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Abstract

In this thesis we will transfer some of the known results from amenability on locally
compact groups to polynomial hypergroups. We define summing sequences, an ana-
logue to Følner sequences on groups, and slightly weaker conditions (Fp) and find
criteria when these conditions are satisfied. With their help we prove two main rep-
resentation theorems that allow to explicitly calculate mean values. We will then give
some results about when all means coincide for certain functions, e.g. for weakly almost
periodic functions, and prove a central result that on polynomial hypergroups there
always exists more than one mean so that global uniqueness of means is not possible.
We also introduce and investigate a notion we call ‘strong amenability’ that allow the
translation operator to be shifted in the mean of a product of functions, inspired by
some of the previous results about summing sequences that prove more than normal
translation invariance.

Zusammenfassung

In dieser Dissertation übertragen wir einige bekannte Ergebnisse der Mittelbarkeit von
lokalkompakten Abelschen Gruppen auf polynomiale Hypergruppen. Wir führen Sum-
mationsfolgen ein, analog den Følner-Folgen auf Gruppen, und etwas schwächere Be-
dingungen (Fp) und geben hinreichende und notwendige Bedingungen an, wann diese
gelten. Mithilfe dieser Konstruktionen beweisen wir zwei wichtige Darstellungssätze,
die explizites Ausrechnen von Mittelwerten ermöglichen. Weiter zeigen wir einige Re-
sultate über die Eindeutigkeit von Mittelwerten, zum Beispiel für schwach fast peri-
odische Funktionen, und beweisen ein zentrales Ergebnis, dass es auf polynomialen
Hypergruppen immer mehr als einen Mittelwert gibt und somit globale Eindeutigkeit
nicht gegeben ist. Angeleitet durch ein voriges Resultat, das mehr als normale Mit-
telbarkeit für Summationsfolgen gezeigt hat, definieren wir das Konzept der “starken
Mittelbarkeit”, die es erlaubt, den Translationsoperator in der Mittelwertbildung eines
Produkts von Funktionen von einer Funktion zur anderen zu verschieben.
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Introduction

Averages and means appear in many different forms in mathematics. A typical ques-
tion, for example coming from calculating means for stochastic processes, that arises for
real-valued functions defined on the real line or on the set of integers would be: What
is the average value of that function? For example, we would say a constant function
f ≡ c has average value c or a sine function has average 0 as it oscillates evenly around
zero. We would like for such an average to have certain properties like monotonicity,
i.e. if g dominates f then its average should also be greater, or translation invariance:
If we shift a function (like the sine, to get e.g. the cosine) by a certain amount to the
left or right, the average should stay the same.

The formal study of averages with these properties is the field of amenability or
amenable groups. This English translation for the German word “messbar” (liter-
ally “measurable”), which has been introduced by John von Neumann in 1929 [30], has
been given by Mahlon M. Day in 1949 in an abstract for an AMS meeting and is by
many believed to be a pun: Amenable group is a group where you are able to find a
mean, in contrast to the use as a synonym to manageable, complying.

Amenable groups are by definition those locally compact groups G that admit a (left)
translation invariant monotone normalized (i.e. m(1) = 1) linear functional m on
L∞(G). These are exactly the sensible requirements mentioned above.

One can say that the study of amenability began in 1904 when Henri Léon Lebesgue
[23] introduced his integral on R and a set of conditions that characterize it. All but
one of these are properties shared with the Riemann integral. The exceptional property
is in essence the Monotone Convergence Theorem and Lebesgue asked whether it was
possible to drop this condition without losing uniqueness of the Lebesgue integral. As
the Monotone Convergence Theorem is equivalent to the countable additivity of the
underlying Lebesgue measure from which the integral is constructed, the question is
whether the Lebesgue integral is still unique if the Monotone Convergence Theorem
condition is replaced by finite additivity. In 1923 Stefan Banach [2] answered this
question negatively by constructing a finitely additive positive translation invariant
measure µ on the family of bounded subsets of R such that µ([0, 1]) = 1 but the
corresponding integral does not coincide with the Lebesgue integral.

Naturally the question of the existence of invariant measures has been generalized to
sets other than R. In more general notation, take a group G acting on a set X and a
subset A ⊆ X used for normalizing the measure. Then the question is whether there
exists an invariant measure on (G,X,A), i.e. a finitely additive measure µ : P(X) →
[0,∞] such that µ(xB) = µ(B) for all x ∈ G,B ∈ P(X), and µ(A) = 1. In 1914
Felix Hausdorff [12] worked on the problem of the existence of an invariant measure
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on (Gn,Rn, [0, 1]n) where Gn is the group of isometries (rather than translations, as
invariance under isometries is more natural for the physical world) on Rn. He was
able to show that there exists no such measure for n ≥ 3. The proof involves the
construction of a partition {P, S1, S2, S3} of the 2-sphere and elements ϕ, ψ ∈ SO(3)
such that P is countable and

ϕ(S1) = S2 ∪ S3, ψ(S1) = S2, ψ2(S1) = S3.

The positive answer for the cases n = 1, 2 was given by Banach in 1923 [2]. The crucial
difference between these cases is that SO(3) is a subgroup of Gn if and only if n ≥ 3 and
that makes the construction given by Hausdorff possible for all n ≥ 3. This is also what
is behind the famous paradox established by Banach and Alfred Tarski in 1924 [3] which
in an exaggerated form states that a billiard ball can be cut into a finite number of pieces
and putting them together in a different way produces a life-size statue of Banach.
Or, mathematically speaking, the Banach-Tarski Theorem states that if X, Y ⊂ R3

are bounded with nonempty interior, then X and Y are congruent. The point is
that the partitions involved in these operations contain nonmeasurable sets since the
Lebesgue measure preserves volume. Tarski further explored the issue of paradoxical
cuts and in 1938 [29] proved that there exists an invariant measure for (G,X,A) if and
only A admits no paradoxical decomposition (with respect to G). A set A is said to
admit a paradoxical decomposition if there exists a partition {A1, . . . , Am, B1, . . . , Bn}
of A and elements x1, . . . , xm, y1, . . . , yn ∈ G such that {x1A1, . . . , xmAm} as well as
{y1B1 . . . , ynBn} are partitions of A. One can see why this is called “paradoxical” and
why there cannot exist an invariant measure for (G,X,A). For assume µ were such a
measure, then

1 = µ(A) =
m∑
i=1

µ(Ai) +
n∑
j=1

µ(Bj) =
m∑
i=1

µ(xiAi) +
n∑
j=1

µ(yjBj)

= µ

(
m⋃
i=1

xiAi

)
+ µ

(
n⋃
j=1

yjBj

)
= 2µ(A) = 2.

The link between these early results about the existence of finitely additive measures
and the existence of a mean is that a group is amenable if and only if there exists
an invariant measure for (G,G,G). This change of perspective from finitely additive
measures on G to functionals on L∞(G) allows the use of many powerful tools of
functional analysis to the study of amenability. To see how this transition works, let µ
be a positive, finitely additive measure on M(G), the set of λ-measurable sets (where
λ is a left Haar measure on G), that vanishes on locally null sets with µ(G) = 1. Then
µ can be regarded as an element m of L∞(G)∗ by first defining m(χA) := µ(A) for
A ∈M(G). This can be immediately extended to the linear span of {χA : A ∈M(G)}
and by continuity of m to all of L∞(G), as the linear span of characteristic functions is
norm dense in L∞(G). The translation invariance of µ, i.e. µ(x−1A) = µ(A), leads to
m(χAx) = m(χA) as the translation of a characteristic function is again a characteristic
function χAx = χx−1A. Conversely, a translation invariant mean m ∈ L∞(G)∗ defines
such a finitely additive positive measure µ by µ(A) := m(χA) for A ∈M(G).
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One problem when switching to elements of L∞(G)∗ is that this space is very large and
its structure is not very well understood. That is the reason one looks for a subset of
L∞(G)∗ that is on the one hand comfortable enough to work with and on the other
hand large enough to get all means from it. Utilizing L1(G)∗ = L∞(G), isometrically
embedding L1(G) in its second dual L∞(G)∗ by the canonical map f → f̂ , f̂(ϕ) = ϕ(f)
for ϕ ∈ L∞(G), and looking for characterizations when functions f ∈ L1(G) give rise
to means on L∞(G) this leads to the definition of the set P (G) = {f ∈ L1(G) : f ≥
0,
∫
fdλ = 1}. As P (G) being a subset of L1(G) makes it an accessible set and on the

other hand P̂ (G) is weak* dense in the set of means on L∞(G) [24] this shows P (G)
to be a good choice in this context. All means on L∞(G) are weak* limits of elements

of P̂ (G).

For σ-compact groups one can get more tangible objects than weak* limits: Sequences
of compact sets (Kn)n∈N0 in G such that when one integrates a function over such a Kn

then the result is arbitrarily close to being translation invariant. These sets are named
‘Følner sequences’ after Erling Følner [11]. They are ascending sequences of nonempty,
compact sets such that λ(xKn∆Kn)/λ(Kn) → 0 for all x ∈ G, i.e. the differences
between the shifted sets xKn and Kn are small compared to the original sets Kn for
n→∞. For σ-compact groups G amenability of a group is equivalent to the existence
of a Følner sequence [24, Theorem (4.16)]. One classical example for that is G = R
with the Følner sequence Kn := [−n, n]. For ϕ ∈ L∞(R) and x ∈ R one gets

1

2n

∣∣∣∣∫ n

−n
(ϕ(t+ x)− ϕ(t))dt

∣∣∣∣ ≤ 2|x|‖ϕ‖∞
2n

→ 0 as n→∞

so integrating over [−n, n], dividing by λ([−n, n]) = 2n and taking the limit n → ∞
yields a translation invariant mean on R. This is the most direct way of getting a
translation invariant mean on R as the only simpler way, directly integrating over R
and then dividing by λ(R) =∞, is not possible.

One has to be careful that in general there exists not only one but many translation
invariant means for a given group G. It seems difficult to give a general result, but a
lower bound for the cardinality of the set of translation invariant means on noncompact
amenable groups G is 22m where m is the smallest possible cardinality for a covering of
G by compact subsets [24, Theorem (7.6)].

So in that case one can not hope for uniqueness of translation invariant means for the
whole of L∞(G) but only for a suitable subset. Recalling the properties we expect of a
‘reasonable’ definition of a mean in the beginning we clearly want constant functions
to be in that subset. By the normalization m(1) = 1 of all means this is satisfied.
Another important class for which the means coincide is the set WAP(G) of weakly
almost periodic functions on G [13, §18].

In contrast to periodic functions that repeat their values exactly in regular intervals
almost periodic functions are in general only periodic up to a certain degree of accuracy
so typical examples might be periodic functions with measurement errors or the sum of
two periodic functions with noncommensurable periods. In 1925 Harald August Bohr
[5] defined (uniformly) almost periodic functions on R as the closure of the trigono-
metric polynomials with respect to the supremum norm in C(R). He then proved the
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characterization given in words above, i.e. that a function f is almost periodic if and
only if there exists a relative dense set of ε-almost periods for all ε > 0. An ε-almost
period is a translation T = T (ε) such that |f(t + T ) − f(t)| < ε for all t. There
exist a number of additional characterizations of almost periodicity but the one most
often used nowadays as definition on locally compact Abelian groups is that a function
f ∈ L∞(G) is almost periodic if the set of its translates {Txf : x ∈ G} forms a relative
compact set in the norm topology. By taking the closure in the weak topology we get
the larger class of weakly almost periodic functions WAP(G) on a locally compact
Abelian group G. Weakly almost periodic functions are the largest set of elements in
L∞(G) for locally compact Abelian groups G for which we know that their mean is
uniquely determined by the function alone (apart from the abstract definition of all
functions whose mean is unique). For Abelian semigroups something similar holds (e.g.
[7, 6]).

To study amenability on structures other than (semi)groups with a more general con-
volution replacing (semi)group operation a suitable structure is that of a hypergroup
H where x∗y for x, y ∈ H is a probability distribution over elements of the hypergroup
rather than one element as in the group case. This (and also the other axioms of the
definition of a hypergroup, see Chapter 1 for details) is satisfied by locally compact
Abelian groups by identifying the group element z := x ·y with its Dirac measure εz so
hypergroups are indeed a generalization of groups. With hypergroups one can study
various convolution structures on sets like N0 that do not allow for a group operation.
For example as an index set for stochastic processes N0 is a more natural choice than Z
(with its group structure), as usually measurements of time series start at some point
t0 and do not extend infinitely into the past. For this kind of processes some structural
results have been found recently [14, 16]. For certain hypergroups on N0 there exists
a relation between consecutive elements, the three-term recurrence relation. In that
case, the hypergroup elements n ∈ N0 correspond to orthogonal polynomials Rn and
for actual calculations involving convolutions on such a polynomial hypergroup one can
utilize all knowledge about orthogonal polynomials [18, 19].

In this thesis we will transfer some of the known results from amenability on locally
compact groups to polynomial hypergroups. We define summing sequences, an ana-
logue to Følner sequences on groups, and the slightly weaker condition that a special
sequence (Sn)n∈N0 of sets satisfies one of the conditions named (Fp) and find criteria
when these conditions are satisfied. With their help we prove two main representa-
tion theorems that allow to explicitly calculate mean values. We will then give some
results about when all means coincide for certain functions, e.g. for weakly almost
periodic functions, and prove a central result that on polynomial hypergroups there
always exists more than one mean so that global uniqueness of means is not possible.
We also introduce and investigate a notion we call ‘strong amenability’ that allow the
translation operator to be shifted in a product of functions, i.e. m(ϕTxψ) = m(ψTx̃ϕ),
inspired by some of the previous results about summing sequences that prove more
than normal translation invariance.

In chapter 1 we present the definition of and some results on hypergroups we will need
in later chapters. Special emphasis will be put on polynomial hypergroups and the link
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to the three-term recurrence relation of the underlying sequence of orthogonal polyno-
mials. We then present the important subclass of polynomial hypergroups satisfying
condition (H) and their relation to the growth of the Haar measure and conclude the
chapter by presenting examples of polynomial hypergroups.

The second chapter starts with the definition of amenability on commutative hyper-
groups and results about the existence of means and uniqueness (for the class of weakly
almost periodic functions) and studies the larger space of translation invariant function-
als that are not necessarily means. The second section in this chapter presents the new
condition of strong amenability that allows for the idea that m(ϕTxψ) = m(ψTx̃ϕ) as
a replacement for a similar equation that cannot be transferred to hypergroups. Then
we present a variation of Folner’s condition P1 for strong amenability and prove its
equivalence to strong amenability.

Chapter 3 investigates amenability on polynomial hypergroups. First we present an
alternate proof of the existence of translation invariant means that does not need the
Markov-Kakutani fixed point theorem. We go on to see how the three-term recur-
rence relation facilitates proof of translation invariance and we show some sufficient
conditions for the uniqueness of means. In the following section we present our con-
cept of summing sequences, an analogue to Følner sequences on groups and introduce
the canonical choice (Sn)n∈N0 with Sn := {0, . . . , n} and its relation to condition (H).
Then we find positive as well as negative results about the existence of summing se-
quences and finally prove the main representation theorem 3.14. We conclude that
section with a proof that hypergroups admitting summing sequences satisfy Reiter’s
condition (UFP1). In section 3.2 we introduce conditions (Fp) on sequences of sets
that are weaker than the assumption of existence of a summing sequence and prove
results about existence of such sequences in a similar manner as in the previous section.
We then give examples of polynomial hypergroups to illustrate the difference between
conditions (Fp) and the existence of summing sequences. A representation theorem
for condition (F1) similar to the one for summing sequences also holds and we show

that the existence of limits over summing sequences like lim
n→∞

1
h(Sn)

n∑
k=0

ϕ(k)h(k) do not

imply uniqueness of the mean for a given ϕ ∈ l∞(N0). At the end of the chapter we
show how difficult it is to improve the bound lim sup

n→∞
ϕn ≥ m(ϕ) for all means m by

giving some counterexamples.

In chapter 4 we further explore the question whether it is possible to find a polyno-
mial hypergroup where all means coincide. We introduce the concept of permanently
positive sets for commutative hypergroups and with their help construct means that
vanish for all functions whose translates lie in a certain ideal. We are able to find
a single function χA independent of the specific choice of a polynomial hypergroup
for which we can construct means M1,M2 such that M1(χA) = 1 and M2(χA) = 0.
We conclude with the observation that if a summing sequence (An)n∈N0 and the limit
lim
n→∞

1
h(An)

∑
k∈An

ϕ(k)h(k) exist, then this limit is always the representation of a mean.

For the hypergroup generated by the Chebyshev polynomials of the first kind we give
two summing sequences that represent M1(χA) and M2(χA).
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1 Basic facts about hypergroups

In this first chapter we will recall some basic facts and definitions about hypergroups
for reference in later chapters. Classically, harmonic analysis is carried out on locally
compact Abelian groups and a huge amount of theory has been developed for that case
[13]. Locally compact Abelian groups are sets G that are both

• topological spaces satisfying the Hausdorff condition T2 and such that every point
in G has a neighborhood U such that its closure U is compact and

• groups with a commutative group operation such that (x, y) 7→ xy and x 7→ x−1

are continuous.

But often one faces a situation where the underlying structure is a locally compact
Hausdorff space and not a group but another algebraic structure is available which
allows studying generalized translation operators, as it is e.g. the case with N0 which
does not carry a group structure with the usual shift operator as there are no inverses.
One such structure that preserves some properties of a translation operator is the
notion of a hypergroup:

Definition 1.1. Let K be a locally compact Hausdorff space and

ω : K ×K →M1(K)

a continuous mapping, where M1(K) carries the weak-* topology induced by the relation
M1(K) = C0(K)∗. For µ, ν ∈M(K) define

µ ∗ ν(f) :=

∫
K×K

ω(x, y)(f)d(µ× ν)(x, y)

for all f ∈ C0(K). Additionally, let

˜: K → K, x 7→ x̃

a homeomorphism and let µ̃(E) = µ(Ẽ) for µ ∈ M(K). Then the triple (K,ω,̃ ) is
called a hypergroup if

(H1) ω : K ×K →M1(K) satisfies

εx ∗ ω(y, z) = ω(x, y) ∗ εz

(H2) supp(ω(x, y)) is compact for all x, y ∈ K
(H3) ˜: K → K is an involution, i.e. ˜̃x = x and

ω̃(x, y) = ω(ỹ, x̃) ∀x, y ∈ K

7



(H4) There exists a neutral element e ∈ K such that

ω(e, x) = εx = ω(x, e) ∀x ∈ K

(H5) e ∈ supp(ω(x, ỹ)) if and only if x = y

(H6) The mapping (x, y) 7→ supp(ω(x, y)), K ×K → C(K) is continuous

A hypergroup is called commutative if

ω(x, y) = ω(y, x)

for all x, y ∈ K.

Hypergroups are indeed a generalization of locally compact Abelian groups:

Remark 1.2. A locally compact Abelian group G can be considered a commutative
hypergroup by defining ω(x, y) := εx·y and taking the inverse as involution x̃ := x−1.

Similar to groups, on commutative hypergroups K there is a way to assign a translation
invariant volume to Borel sets, the Haar measure:

Proposition 1.3. If K is commutative there exists a (up to a multiplicative constant)
unique regular positive Borel measure µ on K which is translation invariant, i.e.∫

K

f(x)dµ(x) =

∫
K

ω(y, x)f(x)dµ(x)

for all y ∈ K and f ∈ Cc(K).

For the proof, refer to [4, Theorems 1.3.15, 1.3.22].

Definition 1.4. For f, g ∈ L1(K) we define a convolution by

f ∗ g(x) :=

∫
K

f(y)ω(ỹ, x)(g)dµ(y)

For easier notation we will also use the following form of a ‘convolution of sets’:

A ∗B :=
⋃

a∈A,b∈B

supp(ω(a, b)) for A,B ∈ K

It is important to note that we do not in any way take into account the relative
weights that ω(a, b) distributes but just take its support. This notation is mostly used
in proofs in which we want to get upper bounds for Haar measures of translates of sets
(see Chapter 3).

8



1.1 Polynomial Hypergroups

We will mainly be concerned with polynomial hypergroups, i.e. hypergroups derived
from sequences of orthogonal polynomials. Let (Rn)n∈N0 be a sequence of polynomials
that are orthogonal with respect to a probability measure π ∈M1(R), i.e.∫

R
Rn(x)Rm(x)dπ(x) = µnδm,n

with µn > 0. Often orthogonal polynomials are not defined by an orthogonalization
measure but by a three-term recurrence relation

Rn(x)R1(x) = anRn+1(x) + bnRn(x) + cnRn−1(x)

for n ∈ N, and R0(x) = 1, R1(x) = 1
a0

(x− b0), where a0 6= 0, bn ∈ R, ancn+1 > 0 for all

n ∈ N0. Favard’s Theorem assures the existence of a probability measure π ∈ M1(R)
as above such that (Rn)n∈N0 are orthogonal with respect to π.

Products of orthogonal polynomials can be linearized, as can be seen with the following
Lemma (cf. eg. [10]).

Lemma 1.5. Let (Rn)n∈N0 be a sequence of polynomials that are orthogonal with respect
to a probability measure π ∈M1(R). Additionally, let deg(Rn) = n and Rn(1) = 1 for
all n ∈ N0. Then products Rm(x)Rn(x) can be linearized by

Rm(x)Rn(x) =
m+n∑

k=|m−n|

g(m,n; k)Rk(x)

where g(m,n; k) ∈ R for k = |m − n|, . . . ,m + n. Additionally g(m,n; |m − n|) 6= 0
and g(m,n;m+ n) 6= 0.

Proof. Obviously (Rn)n∈N0 is an orthogonal basis of the space of all polynomials. There-
fore products have a unique representation

Rm(x)Rn(x) =
∞∑
k=0

g(m,n; k)Rk(x).

The assumption on the degree of the polynomials leads to g(m,n; k) = 0 for k > m+n
and g(m,n;m + n) 6= 0. Without loss of generality let m > n and k < m − n. Then
deg(RnRk) < m and thus

0 =

∫
R

Rm(x)Rk(x)Rn(x)dπ(x) =
m+n∑
j=0

g(m,n; j)

∫
R

Rk(x)Rj(x)dπ(x) = g(m,n; k)µk

Since µk 6= 0 for all k ∈ N0 we get g(m,n; k) = 0 for k < |m − n|. Now assume
g(m,n;m− n) = 0. Then we get

0 =

∫
R

Rn(x)Rm−n(x)Rm(x)dπ(x) =
m∑

j=|m−2n|

g(n,m− n; j)

∫
R

Rj(x)Rm(x)dπ(x)

= g(n,m− n;m)µm

which is a contradiction to g(n,m− n;m) 6= 0 and µm 6= 0.
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The linearization coefficients satisfy some identities that will be of use later on, pre-
sented in the following Lemma.

Lemma 1.6. Let (Rn)n∈N0 and g(m,n; k) as in Lemma 1.5. Then we get for k ∈
{|m− n|, . . . ,m+ n}:

(i) g(m,n; k) = g(n,m; k) for all m,n ∈ N0

(ii) g(0, n;n) = 1 for all n ∈ N0

(iii)
m+n∑

j=|m−n|
g(m,n; j) = 1 for all m,n ∈ N0

(iv) g(m,n; k)µk = g(m, k;n)µn for all m,n ∈ N0

(v) g(n, n; 0) = µn for all n ∈ N0

Proof. (i) Holds obviously as Rm(x)Rn(x) = Rn(x)Rm(x)

(ii) Since R0(x) = 1 for all x, we get R0(x)Rn(x) = Rn(x)

(iii) For all m,n ∈ N0 we get

1 = Rm(1)Rn(1) =
m+n∑

j=|m−n|

g(m,n; j)Rj(1) =
m+n∑

j=|m−n|

g(m,n; j)

(iv) Holds since∫
R

Rm(x)Rn(x)Rk(x)dπ(x) =
m+n∑

j=|m−n|

g(m,n; j)

∫
R

Rk(x)Rj(x)dπ(x)

= g(m,n; k)µk

and ∫
R

Rm(x)Rn(x)Rk(x)dπ(x) =
m+k∑

j=|m−k|

g(m, k; j)

∫
R

Rn(x)Rj(x)dπ(x)

= g(m, k;n)µn

(v) Follows from (iv) and µ0 = 1

Orthogonal polynomials with a positivity condition on their linearization coefficients
give rise to a hypergroup structure, as the following Theorem shows.

Theorem 1.7. Let (Rn)n∈N0 and g(m,n; k) as in Lemma 1.5. Additionally, let

g(m,n; k) ≥ 0 for k = |m− n|, . . . ,m+ n.
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Defining a convolution on N0 (with the discrete topology) by

ω(m,n) :=
m+n∑

k=|m−n|

g(m,n; k)εk for all m,n ∈ N0

and the identity mapping as involution ,̃ the triple (N0, ω, )̃ is a commutative hyper-
group with neutral element 0.

Proof. ω is a probability measure on N0 with compact support. By definition we have
0 ∈ supp(ω(m,n)) if and only if m = n. Most of the other properties of Definition
1.1 are obviously satsified, only associativity (H1) remains to be shown. Therefore let
ekj := δk,j. Then ω(m,n)(ek) = g(m,n; k) and we get

(εl ∗ ω(m,n)) (ek) =

∫
N0

∫
N0

ω(x, y)(ek)dεl(x)dω(m,n)(y) =

∫
N0

ω(l, y)(ek)dω(m,n)(y)

=
∞∑
j=0

ω(l, j)(ek)g(m,n; j) =
∞∑
j=0

g(l, j; k)g(m,n; j)

=
1

µk

m+n∑
j=|m−n|

g(m,n; j)

∫
R
Rl(x)Rj(x)Rk(x)dπ(x)

=
1

µk

∫
R
Rl(x)(Rm(x)Rn(x))Rk(x)dπ(x)

=
1

µk

∫
R
(Rl(x)Rm(x))Rn(x)Rk(x)dπ(x)

=
1

µk

l+m∑
j=|l−m|

g(l,m; j)

∫
R
Rj(x)Rn(x)Rk(x)dπ(x)

=
l+m∑

j=|l−m|

g(l,m; j)g(j, n; k) = (ω(l,m) ∗ εn) (ek)

To check whether the additional assumption of nonnegative linearization coefficients
is satisfied for a specific sequence of orthogonal polynomials one can for example find
restrictions on the coefficients an, bn, cn of the three-term recurrence relation. In 1970
Askey [1] found such restrictions based on versions for monic polynomials and many
generalizations of that result have since been given, for example by Szwarc [27, 28]. We
will state one of the results that allows us to see that the ultraspherical polynomials
generate polynomial hypergroups:

Theorem 1.8. Let (Rn)n∈N0 be given by

R0(x) = 1, R1(x) =
1

a0

(x− b0),

Rn(x)R1(x) = anRn+1(x) + bnRn(x) + cnRn−1(x) for n ∈ N
where bn ∈ R and an, cn > 0 for all n ∈ N0. If in addition

11



(i) cn, bn, an + cn are nondecreasing sequences

(ii) cn ≤ an for all n ∈ N
then the linearization coefficients g(n,m; k) are nonnegative.

Proof. This is a slight reformulation of [27, Theorem 1].

Example 1.9. The coefficients of the three-term recurrence relation of the family of
ultraspherical polynomials P

(α,α)
n are given by

a0 = 1, b0 = 0,

an =
n+ 2α + 1

2n+ 2α + 1
, bn = 0, cn =

n

2n+ 2α + 1
for n ∈ N.

Since α ≥ −1
2

and so 2α + 1 ≥ 0 we get that cn ≤ an and cn is nondecreasing. And
since bn and an + cn are constant the ultraspherical polynomials satisfy (i) and (ii)
of Theorem 1.8 and so they generate a polynomial hypergroup. More details on the
ultraspherical polynomials can be found in Section 1.2.

With the structure of a polynomial hypergroup, N0 admits a Haar measure h, i.e. a (up
to a multiplicative constant) unique countably additive translation invariant measure
such that h(A) is finite for every finite A. The following theorem shows how the one
with normalization h({0}) = 1 can be obtained from knowledge about the underlying
orthogonal polynomials.

Theorem 1.10. Let N0 carry a polynomial hypergroup structure. Then the Haar mea-
sure is given by

h(E) =
∑
n∈E

1

µn
for all E ⊆ N0

Proof. Using associativity, we get for k,m, n ∈ N0

∞∑
i=0

ω(m, i)({0})ω(n, k)({i}) = (εm ∗ ω(n, k)) ({0})

= (ω(m,n) ∗ εk) ({0})

=
∞∑
i=0

ω(m,n)({i})ω(i, k)({0})

Since 0 ∈ supp(m,n) if and only if m = n, the sums collapse to

ω(m,m)({0})ω(n, k)({m}) = ω(m,n)({k})ω(k, k)({0})

For convenience we set h1(m) := ω(m,m)({0})−1 and with Lemma 1.6 we see

h1(m) = ω(m,m)({0})−1 = g(m,m; 0)−1 =
1

µm

12



Finally, for E ⊆ N0 we define h by

h(E) :=
∑
m∈E

h1(m) =
∑
m∈E

1

µm

Obviously H : P(N0) → [0;∞[ is a positive measure on N0 and the equation above
reads

h1(k)ω(n, k)({m}) = h1(m)ω(m,n)({k})
Translation invariance of h remains to be shown. It is sufficient to show∫

N0

ω(n, k)({m})dh(k) = h({m})

for all n ∈ N0. This can be seen by∫
N0

ω(n, k)({m})dh(k) =
∞∑
k=0

ω(n, k)({m})h1(k)

=
∞∑
k=0

h1(m)ω(m,n)({k}) = h1(m)
∞∑
k=0

ω(m,n)({k})

= h1(m)
∞∑
k=0

m+n∑
j=|m−n|

g(m,n; j) εj({k})

= h1(m)
∞∑
k=0

g(m,n; k) = h1(m) = h({m})

For convenience we will from now on write h(n) instead of h({n}) for one-point sets.

For sequences (βn)n∈N0 we define the translate Tmβ by

Tmβ(n) :=
n+m∑

k=|n−m|

g(n,m; k)β(k)

and the convolution of sequences f, g ∈ l1(h) is given by

f ∗ g(n) =
∞∑
k=0

Tnf(k)g(k)h(k)

The ‘convolution of sets’ used in some proofs looks like this:

A ∗B :=
⋃

n∈A,m∈B

supp(εn ∗ εm)

For the special case of translates of sets we get

TkA := {k} ∗ A =
⋃
n∈A

supp(εk ∗ εn).
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Thus it is clear that taking its Haar measure reads

h(TkA) = h({k} ∗ A) = h

(⋃
n∈A

supp(εk ∗ εn)

)

and no g(k, n; .) appears representing the weights the convolution distributes. The
reason one has to keep that in mind is that in contrast to the group case the translate
TkχA of a characteristic function is in general not anymore a characteristic function,
in particular not equal to χTkA for k 6= 0.

Example 1.11. Let the hypergroup structure on N0 be given by the Chebyshev polyno-
mials of the first kind (Tn)n∈N0, i.e. g(m,n;m+n) = g(m,n; |m−n|) = 1

2
for m,n 6= 0,

and let k ≤ n. Then we get

Tkχ{0,...,n}(m) =


1 m = 0, . . . , n− k
1
2

m = n− k + 1, . . . ,m+ n
0 m > n+ k

whereas

χTk{0,...,n}(m) = χ{0,...,n+k} =

{
1 m = 0, . . . , n+ k
0 m > n+ k

.

We do know, however, that TkχA ≤ χTkA for all k ∈ N0, A ⊆ N0 as whenever the
left-hand side is not zero, then it must be between 0 and 1 as a convex combination of
these numbers and the right-hand side must be 1.

An important property many polynomial hypergroups fulfil is a condition on the growth
of the Haar measure. We call it property (H).

Definition 1.12. The polynomial hypergroup N0 is said to satisfy property (H) if

lim
n→∞

h(n)
n∑
k=0

h(k)
= 0

It is straightforward to see that property (H) is satisfied whenever h(n) is growing
polynomially, i.e. h(n) = O(nα), α ≥ 0 as n → ∞, and that it is not satisfied if h(n)
grows exponentially.

If property (H) holds, similar conditions hold if the numerator in the expression for
property (H) is replaced by h(n+ s) with s ∈ N0:

Proposition 1.13. Assume that (H) is satisfied. Then

lim
n→∞

h(n+ s)
n∑
k=0

h(k)
= 0 for all s ∈ N0.
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Proof. First we will show that

Hs(n) :=
1

h(n+ s)

n∑
k=0

h(k) for s, n ∈ N0

satisfy the following recurrence formula:

Hs(n)(1 +
1

H1(n)
) = Hs−1(n+ 1)

Note the identities

Hs(n) = Hs−1(n+ 1)− h(n+ 1)

h(n+ s)
and

Hs(n) = Hs−1(n)
h(n+ s− 1)

h(n+ s)
= . . . = H1(n)

h(n+ 1)

h(n+ s)
= H0(n)

h(n)

h(n+ s)
.

By these two expressions follows

Hs(n) = Hs−1(n+ 1)− h(n+ 1)

h(n+ s)
= Hs−1(n+ 1)− Hs(n)

H1(n)

and hence Hs(n)(1 + 1
H1(n)

) = Hs−1(n+ 1).

Now assume (H). We apply induction on s. For s = 1 we have

h(n+ 1)
n+1∑
k=0

h(k)− h(n+ 1)

=
1

n+1∑
k=0

h(k)

h(n+1)
− 1

→ 0 as n→∞.

Suppose the statement is proven for l = 0, . . . , s− 1. Then by the recurrence formula
from the beginning of the proof immediately follows Hs(n)→∞ as n→∞.

As the growth condition (H) also implies a similar condition with h(n+ s) in the nu-

merator for negative s, all conditions of the form h(n+s)
n∑
k=0

h(k)
→ 0 as n→∞ are equivalent.

1.2 Examples of Polynomial Hypergroups

In this section we will look at specific polynomial hypergroups and shortly examine
their properties. The first and most common examples are hypergroups generated by
Jacobi polynomials P

(α,β)
n (x), where α ≥ β > −1 and α+β+1 ≥ 0. Jacobi polynomials

are orthogonal with respect to a measure dπ concentrated on [−1, 1]. This measure is
given by

dπ(x) = C(α,β)(1− x)α(1 + x)βχ[−1,1]dx
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where C(α,β) = 1
2α+β+1

Γ(α+β+2)
Γ(α+1)Γ(β+1)

. Their coefficients in the three-term recurrence rela-
tion are

a0 =
2(α + 1)

α + β + 2
, b0 =

β − α
α + β + 1

,

an =
(n+ α + β + 1)(n+ α + 1)(α + β + 2)

(2n+ α + β + 2)(2n+ α + β + 1)(α + 1)
,

bn =
α− β

2(α + 1)

(
1− (α + β + 2)(α + β)

(2n+ α + β + 2)(2n+ α + β)

)
,

cn =
n(n+ β)(α + β + 2)

(2n+ α + β + 1)(2n+ α + β)(α + 1)
.

Haar weights are given by

h(0) = 1, h(n) =
(2n+ α + β + 1)(α + β + 1)n(α + 1)n

(α + β + 1)n!(β + 1)n
for n ≥ 1.

An important special class of Jacobi polynomials are ultraspherical polynomials
where α = β ≥ −1

2
. The formulas here are valid for α = β 6= 1

2
and the ones for

α = β = 1
2

can be found below. They are orthogonal with respect to the measure

dπ(x) = Cα(1− x2)αχ[−1,1]dx

where Cα = 1
22α+1

Γ(2α+2)
(Γ(α+1))2

.

Their recursion coefficients are given by

a0 = 1, b0 = 0,

an =
n+ 2α + 1

2n+ 2α + 1
, bn = 0, cn =

n

2n+ 2α + 1
.

Their linearization coefficients have the form (where m ≤ n)

g(m,n; k) =
n!m!(α + 1

2
)k(α + 1

2
)n−k(α + 1

2
)m−k(2α + 1)n+m−k(n+m+ α + 1

2
− 2k)

k!(n− k)!(m− k)!(α + 1
2
)n+m−k(2α + 1)n(2α + 1)m(n+m+ α + 1

2
− k)

if k ∈ {n−m,n−m+ 2, n−m+ 4, . . . , n+m} and

g(n,m; k) = 0

if k ∈ {n−m+ 1, n−m+ 3, n−m+ 5, . . . , n+m− 1}.
The Haar weights are

h(0) = 1, h(n) =
(2n+ 2α + 1)(2α + 1)n

(2α + 1)n!

One very simple example of Jacobi polynomials are the Chebyshev polynomials of
the first kind, where α = β = −1

2
. They satisfy

Tn(x) = cos(n arccosx).
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They are orthogonal with respect to

dπ(x) =
dx√

1− x2

Via trigonometric addition formulas one gets

Tm(x)Tn(x) =
1

2
T|m−n||(x)Tm+n(x)

and so the linearization coefficients are given by

g(m,n; k) =


1 if mn = 0 and k = max(m,n)
1
2

if m,n ∈ N0 and k = |m− n|,m+ n
0 else

Haar weights are
h(0) = 1, h(n) = 2 for n ∈ N.

For α = β = 1
2

we get the Chebyshev polynomials of the second kind. They
satisfy

Un(x) =
1

n+ 1

sin((n+ 1) arccosx)

sin arccosx
.

Chebyshev polynomials of the second kind are orthogonal with respect to

dπ(x) =
√

1− x2dx

and their linearization coefficients are given by

g(m,n;m+ n− k) =

{
m+n+1−k

(m+1)(n+1)
k even

0 k odd

The Haar measure is
h(n) = (n+ 1)2.

Another special case of Jacobi polynomials are Legendre polynomials, where α =
β = 0. They are given by

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]

and they are orthogonal with respect to the Lebesgue measure on [−1, 1]. The lineariza-
tion coefficients are given by g(m,n;m+ n− j) = 0 for j ∈ {1, 3, . . . , 2 min(m,n)− 1}
and

g(m,n;m+n−2j) =
(m+ n+ 1

2
− 2j)

(
2j
j

)(
2m−2j
m−j

)(
2n−2j
n−j

)
(m+ n+ 1

2
− j)

(
2m+2n−2j
m+n−j

) for j ∈ {0, 1, . . . ,min(m,n)}.

The Haar measure is
h(n) = 2n+ 1.
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A further interesting polynomial hypergroup with exponentially increasing Haar mea-
sure is generated by Little q-Legendre polynomials R

(q)
n (x) with 0 < q < 1. That

they define a polynomial hypergroup on N0 is shown in [17] and [10]. The recurrence
coefficients are

an = qn
(1 + q)(1− qn+1)

(1− q2n+1)(1 + qn+1)

bn =
(1− qn)(1− qn+1)

(1 + qn)(1 + qn+1)

cn = qn
(1 + q)(1− qn)

(1− q2n+1)(1 + qn)

for n ∈ N, with starting values a0 = 1
q+1

and b0 = q
q+1

. The Haar weights satisfy

lim
n→∞

h(n)

h(n+ 1)
=

1

q
> 1.

Hence h(n) is of exponential growth. Moreover, an → 0, cn → 0, bn → 1 and an
cn+1
→ 1

q
.
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2 Translation invariant means on
commutative hypergroups

2.1 Definitions and Basic Properties

The definition of a translation invariant mean here is the same as in the group case
with the hypergroup convolution replacing the group action. We will still call this a
translation.

Definition 2.1. Let K be a commutative hypergroup. A linear functional m on L∞(K)
is called a mean if

(i) m(f̄) = m(f) for all f ∈ L∞(K)

(ii) f ≥ 0 implies m(f) ≥ 0

(iii) m(1) = 1

The set of all means on K will be called M(K) (or abbreviated just M). A mean is
called (left) translation invariant if m(Txϕ) = m(ϕ) for all x ∈ K,ϕ ∈ L∞(K). If
such a translation invariant mean exists, K is called amenable. We will call Mt(K)
(or just Mt) the set of all (left and thus two-sided) translation invariant means on K.

A linear functional m ∈ (L∞(K))∗ is a mean if and only if m(1) = 1 = ‖m‖ and so M
is a non-empty weak* compact convex set in (L∞(K))∗.
Commutative hypergroups are amenable, as there exists a (left) translation invariant
mean. This can be shown by application of the Markov-Kakutani fixed point theorem,
see e.g. [22, p. 168]. Another proof of this well-known fact, which uses the existence of
a mean for the space of bounded continuous functions on any Abelian semigroup and
embeds K into P00(K), the probability measures on K with compact support, can be
found in [7].

Remark 2.2. Let m be a translation invariant mean and ϕ ∈ L∞(K) real-valued.
Then the mean is bounded by ‖ϕ‖∞:

−‖ϕ‖∞ ≤ m(ϕ) ≤ ‖ϕ‖∞

This follows from the monotonicity of m.

For a certain class of functions f ∈ L∞(K) the value m(f) is uniquely defined for all
means m:
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Proposition 2.3. Let f ∈ L∞(K) such that a constant function f̃ ≡ cf lies in

co{Txf : x ∈ K}
∞

. Then m(f) = cf for all m ∈ Mt, i.e. m(f) is uniquely deter-
mined and equal to this constant.

Proof. Let m be a translation invariant mean on L∞(K). For any convex combination
of elements of {Txf : x ∈ K} the mean is the same and equal to m(f). Since m ∈
(L∞(K))∗, this also holds for the norm closure of this set. If there is a constant function
in this set, then m(f) must be equal to this constant as m satisfies m(1) = 1, regardless
of the choice of m.

With this Proposition in mind, we define the following sets of functions:

Definition 2.4. Let K be a commutative hypergroup. Then define

CO(K) := {f ∈ L∞(K) : There is a constant function in co{Txf : x ∈ K}
∞
}

AC(K) := {f ∈ L∞(K) : ∃cf ∈ C : m(f) = cf for all m ∈Mt}

The set CO(K) contains all functions that have a constant in the closure of the convex
hull of their translates which is exactly the condition used in Proposition 2.3 to prove
that all means coincide for these functions. AC(K) is the set of all functions f ∈ L∞(K)
for which all means coincide. We call elements in AC(K) almost convergent. This
comes from the fact that all convergent sequences on polynomial hypergroups lie in
AC(N0) which will be shown in Proposition 3.7 and that in this sense the elements of
the larger set AC(N0) are similar, hence “almost” convergent.

So Proposition 2.3 states CO(K) ⊆ AC(K). Using the properties of translation invari-
ant means we can see that the set AC(K) of functions in L∞(K) such that the mean
is unique is a translation invariant closed linear subspace of L∞(K).

Now we will look at an important subclass of AC(K), the set of weakly almost periodic
functions WAP(K):

Definition 2.5. Let K be a commutative hypergroup. Define

UC(K) := {f ∈ L∞(K) : x 7→ Txf is continuous w.r.t. the norm topology of L∞(K)}

WAP(K) :=

{f ∈ L∞(K) : {Txf : x ∈ K} is relatively weakly compact in L∞(K)} ∩ UC(K)

An element f ∈ WAP(K) is called weakly almost periodic.

ThatWAP(K) is indeed a subclass of AC(K) is a consequence of the following Propo-
sition which is a classical result showing uniqueness of the mean for the space of weakly
almost periodical functions on a commutative hypergroup (which utilizes Proposition
2.3). A proof has been given by Wolfenstetter [31]:

Theorem 2.6. Let K be a commutative hypergroup. Then there exists a unique trans-
lation invariant mean m on WAP(K) satisfying
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(i) m(f) = m(Txf) for all x ∈ K, f ∈ WAP(K)

(ii) m(1) = 1

(iii) f ≥ 0⇒ m(f) ≥ 0 for all f ∈ WAP(K)

(iv) ‖m‖ = 1

(v) m(f) = m(f) for all f ∈ WAP(K)

Proof. The existence is guaranteed by Dixmier’s [7] result. For f ∈ WAP(K) there
lies a constant function in the norm closed convex hull of f (again cf. [7]). With
Proposition 2.3 the proof is then finished.

Looking more closely at the proof of Theorem 2.6 it states that the class of weakly
almost periodic functions lies in CO(K), i.e. WAP(K) ⊆ CO(K).

Remark 2.7. In contrast to the group case, WAP(K) fails to be an algebra in general.
For a counterexample, see [31]. There Wolfenstetter shows the existence of a weakly
almost periodic sequence h on a polynomial hypergroup such that h2 6∈ WAP(N0).

For characters χ the mean is unique and we can even specify the value m(χ):

Corollary 2.8. Let m be a translation invariant mean on L∞(K). For every character
χ 6= 1 on K we get m(χ) = 0.

Proof. Every character χ satisfies Txχ = χ(x)χ. So if χ 6= 1 there exists x ∈ K such
that χ(x) 6= 1 and thus

m(χ) = m(Txχ) = m(χ(x)χ) = χ(x) ·m(χ)

which holds only for m(χ) = 0.

For the identity character, the mean is obviously 1.

For the remainder of this section, we will study a space larger than Mt(K) by dropping
the requirement of being a mean, in contrast to M(K) where we dropped the additional
assumption of translation invariance. In fact we will investigate

J(L∞(K)) := {F ∈ L∞(K)∗ : TxF = F for all x ∈ K}.

This is defined via the elements x ∈ K acting on L∞(K)∗ by the map L∞(K)∗ →
L∞(K)∗, F 7→ TxF , where TxF (ϕ) := F (Txϕ) for ϕ ∈ L∞(K). Obviously J(L∞(K))
is a linear subspace of L∞(K)∗ and 0 ∈ J(L∞(K)).

Proposition 2.9. The linear span L := span{Txϕ − ϕ : ϕ ∈ L∞(K), x ∈ K} is not
dense in L∞(K) if and only if J(L∞(K)) 6= {0}.
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The proof follows the lines of Proposition (2.1) in [24].

As there always exists a translation invariant mean for commutative hypergroups and
so J(L∞(K)) ) {0}, Proposition 2.9 states that L cannot be dense in L∞(K).

The relation between J(L∞(K)) and Mt(K) is not only that Mt(K) ⊆ J(L∞(K)) and
that Mt(K) has the additional requirement of its elements being means:

Proposition 2.10. The space J(L∞(K)) is linearly spanned by Mt(K).

Proof. The proof follows the lines of Proposition (2.2) in [24].
We identify L∞(K)∗ with M(Φ(K)) by the Riesz Representation Theorem, where Φ(K)
is the carrier space of L∞(K). Let ν be a nonzero element of J(L∞(K)). We decompose

ν = (ν+
1 − ν−1 ) + i(ν+

2 − ν−2 )

where ν1 and ν2 are the real and imaginary parts of ν and ν+
i and ν−i are the positive and

negative variations of νi. It suffices to show that each nonzero ν+
i , ν

−
i is a multiple of

an element in Mt(K). Without loss of generality (taking scalar multiples if necessary)

we assume that ν+
1 6= 0. We will show that ν+

1 ∈ J(L∞(K)) as then
ν+1
‖ν+1 ‖

∈ Mt(K).

Now if ϕ ∈ L∞(K) real-valued and x ∈ K, then

ν1(ϕ− Txϕ) = Reν(ϕ− Txϕ) = 0

so that ν1 ∈ J(L∞(K)). Furthermore, ν1 = Txν1 = Txν
−
1 Txν

−
1 with ν+

1 , ν
−
1 ≥ 0. By the

minimum property of the Jordan decomposition it follows that Txν
+
1 ≥ ν+

1 , Txν
−
1 ≥ ν−1 .

This leads to
‖Txν+

1 − ν+
1 ‖ = (Txν

+
1 − ν+

1 )(1) = 0

since (Txν
+
1 − ν+

1 ) is a positive functional on L∞(K). Thus Txν
+
1 = ν+

1 , i.e. ν+
1 ∈

J(L∞(K)).

2.2 Strong Amenability

After studying amenability of commutative hypergroups one can think of stronger
versions of amenability as a replacement of the group structure in the classical case,
where one has m(f · Txg) = m(Tx−1f · g) for translation invariant means. As there are
no proper inverses on hypergroups, one can look for means with a certain additional
property that allows a similar operation as the one above for groups with the inverse
replaced by the involution. This leads to our definition of strongly translation invariant
means:

Definition 2.11. A mean m ∈M(K) is called strongly translation invariant if

m((Tyϕ)ψ) = m(ϕ(Tỹψ)) for all y ∈ K,ϕ, ψ ∈ L∞(K).

Remark 2.12. (a) With ψ = 1 in Definition 2.11 it is obvious that m is translation
invariant whenever m is strongly translation invariant.
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(b) Let m be a strongly translation invariant mean. For characters α, β ∈ K̂, α 6= β
we get m(α · β) = 0. To see that, choose y ∈ K such that α(y) 6= β(y). Then

α(y)m(α · β) = m(Tyα · β) = m(α · Tỹβ) = β(y)m(α · β),

hence m(α · β) = 0.

Next we will introduce two Reiter-type conditions and investigate their relation to the
existence of strongly translation invariant means.

Definition 2.13. A hypergroup is said to satisfy the uniform finite strong Reiter’s
condition P1 (UFP1) if for all ε > 0, F ⊂ K finite there exists g ∈ L1(K) such that

(i) ĝ(1) = 1

(ii) ‖g‖1 = 1

(iii) ‖Ty(ϕg)− gTyϕ‖1 < ε for all y ∈ F, ϕ ∈ L∞(K) with ‖ϕ‖∞ ≤ 1.

Remark 2.14. (iii) in Definition 2.13 can also be stated as

(iii′)‖Ty(ϕg)− gTyϕ‖1 < ε‖ϕ‖∞ for all y ∈ F, ϕ ∈ L∞(K).

Theorem 2.15. There exists a strongly translation invariant mean on K if K satisfies
Reiter’s condition (UFP1).

Proof. Assume that Reiter’s condition (UFP1) holds, i.e. for every ε > 0, F ⊆ K finite
there exists g ∈ L1(K) with ĝ(1) = 1 = ‖g‖1 such that ‖Ty(ϕg) − gTyϕ‖1 < ε for all
y ∈ F, ϕ ∈ L∞(K), ‖ϕ‖∞ ≤ 1. We define functionals mε,F ∈ (L∞(K))∗ by

mε,F (ψ) :=

∫
K

g(x)ψ(x)dµ(x) for ψ ∈ L∞(K).

They satisfy mε,F (1) = ‖mε,F‖1 = ĝ(1) = ‖g‖1 = 1, and so the functionals mε,F are
elements of a weak*-compact subset of L∞(K)∗. For each ψ ∈ L∞(K), ‖ψ‖∞ ≤ 1 we
get

mε,F (ϕTỹψ) =

∫
K

g(x)ϕ(x)Tỹψ(x)dµ(x) =

∫
K

Ty(gϕ)(x)ψ(x)dµ(x).

Hence

|mε,F (ϕTỹψ)−mε,F (ψTyϕ)| =

∣∣∣∣∫
K

Ty(gϕ)(x)ψ(x)− g(x)Tyϕ(x)ψ(x)dµ(x)

∣∣∣∣
≤

∫
K

|ψ(x)| · |Ty(ϕg)(x)− Tyϕ(x)g(x)|dµ(x)

≤ ‖ψ‖∞ · ‖Ty(ϕg)− gTyϕ‖1 < ε‖ψ‖∞ ≤ ε.

Defining a relation by

(ε1, F1) ≺ (ε2, F2) :⇐⇒ ε2 ≤ ε1, F1 ⊆ F2
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we get a partial order, and with respect to this partial order the functionals mε,F form a
net. By the compactness this net has an accumulation point m ∈ (L∞(K))∗ satisfying
m(1) = 1 = ‖m‖ and

m(ϕTỹψ) = m(ψTyϕ) for all ϕ, ψ ∈ L∞(K) with ‖ϕ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1

and all y ∈ K. By the linearity of m this holds for all ϕ, ψ ∈ L∞(K), and this proves
that K has a strongly translation invariant mean.

The converse of Theorem 2.15 has not yet been proved but it is possible to get to a
different variant of the strong Reiter’s condition which we call local instead of uniform
as there exists a (possibly different) g = gϕ for every ϕ whereas in the uniform condition
(UFP1) there is one g that is the same for all ϕ ∈ l∞.

Definition 2.16. A hypergroup is said to satisfy the local finite strong Reiter’s
condition P1 (LFP1) if for all ε > 0, F ⊂ K finite and for all ϕ ∈ L∞(K) there
exists g = gϕ ∈ L1(K) such that

(i) ĝ(1) = 1

(ii) ‖g‖1 = 1

(iii) ‖Ty(ϕg)− gTyϕ‖1 < ε for all y ∈ F .

Theorem 2.17. If there exists a strongly translation invariant mean on K then K
satisfies Reiter’s condition (LFP1).

Proof. Assume there exists a strongly translation invariant mean m on K. By Gold-
stine’s Theorem [8, p.424] the embedding of the unit ball B ⊆ L1(K) into L∞(K)∗ is
dense in the unit ball B∗∗ ⊆ L∞(K)∗ with respect to the weak*-topology. Hence there
exists a net (fj)j∈I of functions in B such that∫

K

fj(x)ψ(x)dµ(x)→ m(ψ) for all ψ ∈ L∞(K).

In particular, f̂j(1) → m(1) = 1. Since m is positive we can assume that fj ≥
0, ‖fj‖1 = 1. For any y ∈ K and ϕ ∈ L∞(K), ‖ϕ‖∞ ≤ 1 we have∫

K

Ty(ϕfj)(x)ψ(x)dµ(x) =

∫
K

fj(x)ϕ(x)Tŷψ(x)dµ(x)→ m(ϕTŷψ) = m(ψTyϕ)

and ∫
K

fj(x)Tyϕ(x)ψ(x)dµ(x)→ m(ψTyϕ).

Hence ∫
K

(Ty(ϕfj)(x)− (fjTyϕ)(x))ψ(x)dµ(x)→ 0 for all ψ ∈ L∞(K).

Given y1, . . . , ym ∈ K and ϕ ∈ l∞ define Gk,j := Tyk(ϕfj) − fjTykϕ. Then the net
defined by Gj := (G1,j, . . . , Gm,j) ∈ L1(K)× . . .×L1(K) converges to 0 in the product
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space with respect to the weak topology. Then there exists a convex combination of
elements Gj that converges in the norm of the product space L1(K)× . . .×L1(K) to 0
[8, p.422]. Thus for each ε > 0, F ⊆ K finite and ϕ ∈ L∞(K) there exists g ∈ L1(K)
as a convex combination of functions fj satisfying

ĝ(1) = 1, ‖g‖1 = 1 and ‖Tyk(ϕg)− gTykϕ‖1 < ε.

As an example to hypergroups admitting strongly translation invariant means we will
take certain polynomial hypergroups, see Proposition 3.15.
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3 Translation invariant means on
polynomial hypergroups

For sequences (xn)n∈N the existence of means on l∞ invariant with respect to the
left shift has been shown via Banach limits [8]. In the corresponding proof, Hahn-
Banach theorem is used with p((xn)n∈N) = lim sup

n→∞
xn as translation invariant subad-

ditive function and the resulting continuation of l(x) = lim
n→∞

xn for x ∈ {y ∈ l∞ :

(yn)n∈N converges} is called a Banach limit. This idea does not work for polynomial
hypergroups, as in general lim sup

n→∞
ϕn 6= lim sup

n→∞
(Tkϕ)n for the hypergroup transla-

tion Tk which is a convolution instead of a mere shift. The existence of a transla-
tion invariant mean on polynomial hypergroups has already been shown more gen-
erally in Chapter 2, but by using the construction at the end of Section 2.1 there
is a proof of the existence of translation invariant means on polynomial hypergroups
that does not need the Markov-Kakutani fixed point theorem. First of all we define
L := span{Tnϕ− ϕ : ϕ ∈ l∞, n ∈ N0} as in Proposition 2.9. We can simplify that to

Lemma 3.1. L = span{T1ϕ− ϕ : ϕ ∈ l∞}

Proof. We use induction on n to show that Tnϕ − ϕ ∈ span{T1ψ − ψ : ψ ∈ l∞} for
every ϕ ∈ l∞. For n = 0, 1 this is obviously satisfied. Now assume that Tkσ − σ ∈
span{T1ψ − ψ : ψ ∈ l∞} for all k = 0, . . . , n and every σ ∈ l∞. With

Tn+1 =
1

an
T1 ◦ Tn −

bn
an
Tn −

cn
an
Tn−1 for n ≥ 1

we get for every ϕ ∈ l∞

Tn+1ϕ− ϕ = T1

(
Tnϕ

an

)
− Tnϕ

an
+
Tnϕ

an
− bnTnϕ

an
− cnTn−1ϕ

an
− an
an
ϕ

= T1ψ − ψ + Tnσ − Tn−1τ − (σ − τ)

where

ψ =
Tnϕ

an
, σ =

1− bn
an

ϕ, τ =
cnϕ

an
which finishes the proof.

We can now further simplify by observing that {T1ϕ− ϕ : ϕ ∈ l∞} is a linear space as

every
n∑
k=1

αk(T1ϕk−ϕk) ∈ L is just T1(
n∑
k=1

αkϕk)−
n∑
k=1

αkϕk. With that in mind we can

state the following result:
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Theorem 3.2. On polynomial hypergroups there exists a translation invariant mean.

Proof. We first prove that ‖T1ϕ− ϕ− 1‖∞ ≥ 1 for all ϕ ∈ l∞.
Observe that if ϕ is a convergent sequence, then T1ϕ(n) − ϕ(n) → 0 and so ‖T1ϕ −
ϕ− 1‖∞ ≥ 1. We see that

T1ϕ(n)− ϕ(n) = anϕ(n+ 1) + bnϕ(n) + cnϕ(n)− (an + bn + cn)ϕ(n)

= an(ϕ(n+ 1)− ϕ(n)) + cn(ϕ(n− 1)− ϕ(n))

If there exists n ∈ N such that both ϕ(n+ 1)−ϕ(n) and ϕ(n+ 1)−ϕ(n) are negative,
the first part of the proof is finished as then ‖T1ϕ−ϕ−1‖∞ ≥ 1. If there exists no such
n, then either ϕ is decreasing, increasing or there exists n0 such that ϕ is decreasing
up to n0 and from then on increasing. In all three cases ϕ is eventually monotone and
as a bounded sequence it converges. Thus the first statement is proven.

As L is thus not dense in l∞, by Proposition 2.9 we get that J(l∞) 6= {0}. As J(l∞) is
linearly spanned by Mt(N0) by Proposition 2.10, there must be a nonzero element in
Mt(N0) (see the proof of Proposition 2.10) and thus there exists a translation invariant
mean.

Utilizing the specific structure of hypergroups derived from sequences of orthogonal
polynomials we can get some results that do not hold on general commutative hy-
pergroups. Especially the 3-term recurrence relation is a very helpful tool in many
proofs in this chapter. The first application of this idea simplifies proving translation
invariance for a mean such that one only has to check invariance with respect to T1:

Proposition 3.3. A mean m ∈M(N0) is translation invariant if m(T1ϕ) = m(ϕ) for
all ϕ ∈ l∞(N0).

Proof. We use induction on n. Assume that m(Tkϕ) = m(ϕ) for k = 0, 1, . . . , n. Then

m(Tn+1ϕ) =
1

an
m(T1 ◦ Tnϕ)− bn

an
m(Tnϕ)− cn

an
m(Tn−1ϕ) = m(ϕ)

where an, bn, cn are the coefficients of the three-term recurrence relation of the under-
lying family of orthogonal polynomials.

We also prove the following Lemma which is helpful for representing the powers of the
translation operator T1 for polynomial hypergroups in a convenient way:

Lemma 3.4. T n1 can be written as a convex combination of the form

T n1 =
n∑
k=0

αkTk

where
∑

k αk = 1 and αk ≥ 0 for all k.
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Proof. Use the 3-term recurrence relation to find inductively:

T1T1 = a1T2 + b1T1 + c1T0 and then

T n+1
1 = T1T

n
1 = T1

(
n∑
k=0

αkTk

)

=
n∑
k=0

αkT1Tk =
n∑
k=0

αk(akTk+1 + bkTk + ckTk−1).

This is a convex combination of {Tk : 0 ≤ k ≤ n+ 1}.

With Proposition 2.3 we can also find the following criterion for the uniqueness of the
mean for polynomial hypergroups:

Corollary 3.5. Let ϕ ∈ l∞ such that T n1 ϕ converges uniformly to ψ ∈ l∞ for n→∞.
Then m(ϕ) is uniquely determined.

Proof.
ψ = lim

n→∞
T n1 ϕ = lim

n→∞
T n+1

1 ϕ = T1 lim
n→∞

T n1 ϕ = T1ψ

Since the only T1-invariant functions on l∞ are constants and, by Lemma 3.4, ψ ∈
co{Tnϕ : n ∈ N0}

∞
the proof is finished.

This sequence does not converge for all ϕ ∈ l∞ on all polynomial hypergroups as the
following counterexample shows:

Example 3.6. Consider the polynomial hypergroup generated by the Chebyshev polyno-
mials of the first kind and ϕ := (1, 0, 1, 0, 1, 0, . . .). T1ϕ = (0, 1, 0, 1, . . .) and T 2

1ϕ = ϕ,
so the sequence (T n1 ϕ)n∈N0 does not converge but oscillate between two elements.
Incidentally the mean for ϕ is still unique as 1

2
ϕ + 1

2
T1ϕ = (1

2
, 1

2
, . . .) and so m(ϕ) =

1
2
m(ϕ) + 1

2
m(T1ϕ) = m((1

2
, 1

2
, . . .)) = 1

2
.

In fact it is not possible on a polynomial hypergroup that means coincide for all ϕ ∈ l∞
as we will see in Chapter 4. But we will try to find a preferably large subset of functions
in l∞ such that m(ϕ) is given by ϕ alone, not depending on the choice of m.

For convergent sequences on polynomial hypergroups we can prove the following strong
result:

Proposition 3.7. Let ϕ ∈ l∞ such that lim
n→∞

ϕn =: c. Then m(ϕ) = c.

Proof. Due to the linearity of m it is sufficient to show that m(ϕ) = 0 for ϕ ∈ c0.
Let ε > 0. Then there exists N ∈ N0 such that |ϕn| ≤ ε for n ≥ N . Define
ϕ1 := (ϕ0, ϕ1, ϕ2, . . . , ϕN−1, 0, . . .) and ϕ2 := (0, . . . , 0, ϕN , ϕN+1, . . .). Again using
the linearity of m we get

m(ϕ1) = ϕ0m(ε0) + . . .+ ϕN−1m(εN−1) =
N−1∑
k=0

ϕkm(ε0)
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as εk = Tkε0, and m(ϕ2) ≤ ‖ϕ2‖∞ ≤ ε.
So if m(ε0) = 0 the proof is finished. Assume m(ε0) = c > 0. Choose k ∈ N such
that k > 1

c
. Then m(1, . . . , 1︸ ︷︷ ︸

k

, 0, . . .) = k · c > 1, a contradiction to m(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) ≤

m(1) = 1

On polynomial hypergroups, we can get stricter bounds for means than the norm ‖ϕ‖∞
for general hypergroups as in Remark 2.2:

Proposition 3.8. Let m be a translation invariant mean and ϕ = (ϕn)n∈N0 ∈ l∞.
Then

lim inf
n→∞

ϕn ≤ m(ϕ) ≤ lim sup
n→∞

ϕn

Proof. By Proposition 3.7 we get

m(ϕ) = m(ϕ0, ϕ1, . . . , ϕn−1, 0, . . .) +m(0, . . . , 0, ϕn, ϕn+1, . . .) ≥ 0 + inf
k≥n

ϕk.

Since that holds for each n ∈ N0, m(ϕ) ≥ lim inf
n→∞

ϕn. Analogously for the other

inequality.

In Chapter 2 we have studied means in general, and criteria for when the mean is
unique. In the present chapter we want to find explicit representations for means,
especially when it is unique. Then a formula to calculate m(ϕ) might be helpful for
practical applications. We will restrict our attention to the case of polynomial hyper-
groups and give criteria for when a certain construction using “summing sequences”,
an analogue to Følner sequences [11] on groups, works.

Recall that a polynomial hypergroup satisfies condition (H) if and only if

lim
n→∞

h(n)
n∑
k=0

h(k)
= 0.

3.1 Summing sequences

A basic tool which we will use in constructing representations of means are so-called
summing sequences:

Definition 3.9. A sequence (An)n∈N0 where An ⊆ N0 for all n ∈ N0 is called summing
sequence on the polynomial hypergroup N0 if it satisfies

(i) An ⊆ An+1 for all n ∈ N0

(ii)
⋃
n∈N0

An = N0

(iii) h(An) <∞ for all n ∈ N0
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(iv) lim
n→∞

h(TkAn∆An)
h(An)

= 0 for all k ∈ N0

Very much like Følner sequences on groups, the sets in these summing sequences are
ascending, eventually cover all of N0, are compact and the symmetric difference between
a set An and its translate TkAn is “small” compared to the size of the original set An
for increasing n. A natural candidate for a summing sequence is Sn := {0, 1, . . . , n}.
We will call that specific choice the canonical sequence.

Theorem 3.10. The canonical sequence (Sn)n∈N0 is a summing sequence if and only
if the hypergroup satisfies condition (H).

Proof. As {n+ k} ⊆ TkSn∆Sn ⊆ {n+ 1, . . . , n+ k} for n ≥ k, we get

h(n+ k)

h(Sn)
≤ h(TkSn∆Sn)

h(Sn)
≤ h(n+ 1) + . . .+ h(n+ k)

h(Sn)
.

If (H) holds, Proposition 1.13 implies that (Sn)n∈N0 is a summing sequence. Conversely,
if (Sn)N0 is a summing sequence, the first inequality (with k=1) yields property (H).

The above result is a nice characterization of when (i.e. for which hypergroups) the
canonical sequence (Sn)n∈N0 is a summing sequence, as the important structural con-
dition (H) appears. There are other examples of summing sequences, which can be
obtained as follows:

Proposition 3.11. Let (H) be satisfied and (An)n∈N0 a sequence of sets such that

(i) An ⊆ An+1 for all n ∈ N0

(ii)
⋃
n∈N0

An = N0

(iii) An = Sn\In where (Sn)n∈N0 is the canonical sequence and |In| ≤ C for all n ∈ N0

for some C > 0

If the Haar measure h is nondecreasing, (An)n∈N0 is a summing sequence.

Proof. Because of

h(TkAn∆An) ≤ h(TkSn∆Sn) + h(TkIn) + h(In)

≤ h(TkSn∆Sn) + (2k + 2)C · h(n+ k)

and Proposition 1.13 and Theorem 3.10, (An)n∈N0 is a summing sequence.

The sequences (An)n∈N0 in Proposition 3.11 are very similar to the “natural” summing
sequence (Sn)n∈N0 . In contrast we will now see an example of a sequence (An)n∈N0

that satisfies (i)-(iii) of Definition 3.9 but not condition (iv). For the simplest case
take the polynomial hypergroup induced by the Chebyshev polynomials of the first
kind, i.e. h(0) = 1, h(n) = 2 and T1{n} = {n − 1, n + 1} for all n ∈ N. Define
An := {0, 1, . . . , 2n}∪{2n+1, 2n+3, . . . , 4n−1}. Then T1An = {0, 1, . . . , 2n, 2n+1}∪
{2n+2, 2n+4, . . . , 4n}, and T1An∆An = {2n+2, 2n+3, . . . , 4n}. Then h(An) = 6n+1
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and h(T1An∆An) = 4n−2, and so lim
n→∞

h(T1An∆An)
h(An)

= 2
3
, i.e. (An)n∈N0 is not a summing

sequence.
We can also give an example of a summing sequence which is not “almost” (Sn)n∈N0 like
in Proposition 3.11: Let (H) be satisfied and let the Haar measure be nondecreasing.
Define a sequence of sets by An := {0, 1, . . . , 3n} ∪ {2 · 3n + 1, 2 · 3n + 2, . . . , 3n+1}.
(i)-(iii) of Definition 3.9 are again obviously satisfied and since the Haar measure is
nondecreasing we get h(T1An∆An) ≤ 3 ·h(3n+1 + 1) and by Proposition 1.13 and using
2h(An) ≥ h(S3n) we get that (An)n∈N0 is a summing sequence.
So far we have seen some examples of summing sequences and some sequences of sets
which are not summing sequences. The following Proposition gives an answer to the
question of whether there always exists a summing sequence, for any given polynomial
hypergroup. It is again related to condition (H), but in a kind of strong form of its
converse:

Proposition 3.12. If h(n)
n∑
k=0

h(k)
≥ C > 0 for all n ∈ N0 there are no summing sequences.

Proof. Let (An)n∈N0 be a sequence of sets that satisfies (i)-(iii) of Definition 3.9 and
mn := maxAn. Then mn ≤ mn+1, lim

n→∞
mn =∞ and mn + 1 ∈ T1An∆An. Therefore

h(T1An∆An)

h(An)
≥ h(mn + 1)

h(An)
≥ h(mn + 1)

mn+1∑
k=0

h(k)

≥ C > 0

and so (iv) of Definition 3.9 cannot hold.

In the case that summing sequences exist we can get the following helpful result which
yields translation invariance in the limit of a partial summation, very much like in
the group case where one works with Følner sequences. We will even show strong
translation invariance, a concept that has been introduced in Section 2.2.

Proposition 3.13. Let (An)n∈N0 be a summing sequence and let gn : l∞(N0) → C,
gn(ϕ) := 1

h(An)

∑
k∈An

ϕ(k)h(k). Then

lim
n→∞

|gn(ψTsϕ)− gn(ϕTsψ)| = 0 for all ϕ, ψ ∈ l∞(N0), s ∈ N.

32



Proof. We have

gn(ϕTsψ) =
1

h(An)

∑
k∈An

ϕ(k)Tsψ(k)h(k)

=
1

h(An)

∑
k∈An

ϕ(k)
∑

m∈Ts{k}

g(s, k;m)ψ(m)h(k)

=
1

h(An)

∑
k∈An

ϕ(k)
∑

m∈Ts{k}

g(s,m; k)ψ(m)h(m)

=
1

h(An)

∑
m∈TsAn

(∑
k∈An

g(s,m; k)ϕ(k)

)
ψ(m)h(m)

=
1

h(An)

∑
m∈TsAn

Tsϕ(m)ψ(m)h(m)

− 1

h(An)

∑
m∈TsAn

(
Tsϕ(m)−

∑
k∈An

g(s,m; k)ϕ(k)

)
ψ(m)h(m)

and thus

|gn(ψTsϕ)− gn(ϕTsψ)|

≤ 1

h(An)

∣∣∣∣∣ ∑
k∈TsAn∆An

Tsϕ(k)ψ(k)h(k)

∣∣∣∣∣
+

1

h(An)

∣∣∣∣∣ ∑
m∈TsAn

(
Tsϕ(m)−

∑
k∈An

g(s,m; k)ϕ(k)

)
ψ(m)h(m)

∣∣∣∣∣

For the first term we get

1

h(An)

∣∣∣∣∣ ∑
k∈TsAn∆An

Tsϕ(k)ψ(k)h(k)

∣∣∣∣∣ ≤ ‖ϕ‖∞‖ψ‖∞h(TsAn∆An)

h(An)
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and for the second one

1

h(An)

∣∣∣∣∣ ∑
m∈TsAn

(
Tsϕ(m)−

∑
k∈An

g(s,m; k)ϕ(k)

)
ψ(m)h(m)

∣∣∣∣∣
=

1

h(An)

∣∣∣∣∣∣
∑

m∈TsAn

 ∑
k∈TsTsAn\An

g(s,m; k)ϕ(k)

ψ(m)h(m)

∣∣∣∣∣∣
≤ 1

h(An)
‖ϕ‖∞‖ψ‖∞

∣∣∣∣∣∣
∑

k∈TsTsAn\An

∑
m∈TsAn

g(s,m; k)h(m)

∣∣∣∣∣∣
=

1

h(An)
‖ϕ‖∞‖ψ‖∞

∣∣∣∣∣∣
∑

k∈TsTsAn\An

∑
m∈TsAn

g(s, k;m)h(k)

∣∣∣∣∣∣
=

1

h(An)
‖ϕ‖∞‖ψ‖∞

∣∣∣∣∣∣
∑

k∈TsTsAn\An

h(k)

( ∑
m∈TsAn

g(s, k;m)

)∣∣∣∣∣∣
≤ 1

h(An)
‖ϕ‖∞‖ψ‖∞

∣∣∣∣∣∣
∑

k∈TsTsAn\An

h(k)

∣∣∣∣∣∣
≤ ‖ϕ‖∞‖ψ‖∞

2s∑
j=0

h(TjAn∆An)

h(An)

The last inequality holds because of

TsTsAn ⊆
⋃
k∈An

{|k − 2s|, . . . , k + 2s} ⊆
⋃
k∈An

2s⋃
j=0

Tj{k} =
2s⋃
j=0

TjAn.

As (An)n∈N0 is a summing sequence the proof is finished.

As we have already seen, for some classes of functions in l∞ ‘the’ mean is unique, i.e. all
means give the same value, applied to such a function, e.g. for weakly almost periodic
functions (Theorem 2.6) or sequences for which their limit exists (Proposition 3.7).
For these functions ϕ, the mean can be calculated, on hypergroups admitting summing
sequences, by taking the limit lim

n→∞
gn(ϕ), where gn are as in Proposition 3.13:

Theorem 3.14. Let (An)n∈N0 be a summing sequence on N0 and let ϕ ∈ AC(N0). Then
the sequence ( 1

h(An)

∑
k∈An

ϕ(k)h(k))n∈N0 converges and the unique translation invariant

mean on AC(N0) is given by

M(ϕ) = lim
n→∞

1

h(An)

∑
k∈An

ϕ(k)h(k).

This representation is independent of the choice of the summing sequence.
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The proof of this result is similar to the proof in the group case, compare e.g. [13].

Proof. It is sufficient to prove the representation for real-valued functions ϕ ∈ ACr(N0).
For such ϕ, let

P(ϕ) := lim sup
n→∞

gn(ϕ)

where gn are as defined in Proposition 3.13. P satisfies P(ϕ + ψ) ≤ P(ϕ) + P(ψ)
and P(αϕ) = αP(ϕ) for α ≥ 0. By the Hahn-Banach theorem there exists a linear
functional M0 on ACr(N0) such that

−P(−ϕ) ≤M0(ϕ) ≤ P(ϕ) for all ϕ ∈ Ur(N0).

With Proposition 3.13 one can see that P(Tsϕ − ϕ) = −P(−Tsϕ + ϕ) = 0 for all
ϕ ∈ Ur(N0) and s ∈ N0. This shows that M0(Tsϕ) = M0(ϕ). Also M0(ϕ) ≥ 0
whenever ϕ ≥ 0, M0(1) = 1 and ‖M0‖ = 1 are easily seen with the inequality
−P(−ϕ) ≤ M0(ϕ) ≤ P(ϕ). Thus by the uniqueness of the translation invariant mean
on ACr(N0) we get M0(ϕ) = M(ϕ) for all ϕ ∈ ACr(N0).
Assume there is a function ϕ ∈ ACr(N0) such that

−P(−ϕ) = lim inf
n→∞

gn(ϕ) < lim sup
n→∞

gn(ϕ) = P(ϕ).

Then by the Hahn-Banach theorem there would be two functionals M0 and M1 which
would be equal to M on AC(N0), a contradiction to the assumed uniqueness of the
mean. Thus the limit

lim
n→∞

1

h(An)

∑
k∈An

ϕ(k)h(k)

exists and is equal toM . The argumentation in this proof shows that for every summing
sequence this limit exists and is equal to M(ϕ).

Inspired by Proposition 3.13 where we were able to prove asymptotic strong translation
invariance when a summing sequence exists we will now show that in that setting the
polynomial hypergroup satisfies the unique strong Reiter’s condition (UFP1) and so
with the help of Theorem 2.15 this type of hypergroups is strongly amenable.

Proposition 3.15. A polynomial hypergroup admitting a summing sequence is strongly
amenable.

Proof. We will show that a polynomial hypergroup admitting a summing sequence
satisfies Reiter’s condition (UFP1) and use Theorem 2.15. Let ε > 0 and F :=
{y1, . . . , yN} ⊂ N0 finite. By assumption there exists a summing sequence {Ak}k∈N
such that lim

k→∞

h(TyjAk∆Ak)

h(Ak)
= 0 for all j = 1, . . . , N . Thus there exists n ∈ N satisfying

h(TyjAn∆An)

h(An)
< ε

2
for all j = 1, . . . , N . Define g(k) :=

χAn (k)

h(An)
and let y ∈ F . Then for all
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ϕ ∈ L∞(N0) with ‖ϕ‖∞ ≤ 1 we get

‖Ty(ϕg)− gTyϕ‖1 =
∞∑
k=0

∣∣∣∣Ty(ϕ χAn
h(An)

)(k)− χAn(k)

h(An)
Tyϕ(k)

∣∣∣∣h(k)

=
1

h(An)

∑
k∈An

∣∣∣∣∣∣
∑

j∈Ty{k}

g(k, y; j)ϕ(j)χAn(j)−
∑

j∈Ty{k}

g(k, y; j)ϕ(j)

∣∣∣∣∣∣h(k)

+
1

h(An)

∑
k 6∈An

∣∣∣∣∣∣
∑

j∈Ty{k}

g(k, y; j)ϕ(j)χAn(j)

∣∣∣∣∣∣h(k)

For the first term we get

1

h(An)

∑
k∈An

∣∣∣∣∣∣
∑

j∈Ty{k}

g(k, y; j)ϕ(j)χAn(j)−
∑

j∈Ty{k}

g(k, y; j)ϕ(j)

∣∣∣∣∣∣h(k)

=
1

h(An)

∑
k∈An

∣∣∣∣∣∣
∑

j∈Ty{k}∩An

g(k, y; j)ϕ(j)−
∑

j∈Ty{k}

g(k, y; j)ϕ(j)

∣∣∣∣∣∣h(k)

=
1

h(An)

∑
k∈An

∣∣∣∣∣∣
∑

j∈Ty{k}\An

g(k, y; j)ϕ(j)

∣∣∣∣∣∣h(k)

=
1

h(An)

∑
k∈An

∣∣∣∣∣∣
∑

j∈Ty{k}\An

g(j, y; k)h(j)ϕ(j)

∣∣∣∣∣∣
≤ 1

h(An)

∑
k∈An

∑
j∈TyAn\An

g(j, y; k)h(j) |ϕ(j)|

=
1

h(An)

∑
j∈TyAn\An

(∑
k∈An

g(j, y; k)

)
h(j)|ϕ(j)|

≤ h(TyAn∆An)

h(An)
<
ε

2

For the second term we note that
∑

j∈Ty{k}
g(k, y; j)ϕ(j)χAn(j) can only be nonzero if

there exists j ∈ An such that j ∈ Ty{k}, which is equivalent to k ∈ Ty{j}. So the
outer sum can be taken only over k ∈ Ty(An). Thus we get

1

h(An)

∑
k 6∈An

∣∣∣∣∣∣
∑

j∈Ty{k}

g(k, y; j)ϕ(j)χAn(j)

∣∣∣∣∣∣h(k)

=
1

h(An)

∑
k∈Ty(An)\An

∣∣∣∣∣∣
∑

j∈Ty{k}

g(k, y; j)ϕ(j)χAn(j)

∣∣∣∣∣∣h(k)

≤ h(TyAn∆An)

h(An)
<
ε

2
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Together, ‖Ty(ϕg)− gTyϕ‖1 < ε and thus Reiter’s condition (UFP1) holds.

So for polynomial hypergroups admitting summing sequences, e.g. for the ones satis-
fying condition (H), we have proved the existence of a strongly translation-invariant
mean in the sense of Definition 2.11.

3.2 Conditions (Fp)

In the previous section the unique translation invariant mean on a suitable subspace
of l∞ on a polynomial hypergroup was represented by using summing sequences, a
construction which is very similar to Følner sequences on groups. As it turns out,
weaker conditions are already sufficient to ensure a similar representation of means.
Our aim will be to construct invariant means as limits of sequences of functions in lp(h).
To get there, we will study characteristic functions χAn of sequences of sets (An)n∈N0

similar to summing sequences. We call the resulting conditions (Fp) where 1 ≤ p <∞.

Definition 3.16. A sequence (An)n∈N where An ⊆ N0 for all n ∈ N is said to satisfy
property (Fp), 1 ≤ p <∞, if (i)-(iii) of Definition 3.9 are valid and

(iv)’ lim
n→∞

‖TkχAn−χAn‖
p
p

h(An)
= 0 for all k ∈ N.

Remark 3.17. In the group case condition (iv) of Definition 3.9 coincides with condi-
tion (iv)’ of Definition 3.16 if p = 1, as ‖TkχAn−χAn‖1 = h(TkAn∆An). In contrast to
the group case, however, we have to keep in mind that TkχAn is no more a characteristic
function on a hypergroup.

In Definition 3.16, (iv)’ is required to hold for all k ∈ N. But due to the three-term
recurrence relation this can be relaxed so that it need only be checked for the case
k = 1:

Lemma 3.18. For property (Fp) it is sufficient that (iv)’ holds only for k = 1.

Proof. The translation operators Tk : lp(h)→ lp(h) satisfy the three-term recursion

T1Tk = akTk+1 + bkTk + ckTk−1 (3.1)

for k ∈ N. Moreover, the operator norms fulfill ‖Tk‖ ≤ 1 for all k ∈ N (and any p).
We will apply induction with respect to k:
Assume that (iv) is fulfilled for k and k − 1. Then

‖TkT1χAn − χAn‖p ≤ ‖T1TkχAn − T1χAn‖p + ‖T1χAn − χAn‖p
≤ ‖TkχAn − χAn‖p + ‖T1χAn − χAn‖p
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and hence

‖Tk+1χAn − χAn‖p = ‖ 1

ak
(TkT1χAn − bkTkχAn − ckTk−1χAn)− χAn‖p

≤ ‖ 1

ak
(TkT1χAn − χAn)‖p + ‖ bk

ak
(TkχAn − χAn)‖p

+‖ ck
ak

(Tk−1χAn − χAn)‖p

≤ 1

ak
(‖TkχAn − χAn‖p + ‖T1χAn − χAn‖p) +

bk
ak
‖TkχAn − χAn‖p

+
ck
ak
‖Tk−1χAn − χAn‖p.

Because of the observation lim
n→∞

‖TkχAn−χAn‖
p
p

h(An)
= 0 ⇔ lim

n→∞
‖TkχAn−χAn‖p

h(An)
1
p

= 0 and the

assumptions it follows lim
n→∞

‖Tk+1χAn−χAn‖
p
p

h(An)
= 0.

For the canonical sequence (Sn)n∈N we find a close connection to property (H), similar
to Theorem 3.10.

Theorem 3.19. (a) If condition (H) is satisfied, then (Sn)n∈N0 satisfies property
(F1).

(b) (Sn)n∈N0 satisfies (Fp) either for all 1 ≤ p <∞ or for none.

(c) If there exists c > 0, n0 ∈ N0 such that |an| ≥ c or |cn| ≥ c for all n ≥ n0 and if
(Sn)n∈N0 satisfies (F1) then the hypergroup fulfils property (H).

Proof. (a): Clearly (i)-(iii) are satisfied. By Lemma 3.18 it suffices to consider k =
1. From χSn(l) − T1χSn(l) = 0 for l = 0, . . . , n − 1 and l = n + 2, n + 3, . . . and
χSn(n)− T1χSn(n) = 1− (bn + cn) = an, χSn(n+ 1)− T1χSn(n+ 1) = −cn+1 we obtain
‖χSn − T1χSn‖1 = anh(n) + cn+1h(n + 1) = 2anh(n). By (H) and 0 < an < 1 (F1)
follows.
(b): Let (Sn)n∈N0 satisfy (F1). By Lemma 3.18, it is sufficient to show (iv) for (Fp)
only for k = 1.
First we notice that

‖T1χAn − χAn‖pp = an
ph(n) + cn+1

ph(n+ 1) = an
ph(n) + anh(n)cn+1

p−1

= h(n)(an
p + ancn+1

p−1)

and because of 0 < an, cn < 1 for all n ∈ N we can see that

‖T1χAn − χAn‖pp ≤ ‖T1χAn − χAn‖1

for 1 ≤ p ≤ q.
The other direction has recently been shown by Lasser and Skantharajah in [21].
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(c):(Sn)n∈N satisfying (F1) can be written as

0 = lim
n→∞

‖χSn − T1χSn‖1
n∑
k=0

h(k)
= lim

n→∞

anh(n) + cn+1h(n+ 1)
n∑
k=0

h(k)

and with at least one of the sequences (an)n∈N0 , (cn)n∈N being bounded away from zero
(H) follows.

For summing sequences Proposition 3.12 gives a condition when there doesn’t exist
one. For property (F1) we can give a similar result:

Proposition 3.20. If h(n)
n∑
k=0

h(k)
≥ M1 > 0 and cn ≥ M2 > 0 for all n ∈ N0 then there

does not exist a sequence (An)n∈N satisfying property (F1).

Proof. If (An)n∈N is a sequence of sets satisfying (i)-(iii) of Definition 3.16 define mn :=
maxAn. Then

1

h(An)
‖T1χAn − χAn‖1 ≥

1

h(An)
cmn+1h(mn + 1) ≥M1M2 > 0.

To illustrate the results of Theorem 3.10 and Theorem 3.19 we present some examples.

(i) Jacobi polynomials Rn
(α,β)(x) with α ≥ β > −1 and α + β + 1 ≥ 0 induce

a polynomial hypergroup on N0. The orthogonalization measure on [−1, 1] is
dπ(x) = cα,β(1 − x)α(1 + x)βdx. The explicit form of the recurrence coefficients
an, bn, cn may be found in [4] or [18]. The Haar weights

h(n) =
(2n+ α + β + 1)(α + β + 1)n(α + 1)n

(α + β + 1)n!(β + 1)n
,

are of polynomial growth, more precisely h(n) = O(n2α+1) as n → ∞. Hence
we conclude that (Sn)n∈N0 is a summing sequence and satisfies (Fp) for every
p ∈ [1,∞[.

(ii) Little q-Legendre polynomials R
(q)
n (x) with 0 < q < 1 define a polynomial hyper-

group on N0, see [17] or [10]. The recurrence coefficients are

an = qn
(1 + q)(1− qn+1)

(1− q2n+1)(1 + qn+1)

bn =
(1− qn)(1− qn+1)

(1 + qn)(1 + qn+1)

cn = qn
(1 + q)(1− qn)

(1− q2n+1)(1 + qn)
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for n ∈ N, with starting values a0 = 1
q+1

and b0 = q
q+1

. The Haar weights satisfy

lim
n→∞

h(n)

h(n+ 1)
=

1

q
> 1.

Hence h(n) is of exponential growth. Moreover, an → 0, cn → 0, bn → 1 and
an
cn+1
→ 1

q
. Hence we conclude that (Sn)n∈N is not a summing sequence. Never-

theless (Sn)n∈N satisfies property (Fp) for each 1 ≤ p <∞.

(iii) Orthogonal polynomials connected with homogeneous trees Rn(x; a) with a ≥ 2
are determined by the recurrence coefficients

an =
a− 1

a
, bn = 0, cn =

1

a
, n ∈ N

and a0 = 1, b0 = 0, see [18] The Haar weights are h(0) = 1, h(n) = a(a−1)n−1, n ∈
N. From the preceding results we can derive that (Sn)n∈N is not a summing
sequence and it does not satisfy (Fp) for any 1 ≤ p <∞.

There are examples where the condition “|an| ≥ c for almost all n ∈ N0” of Theorem
3.19(c) is satisfied, as in the hypergroups generated by the ultraspherical polynomials.

For polynomial hypergroups where the canonical sequence (Sn)n∈N0 satisfies property
(F1) instead of the stronger assumption of being a summing sequence we can still prove
a representation of the unique translation invariant mean on AC(N0) via the same limit
as in Theorem 3.14. To that end, we will need the following proposition:

Proposition 3.21. Let the canonical sequence (Sn)n∈N0 satisfy (F1) and let gn : l∞(N0)→
C, gn(ϕ) := 1

h(Sn)

∑
k∈Sn

ϕ(k)h(k). Then

lim
n→∞

|gn(T1ϕ)− gn(ϕ)| = 0 for all ϕ ∈ l∞(N0)

Proof. We have

gn(T1ϕ) =
1

h(Sn)

n∑
k=0

k+1∑
j=|k−1|

g(1, k; j)ϕ(j)h(k)

=
1

h(Sn)

n∑
k=0

k+1∑
j=|k−1|

g(1, j; k)ϕ(j)h(j)

=
1

h(Sn)

n∑
k=0

(
a|k−1|ϕ(|k − 1|)h(|k − 1|) + bkϕ(k)h(k) + ck+1ϕ(k + 1)h(k + 1)

)
= gn(ϕ) +

1

h(Sn)
(a1ϕ(1)h(1)− anϕ(n)h(n) + cn+1ϕ(n+ 1)h(n+ 1))

= gn(ϕ) +
1

h(Sn)
(a1ϕ(1)h(1) + anh(n)(ϕ(n+ 1)− ϕ(n)))
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and therefore

lim
n→∞

|gn(T1ϕ)− gn(ϕ)| ≤ 2‖ϕ‖∞ lim
n→∞

anh(n)

h(Sn)
= ‖ϕ‖∞ lim

n→∞

‖χSn − T1χSn‖1

h(Sn)
= 0

Theorem 3.22. Let the canonical sequence (Sn)n∈N0 satisfy (F1) and let ϕ ∈ AC(N0).
Then the sequence ( 1

h(Sn)

∑
k∈Sn

ϕ(k)h(k))n∈N0 converges and the unique translation in-

variant mean on AC(N0) is given by

M(ϕ) = lim
n→∞

1

h(Sn)

∑
k∈Sn

ϕ(k)h(k).

Proof. It is sufficient to prove the representation for real-valued functions ϕ ∈ ACr(N0).
For such ϕ, let P(ϕ) := lim sup

n→∞
gn(ϕ), where gn are defined as in Proposition 3.21. P

satisfies P(ϕ+ψ) ≤ P(ϕ)+P(ψ) and P(αϕ) = αP(ϕ) for α ≥ 0. By the Hahn-Banach
theorem there exists a linear functional M0 on ACr(N0) such that

−P(−ϕ) ≤M0(ϕ) ≤ P(ϕ) for all ϕ ∈ ACr(N0).

With Proposition 3.21 one can see that P(T1ϕ− ϕ) = −P(−T1ϕ+ ϕ) = 0 for all ϕ ∈
ACr(N0). This shows that M0(T1ϕ) = M0(ϕ). Also M0(ϕ) ≥ 0 when ϕ ≥ 0, M0(1) = 1
and ‖M0‖ = 1 can easily be seen with the inequality −P(−ϕ) ≤ M0(ϕ) ≤ P(ϕ). By
Proposition 3.3 M0 is a translation invariant mean. Thus by the uniqueness of the
translation invariant mean on AC(N0) we get M0(ϕ) = M(ϕ) for all ϕ ∈ AC(N0).
Assume there is a function ϕ ∈ ACr(N0) such that

−P(−ϕ) = lim inf
n→∞

gn(ϕ) < lim sup
n→∞

gn(ϕ) = P(ϕ).

Then by the Hahn-Banach theorem there would be two functionals M0 and M1 which
would be equal to M on ACr(N0), a contradiction to the assumed uniqueness of the
mean. Thus the limit

lim
n→∞

1

h(Sn)

∑
k∈Sn

ϕ(k)h(k)

exists and is equal to M(ϕ).

With the results of this and the previous section it makes sense to introduce the fol-
lowing class of functions:

Definition 3.23. Let (Sn)n∈N0 be the canonical sequence. Define

L := {ϕ ∈ l∞(N0) : lim
n→∞

1

h(Sn)

n∑
k=0

ϕ(k)h(k) exists}
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Using this notation, Theorem 3.22 states that if (Sn)n∈N0 satisfies (F1), then AC(N0) ⊆
L. For a start, we can give some properties of L.

Proposition 3.24. L is a translation invariant closed linear subspace of l∞(N0) with
c0 ⊆ L.

Proof. It is easy to see that L is a closed linear subspace of l∞(N0) with c0 ⊆ L. By
Proposition 3.21 we get T1ϕ ∈ L. But as L is a linear space and by Lemma 3.4 every
Tm can be written as a convex combination of powers of T1, the proof is finished.

Since c0 ⊆ AC(N0) the previous Proposition states a new inclusion only for the case
when AC(N0) 6⊆ L, i.e. when there are no summing sequences and when (Sn)n∈N0 does
not satisfy (F1).

The inclusion L ⊆ AC(N0) is not true in general, i.e. the existence of the limit

lim
n→∞

1
h(Sn)

n∑
k=0

ϕ(k)h(k) for a ϕ ∈ l∞(N0) is in general not sufficient for the unique-

ness of m(ϕ). For example, even if condition (H) holds, i.e. the inclusion AC(N0) ⊆ L
is valid, we can give an example that these to sets do not always coincide:

Example 3.25. Let the hypergroup structure on N0 be induced by the Chebyshev poly-
nomials of the first kind (see section 1.2). Define a set A ⊆ N0 by

χA(n) =

{
1 for n = 2m, 2m ± 1, . . . , 2m ±m and m even
0 else

In the proof of Corollary 4.3, where this set is also used, we can see that χA 6∈ AC(N0).
So it remains to be shown that χA ∈ L. For n ≥ 2 there exists a unique m ∈ N such
that 2m +m ≥ n > 2m−1 + (m− 1). With that we get

n∑
k=0

χA(k)h(k) ≤
2m+m∑
k=0

χA(k)h(k) ≤
m∑
j=0

2j+j∑
i=2j−j

χA(i)h(i)

≤ 2
m∑
j=0

2j + 1 = 2m2 + 4m+ 2

and thus

1

H(Sn)

n∑
k=0

χA(k)h(k) ≤ 1

H(S2m−1+(m−1))

(
2m2 + 4m+ 2

)
≤ 1

2m + 2m− 1

(
2m2 + 4m+ 2

)
→ 0 as m→∞

This example also shows that it is difficult to find bounds for m(ϕ) other than

lim inf
n→∞

ϕ(n) ≤ m(ϕ) ≤ lim sup
n→∞

ϕ(n)

42



that hold for all translation invariant means m and all ϕ ∈ l∞(N0). Especially

lim sup
n→∞

1

h(Sn)

n∑
k=0

ϕ(k)h(k) 6≥ m(ϕ)

has been shown as there exists a mean m such that m(χA) = 1 and the left-hand side
was 0 for this sequence. Another possible bound that is not as strict is

sup
l∈N0

lim sup
n→∞

1

h(Sn)

n∑
k=0

Tlϕ(k)h(k)

We will use the same function as in Example 3.25 to show that this inequality is also
not true in general.

Example 3.26. Let the hypergroup structure on N0 be induced by the Chebyshev poly-
nomials of the first kind (see section 1.2). Define a set A ⊆ N0 by

χA(n) =

{
1 for n = 2m, 2m ± 1, . . . , 2m ±m and m even
0 else

In the proof of Corollary 4.3 we show that there exists a translation invariant mean
m such that m(χA) = 1. The term in question for the upper bound on the other hand
gives

sup
l∈N0

lim sup
n→∞

1

h(Sn)

n∑
k=0

Tlϕ(k)h(k) =

= sup
l∈N0

lim sup
n→∞

1

h(Sn)

n∑
k=0

(
1

2
χA(|k − l|) +

1

2
χA(k + l)

)
h(k)

≤ sup
l∈N0

lim sup
n→∞

1

h(Sn)

(
1

2

l∑
k=0

χA(k)h(k) +
1

2

n∑
k=0

χA(k)h(k) +
1

2

n+l∑
k=0

χA(k)h(k)

)
For n ≥ 2 there exists a unique N ∈ N such that 2N + N ≥ n > 2N−1 + (N − 1).
Assuming n ≥ l we get

1

h(Sn)

(
1

2

l∑
k=0

χA(k)h(k) +
1

2

n∑
k=0

χA(k)h(k)

)
≤ 1

h(Sn)

n∑
k=0

χA(k)h(k)→ 0

as in Example 3.25. For the third term, with n, l and N fixed, choose ∆N minimally
such that

2N+∆N + (N + ∆N) ≥ n+ l.

Then
1

h(Sn)

n+l∑
k=0

χA(k)h(k) ≤ 2(N + ∆N)2 + 4(N + ∆N) + 2

2N + 2N − 1

again as in example 3.25. Since ∆N , which is dependent on n and l, is decreasing as
n → ∞, there is a maximal ∆N and so the third term also tends to zero and in the
end

sup
l∈N0

lim sup
n→∞

1

h(Sn)

n∑
k=0

TlχA(k)h(k) = 0.

43





4 Non-Uniqueness of translation
invariant means

In this chapter we will prove the existence of two different means on l∞ for polynomial
hypergroups. The proof uses an idea first proposed by Rudin[25] for invariant means on
groups. But due to zeroes of functions not being shifted by the hypergroup translation,
the proof had to be modified accordingly.

For the first part of this chapter, let K be a commutative hypergroup.

Definition 4.1. A set E ⊆ K is called permanently positive (in short PP) if

h

(
n⋂
i=1

TxiE

)
> 0

for all n ∈ N, x1, . . . , xn ∈ K.
Ω ⊆ P(K) is called PP-filter if

(i) every A ∈ Ω is PP

(ii) A,B ∈ Ω⇒ A ∩B ∈ Ω

For f ∈ L∞(K), let Z(f) denote the set of all zeroes of f in the sense that x is a zero
if and only if for every ε > 0 there exists δ > 0 such that

∫
Bδ(x)

f(y)dm(y) < ε.

Theorem 4.2. Let Ω be a PP-Filter in K. Let J := {f ∈ L∞(K) : Z(f) contains
some member of Ω} and I ⊆ J such that Txf ∈ J for all x ∈ K whenever f ∈ I.
Then there exists a translation invariant mean M on L∞(K) such that Mf = 0 for all
f ∈ I.

Proof. L∞(K) is a Banach algebra with respect to pointwise multiplication. Because
of (ii) in Definition 4.1, J is an ideal. Since 1 6∈ J , J is contained in a maximal
ideal Jmax and as Jmax is maximal, the quotient ring L∞(K)/Jmax is a field. By the
Gelfand-Mazur theorem that field is isomorphic to C, and there is a homomorphism
h : L∞(K)→ C with ker(h) = Jmax.
Since K is amenable, there exists a translation invariant mean Λ on L∞(K). Since
‖h‖ = 1, the formula

Φf(x) = h(Txf)

associates with each f ∈ L∞(K) a function Φf ∈ L∞(K), so one can define

Mf := ΛΦf
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for f ∈ L∞(K).
By the definition of I, Txf ∈ J whenever f ∈ I ⊆ J , and so Mf = 0 for every f ∈ I.
M1 = 1 as h(1) = 1 and Λ1 = 1.
Since ‖h‖ = 1, we have |Mf | ≤ ‖f‖∞. So only the translation invariance of M remains
to be shown. We can see that

Φ(Txf)(y) = h(TyTxf) = h

(∫
K

Tzfdω(x, y)(z)

)
(∗)
=

∫
K

h(Tzf)dω(x, y)(z)

=

∫
K

Φf(z)dω(x, y)(z) = TxΦf(y)

where (∗) holds because h is continuous as a homomorphism from a Banach algebra in
C. With that we can conclude that

M(Txf) = ΛΦTxf = ΛTxΦf = ΛΦf = Mf

and so M is a translation invariant mean with the required property.

This general theorem is the key to show that on polynomial hypergroups there cannot
exist only one mean. The idea is to construct a set A such that A and its translates
as well as the complement AC along with its translates lie in two suitably defined PP-
filters. Then Theorem 4.2 guarantees the existence of means M1 and M2 such that
M1(χAC ) = 0 and M2(χA) = 0 but as χA + χAC = 1 and M1(1) = 1 that completes
the proof.

Corollary 4.3. For polynomial hypergroups there exists more than one mean on l∞.

Proof. For A ⊆ N0 define

LA(n) :=


max

N∈{0,...,2n}

{
N∏

k=−N
χA(2n − k) ·

(
N∑

k=−N
χA(2n − k)

)}
n even

max
N∈{0,...,2n}

{
N∏

k=−N
(1− χA(2n − k)) ·

(
N∑

k=−N
(1− χA(2n − k))

)}
n odd

L̃A(n) :=


max

N∈{0,...,2n}

{
N∏

k=−N
(1− χA(2n − k)) ·

(
N∑

k=−N
(1− χA(2n − k))

)}
n even

max
N∈{0,...,2n}

{
N∏

k=−N
χA(2n − k) ·

(
N∑

k=−N
χA(2n − k)

)}
n odd

LA(n) counts the number of contiguous elements of A symmetrically around 2n for n
even and contiguous numbers in N0 \ A symmetrically around 2n for n odd, whereas

L̃A(n) does the opposite.

Let Ω := {A ⊆ N0 : lim inf
n→∞

LA(n)
n

> 0} and Ω̃ := {A ⊆ N0 : lim inf
n→∞

L̃A(n)
n

> 0}. With

this definition Ω and Ω̃ are PP-filters, as every A ∈ Ω(Ω̃) is permanently positive and
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with A,B ∈ Ω(Ω̃) we have A ∩B ∈ Ω(Ω̃) and TmA ∈ Ω(Ω̃) for all m ∈ N0.
Now define a set A ⊆ N0 such that

χA(n) =

{
1 for n = 2m, 2m ± 1, . . . , 2m ±m and m even
0 else

A lies in Ω and so χAC has zeroes on an element of a PP-filter, as required in the
previous theorem. For every k ∈ N0, there exists a set B ∈ Ω such that B ⊆ Z(TkχAC ).
So by Theorem 4.2, there exists a mean M1 on l∞ such that M1(χAC ) = 0. By the
same argument there exists a mean M2 such that M2(χA) = 0. But since 1 = M2(1) =
M2(χA)+M2(χAC ) = M2(χAC ), we have shown the existence of two different means.

This result proves in general that on any polynomial hypergroup there exist two differ-
ent translation invariant means. However, as we have seen in the previous chapter, for
some functions ϕ ∈ l∞ the mean is uniquely determined. To get a criterion for when
ϕ 6∈ AC(N0) we can reverse Theorem 3.14 and Theorem 3.22:

Corollary 4.4. Let (An)n∈N0 be a summing sequence or let (An)n∈N0 = (Sn)n∈N0 satisfy
(F1), and let ϕ ∈ l∞. If

lim
n→∞

1

h(An)

∑
k∈An

ϕ(k)h(k)

does not exist, then ϕ 6∈ AC(N0).

Proof. Apply Theorem 3.14 or Theorem 3.22.

On the other hand, if this limit does exist for a ϕ ∈ l∞, one can at least assert that it
is the representation of a mean m(ϕ):

Corollary 4.5. Let (An)n∈N0 be a summing sequence or let (An)n∈N0 = (Sn)n∈N0 satisfy
(F1), and let ϕ ∈ l∞. If

lim
n→∞

1

h(An)

∑
k∈An

ϕ(k)h(k) =: c,

then there is a translation invariant mean m ∈ (l∞)∗ such that m(ϕ) = c.

Proof. This follows from the first half of the proofs of Theorems 3.14 and 3.22.

In the case of ϕ ∈ AC(N0), i.e. m(ϕ) is uniquely determined by ϕ, the limit auto-
matically existed and its value was fixed. In the general case we have to assume the
existence of the limit and can only assert that there exists a mean which is represented
by that limit, and the mean is not fixed.

So if ϕ 6∈ AC(N0) there exists more than one mean, and we can even find an example
where there exist two summing sequences that represent different means in the sense
of Corollary 4.5. The set A is the one used in the proof of Corollary 4.3.
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Example 4.6. Let the hypergroup structure on N0 be induced by the Chebyshev poly-
nomials of the first kind (see section 1.2). Define a set A ⊆ N0 by

χA(n) =

{
1 for n = 2m, 2m ± 1, . . . , 2m ±m and m even
0 else

For the canonical sequence (Sn)n∈N0 we have already seen in Example 3.25 that

lim
n→∞

1

h(Sn)

n∑
k=0

χA(k)h(k) = 0

and this represents one of the means found in the proof of Corollary 4.3.
In the second half of this example we will construct a sequence of sets (An)n∈N0, show
that it is a summing sequence and then show that the corresponding limit is 1. To that
end, let Bk := {22k, 22k ± 1, . . . , 22k ± k} for k ∈ N0 and define

A0 := B0, An+1 := An ∪Bn+1 ∪ {min{k ∈ N0 : k 6∈ (An ∪Bn+1)}︸ ︷︷ ︸
=:cn+1

}.

One can see that An =
n⋃
l=0

Bl ∪ {c1, . . . , cn} as a disjoint union (by the definition of ci)

and so An ⊆ An+1 for all n ∈ N0,
∞⋃
n=0

An = N0 and h(An) < ∞ for all n ∈ N0 as the

sets are finite, i.e. (i)-(iii) of Definition 3.9 are satisfied. For (iv) we will look at the
symmetric differences TkAn∆An. Let k be given. Then we get

TkAn ⊆
n⋃
l=0

{22l, 22l ± 1, . . . , |22l ± (2l + k)|} ∪ {0, 1, . . . , cn + k}

not necessarily disjoint anymore, and thus

TkAn \ An ⊆
n⋃
l=0

{|22l ± (2l + 1)|, . . . , |22l ± (2l + k)|} ∪ {cn + 1, . . . , sn + k}.

For the Haar measure of this set we get

h(TkAn \ An) ≤
n∑
l=0

(4k) + 2k = 4k · n+ 6k.

On the other hand, for l ≥ k we find Bl ⊆ TkBl and {0, . . . , cn} ⊆ {0, . . . , cn + k} and

so An \ TkAn ⊆
k−1⋃
l=0

Bl. Applying the Haar measure this leads to

h(An \ TkAn) ≤
k−1∑
l=0

(4l + 2) = 2k(k − 1) + 2k = 2k2
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and combined this yields

h(TkAn∆An) ≤ 4k · n+ 2k2 + 6k.

To check (iv) of Definition 3.9 we need to compare this to h(An) which is given by

h(An) =
n∑
l=0

h(Bl) + h({ c1︸︷︷︸
=0

, . . . , cn}) =
n∑
l=0

(8l + 2) + 2n− 1 = 4n2 + 8n+ 1

and thus

h(TkAn∆An)

h(An)
≤ 4k · n+ 2k2 + 6k

4n2 + 8n+ 1
→ 0 for every k ∈ N0 as n→∞.

This concludes the proof that (An)n∈N0 is a summing sequence and now we want to
check whether lim

n→∞
1

h(An)

∑
k∈An

χA(k)h(k) exists. With

∑
k∈An

χA(k) =
n∑
l=0

∑
k∈Bl

χA(k)︸ ︷︷ ︸
=1

h(k) +
n∑
k=1

χA(ck)︸ ︷︷ ︸
=0

h(ck)

=
n∑
l=0

∑
k∈Bl

2 = 2
n∑
l=0

(4l + 1) = 4n2 + 6n+ 2

we get
1

h(An)

∑
k∈An

χA(k)h(k) =
4n2 + 6n+ 2

4n2 + 8n+ 1
→ 1

which represents M1(χA) from the proof of Corollary 4.3.

In this example the canonical sequence (Sn)n∈N0 represented M2(χA) = 0 and a custom-
made sequence (An)n∈N0 allowed for M1(χA) = 1. As the calculations in the proof show,
even in the simple case of the hypergroup induced by the Chebyshev polynomials of
the first kind, it is no easy task to find a summing sequence that represents a mean
one knows beforehand. If in contrast one has a summing sequence such that the limit
for a given function ϕ ∈ l∞(N0) exists one can in light of Corollary 4.5 just define the
mean to be its limit.
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List of Symbols

an coefficients of the three-term recurrence relation

(An)n∈N0 summing sequence

AC(K) almost convergent functions on K, see Definition 2.4

bn coefficients of the three-term recurrence relation

C continuous functions

CC continuous functions with compact support

cn coefficients of the three-term recurrence relation

coA convex hull of A

χ hypergroup character

χA characteristic function of the set A

εx Dirac measure at the point x

g(m,n; k) linearization coefficients of a sequence of orthogonal polynomials

h Haar measure on a polynomial hypergroup

(Kn)n∈N0 Følner sequence

l∞ {f : N0 → C : sup
n∈N0

|f(n)|h(n) <∞}

λ Haar measure on a locally compact Abelian group G

m translation invariant mean

M(K) set of all means on K

Mt(K) set of translation invariant means on K

µ Haar measure on a commutative hypergroup K

O(f(n)) g(n) = O(f(n)) if ∃n0 ∈ N,M ∈ R : |g(n)| ≤M |f(n)|∀n ≥ n0

ω(x, y) hypergroup convolution, see Definition 1.1

P00(K) probability measures on K with compact support

P(X) power set of X

π orthogonalization measure of a sequence of orthogonal polynomials

Rn polynomial from a sequence of orthogonal polynomials (Rn)n∈N0

(Sn)n∈N0 canonical summing sequence, Sn := {0, 1, . . . , n}
Tx translation operator

WAP(K) weakly almost periodic functions, see Definition 2.5

1 constant function f ≡ 1

A closure of the set A

A
∞

closure of the set A in the uniform topology

f complex conjugation
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