resolved in time, should be performed to fully understand the 473 

reaction sequences we proposed to describe the MR in beer. 474 

In industrial practice, the extensive chemical changes that are associated with the heat 475 

load are usually monitored by the unspecific reaction of 2-thiobarbituric acid (TBA) 476 

(Guillén-Sans & Guzmán-Chozas, 1998). It is based on the photometric tracking of the 477 

reaction of TBA with dicarbonyl functions. However, the origin of the dicarbonyls (e.g. 478 

MR or lipid oxidation) and their follow-up reactions cannot be differentiated. By 479 

comparison, we recorded over 2,500 compositions that describe the MR in beer 480 

comprehensively alongside the reaction network leading to such a multitude of MRPs. 481 

Our analytical approach may offer a unique method to guide MR related brewing 482 

processes, such as malting and boiling, towards desired attributes of the final beer end 483 

product. Having the opportunity to resolve the Maillard reaction cascades and resulting 484 

molecular complexity, effects of changed kilning or roasting parameters can be 485 

monitored as well as the progress of the MR throughout the whole brewing process. 486 

5. Conclusion 487 

Overall, this study reports a comprehensive analytical approach addressing the great 488 

variety of MR-derived products in a complex food system, the description of their 489 

compositional nature and the general reaction cascades that lead to the diversity 490 

observed. It contributes to the better understanding of the complex molecular 491 

processes involved in the MR and might be a starting point for potential process 492 

development and quality control in both malting and brewing industry. 493 

 494 
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 501 

Figures 502 

 503 

504 

Figure 1. Van Krevelen diagram of molecular formula annotations found in 250 beer samples (A), 505 

the darkest (B) and palest (C) beer sample. Color code: CHO blue; CHNO orange; CHOS green; CHNOS red; 506 

P purple. Neutral molecular formulae are plotted. The bubble size indicates the mean relative intensities of 507 

corresponding peaks in the spectra. 508 

 509 

 510 

Figure 2. Score plot of the PCA (A) and OPLS (B) analysis of the compositional space of 250 beer 511 

samples and the corresponding loading plots (C-I, PCA) (C-II, OPLS). Score plot of the PCA (D) 512 

and OPLS (E) analysis of the computed mass differences in 250 beer samples and the 513 

corresponding loading plots (F-I, PCA) (F-II, OPLS). The position of the beer samples is marked by 514 

dots colored according to their absorption at 294 nm. The prediction of the Maillard model system in the 515 

OPLS models (B and E) is highlighted as a red star. Masses in the PCA-loading plot (C-I and F-I) that 516 

match the most significant masses for dark beers in the OPLS-loading plot (C-II and F-II) are colored 517 

brown.   518 

 519 
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 520 

Figure 3. Comparison of dark (I) and pale (II) beer marker molecular formulae by different 521 

visualizing plots (A-F). Number of annotations in the chemical spaces (A), number of nitrogen atoms 522 

(B), number of oxygen atoms (C), Van Krevelen diagram (D), Double bond equivalents against Number 523 

of Carbon atoms (E) and Kendrick mass defect plot with H2O homologous series (F). Color code: CHO 524 

blue; CHNO orange; CHOS green; CHNOS red; P purple. Neutral molecular formulae are plotted. The 525 

bubble size indicates the mean relative intensities of corresponding peaks in the spectra (D, E). Rising 526 

DBE with higher masses for dark markers is indicated in (E-I). Homologous series of H2O-reactions are 527 

marked exemplary in the KMD plot (F-I). The intrinsic systematic pattern of dark beer markers is opposed 528 

to non-systematic annotations of the pale marker masses. 529 

 530 

 531 
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Figure 4. Van Krevelen diagrams of compositions connected by the ten most significant mass 532 

differences for dark beers (A and B) and their breakdown into small reaction series by a mass 533 

difference network (C). Higher mass values (A) and lower mass values (B) of the mass pairs. The 534 

entirety of compositions is in the background in gray. The lower left position of low m/z values indicate 535 

degradation reaction sequences. Nodes in the mass difference network (C) represent all annotated 536 

compositions connected by edges representing small Maillard intermediate phase reactions 537 

(Supplementary Table S6). Sources and targets of the statistically most significant big composite mass 538 

differences are colored. 539 

 540 

Figure 5. Reaction sequences of the ten most significant compositional changes during the MR 541 

in beer. All reaction sequences feature a dehydration cascade. In many cases, MR fission products start 542 

the reaction sequence, which ends with a decarboxylation reaction. The compositional change of 543 

hydrogenation (+H2) does not indicate the involvement of elemental hydrogen, but a 544 

reductone/dehydroreductone reactional environment. 545 

  546 
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Tables 547 

 548 

Table 1. The ten most significant compositional changes during the MR in beer and their break 549 
down into small reactions. 550 

 551 

  552 

loading Δ m/z formula frequency  Decomposition into individual MDs % of shortest 

paths 

0.01581 -128.053 C1H-12O-8 543  Dehydration (8), Glyoxal, 

Decarboxylation 

64 

0.01576 -140.053 H-12O-8 714  Dehydration (8),  

Hydrogenation (2) 

65 

0.01576 -142.069 H-14O-8 576  Dehydration (8), 

Hydrogenation 

82 

0.01571 -98.0427 C2H-10O-7 685  Dehydration (7), 

Methylglyoxal 

75 

0.01566 -110.043 C1H-10O-7 879  Dehydration (7), 

Acetaldehyde, Decarboxylation 

65 

0.01565 -112.058 C1H-12O-7 722  Dehydration (7), 

Glyoxal, Decarboxylation 

66 

0.01551 -82.0477 C2H-10O-6 890  Dehydration (6), Methylglyoxal, 

Dehydrogenation, Decarboxylation 

83 

0.01549 -68.0321 C3H-8O-6 830  Dehydration (6), Diacetyl, 

Dehydrogenation, Decarboxylation 

94 

0.01549 -154.069 C-1H-14O-8 746  Dehydration (6), 

Dehydrogenation, Decarboxylation 

90 

0.01543 -93.0637 C1H-11N1O-5 861  - - 
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