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. Introduction 

Real-time functional magnetic resonance (fMRI) neurofeedback is a

on-invasive technique that enables healthy individuals and patients

o voluntarily regulate neural signals. In the last decades, this method

as gained growing popularity in the neuroimaging community and, to

ate, a wide range of real-time fMRI neurofeedback studies have collec-

ively demonstrated the feasibility of volitional regulation through real-

ime fMRI neurofeedback (see Thibault et al. (2018) ). Further, many

f these studies have also shown behavioral changes in healthy indi-

iduals, as well as clinical improvements in patient populations after

eurofeedback training. In healthy participants, real-time fMRI neuro-

eedback training has been specifically linked to improvements in atten-

ion (e.g. DeBettencourt et al., 2015 ; Pamplona et al., 2020 ), emotion

egulation ( Koush et al., 2015 ; Paret and Hendler, 2020 ; Zich et al.,

020 ), memory (e.g. Scharnowski et al., 2015 ; Sherwood et al., 2016 ;

hang et al., 2013 ), motivation (e.g. Zhi et al., 2018 ), motor perfor-

ance (e.g. Bray et al., 2007 ; Scharnowski et al., 2015 ; Sitaram et al.,

012 ; Zhao et al., 2013 ), speech performance ( Rota et al., 2009 ), and

isual perception (e.g. Scharnowski et al., 2012 ; Shibata et al., 2011 ).

n clinical populations, real-time fMRI neurofeedback training has been

hown to both improve clinical measures and normalize pathological

eural characteristics in patients suffering from a wide range of disor-

ers, such as alcohol and nicotine addiction ( Canterberry et al., 2013 ;

anlon et al., 2013 ; Hartwell et al., 2016 ; Karch et al., 2015 ; Kim et al.,

015 ; X. Li et al., 2013 ), anxiety ( Morgenroth et al., 2020 ), border-

ine personality disorder ( Paret et al., 2016 ), depression ( Linden et al.,

012 ; Mehler et al., 2018 ; Quevedo et al., 2020 ; Young et al.,

017 , 2014 ), obsessive compulsive disorder ( Buyukturkoglu et al.,

015 ), phobia ( Zilverstand et al., 2015 ), post-traumatic stress dis-

rder ( Gerin et al., 2016 ; Nicholson et al., 2017 ), schizophrenia
2 
ity, The Netherlands 

y, Germany 

 an increasingly popular neuroimaging technique that allows an individual to

in signals, which can lead to improvements in behavior in healthy participants

nical symptoms in patient populations. However, a considerably large ratio of

dback training do not learn to control their own brain signals and, consequently,

k interventions, which limits clinical efficacy of neurofeedback interventions.

between studies and participants, it is important to identify factors that might

 Here, for the first time, we employed a big data machine learning approach to

erent design-specific (e.g. activity vs. connectivity feedback), region of interest-

cal) and subject-specific factors (e.g. age) on neurofeedback performance and

 from 28 independent experiments. 

60% (considerably different from chance level), we identified two factors that

dback performance: Both the inclusion of a pre-training no-feedback run be-

neurofeedback training of patients as compared to healthy participants were

ack performance. The positive effect of pre-training no-feedback runs on neu-

 due to the familiarization of participants with the neurofeedback setup and the

feedback training runs. Better performance of patients as compared to healthy

igher motivation of patients, higher ranges for the regulation of dysfunctional

 piloting of clinical experimental paradigms. Due to the large heterogeneity of

generalize across neurofeedback studies, thus providing guidance for designing

dies specifically for improving clinical neurofeedback-based interventions. To

a-driven recommendations for specific design details and subpopulations the

 engagement in open science research practices and data sharing. 

 Bauer et al., 2020 ), Tourette syndrome ( Sukhodolsky et al., 2020 ),

hronic pain ( deCharms et al., 2005 ; Guan et al., 2014 ), Hunting-

on’s disease ( Papoutsi et al., 2018 ), obesity ( Frank et al., 2012 ;

ohl et al., 2019 ), Parkinson’s disease ( Buyukturkoglu et al., 2013 ;

ubramanian et al., 2011 ), stroke rehabilitation ( Mehler et al., 2020 ),

innitus ( Emmert et al., 2017 ; Haller et al., 2010 ), and visuo-spatial ne-

lect (Fabien Robineau et al., 2019 ). 

Critically however, not all participants undergoing real-time fMRI

eurofeedback training optimally benefit from the aforementioned im-

rovements on behavioral and clinical measures, due to variations in

heir success on acquiring neural control. Previous real-time fMRI neuro-

eedback studies have reported relatively high rates of non-responders,

.e., participants who fail to regulate their brain signals in the desired

irection ( Bray et al., 2007 ; Chiew et al., 2012 ; deCharms et al., 2005 ;

ohnson et al., 2012 ; Ramot et al., 2016 ; F. Robineau et al., 2014 ;

charnowski et al., 2012 ; Yoo et al., 2008 ). Averaging across these stud-

es, the non-responder rate of real-time fMRI neurofeedback studies is es-

imated to lie around 38% ( Haugg et al., 2020 ). Here, it should be noted

hat, to date, no standard thresholds for identifying non-responders are

vailable and definitions of non-responders often vary between stud-

es. Generally, even real-time fMRI neurofeedback participants who

ere eventually able to gain control over their own brain signals still

howed large variability in their neurofeedback regulation performance

 Haugg et al., 2020 ). Similar estimations and observations have also

een reported in the electroencephalogram (EEG) neurofeedback liter-

ture, where the so-called “neurofeedback inefficacy problem ” refers to

he variability in neurofeedback success and comprises a well-known

ssue ( Alkoby et al., 2017 ). Therefore, the fields of both EEG- and fMRI-

ased neurofeedback would greatly benefit from methodologically ad-

anced investigations that can reveal the factors responsible for the un-

xplained variability of neurofeedback success. 
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Interestingly, previous studies have demonstrated that the propor-

ion of responders varies between different neurofeedback studies. Of

mportance, this suggests that some neurofeedback study-specific pa-

ameters might be more beneficial for neurofeedback success than oth-

rs. Previously, few empirical studies have investigated the influence

f neurofeedback design parameters on neurofeedback success. Specif-

cally, two independent studies found that using an intermittent feed-

ack display was superior over using a continuous feedback display

 Hellrung et al., 2018 ; Johnson et al., 2012 ), while conversely, a third

tudy reported this effect only for a single session of neurofeedback,

ut not for multiple neurofeedback sessions ( Emmert et al., 2017 ).

n another study, Papoutsi and colleagues investigated the influence

f activity- versus connectivity-based neurofeedback on neurofeedback

uccess, but did not find a significant difference between activity- and

onnectivity-based neurofeedback ( Papoutsi et al., 2020 ). Interestingly,

im et al. reported increased neurofeedback efficacy when combin-

ng connectivity-based information with activity-based neurofeedback

 Kim et al., 2015 ). Focusing on subject-specific psychological factors

n a systematic review, Cohen Kadosh and colleagues observed that

ttention and motivation might be important factors for determining

eurofeedback success ( Cohen and Staunton, 2019 ). However, an em-

irical validation of these suggestions is still needed. Other empirical

tudies observed a relationship between subject-specific questionnaires

nd neurofeedback success, yet these questionnaires were highly spe-

ific for the trained target region and participant population, and there-

ore do not generalize to other neurofeedback studies ( Emmert et al.,

017 ; Koush et al., 2015 ). 

Taken together, these empirical studies contribute invaluable infor-

ation regarding the optimal design of neurofeedback studies. How-

ver, many critical factors that might influence neurofeedback success

ave not been investigated yet. For instance, it is not known whether

 large number of neurofeedback training runs is beneficial for neuro-

eedback success, an essential question in the field of fMRI-based neuro-

eedback due to the high cost of scanning hours. This also includes the

uestion of whether neurofeedback training should be performed across

everal training days to facilitate neurofeedback learning through sleep

onsolidation. Other important factors are the inclusion of reinforcers

uch as monetary rewards ( Sepulveda et al., 2016 ) and social rewards

 Mathiak et al., 2010 ), or the highly debated question of whether partic-

pants should receive precise or more open instructions regarding regu-

ation strategies ( Sitaram et al., 2016 ). Ultimately, the number of pos-

ible factors that might influence neurofeedback performance and the

umber of conceivable interactions between these factors are immense

nd it would not be feasible to untangle them and optimize design em-

irically. Further, statistical power and generalizability across different

tudy designs are limited in original empirical studies. 

On balance, ‘big data’ approaches encompassing a wide range of neu-

ofeedback participants and studies constitute an unprecedented oppor-

unity that can be used to investigate a large number of factors that

ight influence neurofeedback success. In addition, big data methods

llow correcting for possible interactions and usually result in relatively

eneralizable findings. To date, however, big data investigations en-

ompassing a large number of participants are still rare in the field of

eal-time fMRI neurofeedback. Several reviews have descriptively sum-

arized the field ( Heunis et al., 2020; Thibault et al., 2018 ) or studies

ocusing on a specific application ( Dudek and Dodell-Feder, 2021; Tram-

aiolli et al., 2021; Tursic et al., 2020; Wang et al., 2018 ). Other big data

nvestigations investigated the influence of pre-training brain activation

evels on neurofeedback success ( Haugg et al., 2020 ) and the relation-

hip between brain structures and neurofeedback success ( Zhao et al.,

021 ). 

Here, for the first time, we employ exploratory machine learning

ethods to compute the influence of a wide range of different subject-

nd study-specific factors on real-time fMRI neurofeedback success. In

articular, we investigated the influence of 20 different factors on neuro-

eedback success in 608 participants undergoing neurofeedback training
3 
cross 28 independent studies. The investigated factors included three

ubject-specific factors, six region of interest (ROI)-based factors, and

leven paradigm-specific factors. 

Identifying factors that influence neurofeedback success can help

o design more effective neurofeedback studies in the future. This can

mprove neurofeedback studies investigating healthy participants and,

ore importantly, it can, further, improve clinical neurofeedback inter-

entions. Future designs with increased effectiveness will allow partic-

pants to train their target brain regions more efficiently, thus reduc-

ng cognitive exhaustion and overall costs. Critically, increasing the ef-

ectiveness of neurofeedback designs is an important step towards the

lleviation of clinical symptoms, by enabling the development of ad-

anced, personalized treatments for psychiatric and neurological disor-

ers. Taken together, our research aim is to utilize big data approaches

n an effort to guide future empirical investigations that utilize real-time

MRI neurofeedback. 

. Material and methods 

.1. Included studies 

Data for this mega-analysis could not be gathered from publica-

ions alone as single subject data were needed. Therefore, we contacted

orresponding authors from real-time fMRI neurofeedback studies via

) the mailing list of the real-time functional neuroimaging commu-

ity ( https://utlists.utexas.edu/sympa/subscribe/rtfin ), ii) neuroimag-

ng conferences, and iii) direct email communication, in order to ask

or data contributions. To ensure generalizability and to generate a

ataset sufficiently large for machine learning analyses, we included

MRI-based neurofeedback studies of any training type (activity- as well

s connectivity-based neurofeedback), any target brain region(s), and

ny participant populations. We received data contributions from au-

hors of 28 independent studies ( Auer et al., 2015 ; Emmert et al., 2017 ;

ellrung et al., 2018 ; Kim et al., 2015 ; Kirschner et al., 2018 ; Kohl et al.,

019 ; MacInnes et al., 2016 ; Marins et al., 2015 ; Marxen et al., 2016 ;

cDonald et al., 2017 ; Megumi et al., 2015 ; Nicholson et al., 2017 ;

amplona et al., 2020 ; Papoutsi et al., 2020 , 2018 ; Scharnowski et al.,

012 , 2015 ; Sorger et al., 2018 ; Spetter et al., 2017 ; Yao et al., 2016 ;

oung et al., 2017 ; Zich et al., 2020 ), covering a wide range of trained

rain regions, different study designs, and participant populations.

able 1 provides an overview of all studies that contributed data to this

ega-analysis. In total, we collected data from 608 participants, includ-

ng 229 patients and 379 healthy participants. All studies included were

pproved by the respective local ethics committees. 

.2. Data availability 

Due to ethical restrictions, the majority of the included data cannot

e made publicly available, but will be shared upon request. Data from

he study by McDonald et al. is publicly available as part of the Nathan

line Institute-Rockland Sample 

( http://fcon_1000.projects.nitrc.org/indi/enhanced/ ). Data from

he study by Kohl et al. has been made publicly available on the Open

cience Framework ( https://osf.io/3agvn/ ). 

.3. Neurofeedback success measures 

To assess neurofeedback success, we asked authors to provide the av-

rage feedback value for each neurofeedback training run. Feedback val-

es were defined as the measures that determined the feedback given to

he participants during neurofeedback training. Consequently, the type

f feedback values varied between different neurofeedback studies (e.g.

ercent signal change values, beta values, Bayes factors, correlations

alues etc.). Based on these feedback values, we then defined two gen-

ral measures for neurofeedback success that would allow for compar-

https://utlists.utexas.edu/sympa/subscribe/rtfin
http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://osf.io/3agvn/
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Table 1 

Overview of studies included in the mega-analysis . We received data from 28 independent neurofeedback studies, including 608 participants (229 patients 

and 379 healthy participants). 24 studies used activity-based neurofeedback, 6 studies used connectivity-based neurofeedback. Abbreviations: ACC – Anterior 

Cingulate Cortex, dlPFC – dorsolateral Prefrontal Cortex, mPFC – medial Prefrontal Cortex, M1 – Primary Motor Cortex, OFC – Orbitofrontal Cortex, PCC –

Posterior Cingulate Cortex, PMC – Pre-Motor Cortex, PHC – Parahippocampal Cortex, SMA – Supplementary Motor Cortex, SMC – Somatomotor Cortex, SPL 

– Superior Parietal Lobe, VTA – Ventral Tegmental Area. 

Author (year) ROI(s) participants neurofeedback type 

Auer et al. (2015) SMC healthy ( N = 16) activity 

Emmert et al. (2017) auditory cortex tinnitus ( N = 11) activity 

Hellrung et al. (2018) amygdala healthy ( N = 34) activity 

Hellrung et al. (in prep) amygdala healthy ( N = 16) activity 

Hellrung et al. (in prep) insula healthy ( N = 11) activity 

Keynan et al. (in prep) amygdala healthy ( N = 33) activity 

Kim et al. (2015) ACC, mPFC, OFC, PCC, precuneus tobacco use disorder ( N = 14) connectivity, activity 

Kirschner et al. (2018) VTA healthy ( N = 27), cocaine use disorder ( N = 24) activity 

Kirschner et al. (in prep) VTA schizophrenia ( N = 14) activity 

Kohl et al. (2019) dlPFC overweight ( N = 16) activity 

Kohl (pilot data) dlPFC overweight ( N = 9) activity 

Liew et al. (in prep) left PMC, left SMA healthy ( N = 10) connectivity 

MacInnes et al. (2016) VTA healthy ( N = 19) activity 

Marins et al. (2015) left PMC healthy ( N = 14) activity 

Marxen et al. (2016) amygdala healthy ( N = 32) activity 

McDonald et al. (2017) default mode network healthy ( N = 68), psychiatric disorders ( N = 72) activity 

Megumi et al. (2015) left lateral parietal, left M1 healthy ( N = 12) connectivity 

Nicholson et al. (2017) amygdala PTSD ( N = 14) activity 

Pamplona et al. (2020) default mode network, sustained attention network healthy ( N = 15) activity 

Papoutsi et al. (2018) SMA Huntington’s disease ( N = 10) activity 

Papoutsi et al. (2020) SMA, left striatum Huntington’s disease ( N = 16) connectivity, activity 

Scharnowski et al. (2015) SMA, PHC healthy ( N = 7) activity 

Scharnowski et al. (2012) visual cortex healthy ( N = 10) activity 

( Sorger et al., 2018 ) individually different healthy ( N = 10) activity 

Spetter et al. (2017) dlPFC, vmPFC obesity ( N = 8) connectivity 

Yao et al. (2016) anterior insula healthy ( N = 18) activity 

Young et al. (2017) amygdala depression ( N = 18) activity 

Zich et al. (2020) amygdala, dlPFC adolescents ( N = 27) connectivity 
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sons between participants of different studies and, more importantly,

or pooling all participants together: 

• Neurofeedback performance : General neurofeedback performance for

each participant was calculated based on the ratio of successful neu-

rofeedback training runs as compared to unsuccessful neurofeedback

training runs. Successful neurofeedback training runs were defined

as runs showing feedback values with positive signs for up-regulation

and negative signs for down-regulation. For the classification anal-

yses, participants who showed more than 50% of successful neu-

rofeedback training runs were labelled as successful, the others as

unsuccessful. 
• Neurofeedback improvement : Neurofeedback improvement of each

participant was calculated based on the slope of the neurofeedback

learning curve, i.e. the slope of the regression line over the feedback

values of all neurofeedback training runs. For classification analy-

ses, successful participants were then defined as participants with

a slope greater than 0, non-successful participants showed a slope

smaller or equal 0. 

.4. Investigated factors influencing neurofeedback performance and 

eurofeedback improvement 

We investigated the influence of 20 different factors on neurofeed-

ack success. All factors needed to be applicable to every study (i.e. we

id not include measures which were only assessed in part of the in-

luded studies) and needed to demonstrate different values in at least

0% of the data. As a consequence, ROIs were clustered together in cat-

gories to ensure enough data diversity for each ROI-related factor. The

ontinuous and categorical factors included: 

• Three subject-specific factors: (1) age of the participant in years, (2)

sex of the participant, (3) health status of the participant (healthy

participant or patient); 
4 
• Six region of interest (ROI)-based factors: (1) ROI(s) is/are cortical or

subcortical, (2) ROI(s) is/are a sensory brain region, (3) ROI(s) is/are

part of the default mode network (DMN), (4) ROI(s) is/are part of

the salience network, (5) ROI(s) is/are part of the motor network,

(6) ROI(s) consist(s) of one brain region or more brain regions; 
• Eleven experimental design-specific factors: (1) use of connectivity-

vs activity-based measure for feedback computation, (2) use of con-

tinuous vs intermittent feedback presentation, (3) use vs no use of

functional localizer for defining the trained ROI(s), (4) up- vs down-

regulation, (5) use of precise strategy suggestions vs no or open strat-

egy suggestions, (6) use of external (monetary) reward vs no exter-

nal reward given, (7) use of pre-training no-feedback run (functional

runs prior to NFB training, where participants are already asked to

modulate their brain signals, however, no feedback over regulation

performance is provided) vs no pre-training no-feedback run, (8)

length of a single neurofeedback training run in seconds, (9) length

of a single neurofeedback regulation block in seconds), (10) num-

ber of performed neurofeedback training runs, (11) neurofeedback

training on one day vs across several days 

.5. Multivariable predictions of neurofeedback performance and 

eurofeedback improvement 

Individual machine learning analyses were performed in Python

v3.8.3) to identify factors that predict participant-specific neuro-

eedback performance as well as neurofeedback improvement, using

ultivariable classification models. For the machine learning mod-

ls, an Extra Trees (ExtraTreesClassifier, scikit-learn library v0.23.1;

edregosa et al., 2011 ) approach was used, which is a computation-

lly efficient non-linear classification method. Extra Trees implements

n ensemble of Extremely randomized trees ( Geurts et al., 2006 ). Ensem-

le methods improve the performance of base predictors, e.g. decision

rees, by accumulating the predictions of the base predictors via, e.g.,
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Table 2 

Extra Trees prediction accuracy for the neurofeedback performance and the neurofeedback improvement target. 

Average of weighted accuracy ± 
standard deviation 

Average of weighted 

accuracy at chance level 

p value of smaller or equal 

chance level 

1. Predicting neurofeedback performance 60.3% ± 12.3 51.0% p < 0.001 

2. Predicting neurofeedback improvement 48.1% ± 9.0 48.4% p = 0.614 
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ajority voting. To obtain diverse predictions from the same base pre-

ictors processes that introduce randomness are applied when building

he base predictors. 

The model performance – the prediction accuracy – was esti-

ated using a nested cross-validation (CV) procedure ( Cawley and Tal-

ot, 2010 ). In the main CV loop, a shuffle-split data partitioning with

0% of the studies in the testing-set and 90% of the studies in the

raining-set was repeated 100 times, resulting in 100 Extra Trees mod-

ls (300 trees per model). Splitting data along studies allows for assess-

ng robust model performance that generalizes between studies. Feature

caling (z-scoring) and hyper-parameter tuning was carried out within

he main CV loop, using the training-set data of the current CV loop

nly. Hyper-parameter tuning was implemented in an inner (nested) CV

rocedure, so a separate CV was carried out for each repetition of the

uter CV loop. The inner CV loops used, again, a shuffle-split partition-

ng scheme with 10% of the studies in the inner testing set and 50 repeti-

ions. To control model complexity, we restricted the maximum number

f possible interactions of a decision tree in the Extra Trees ensembles by

ontrolling the number of maximum leaf nodes per tree. The candidate

aximum number of leave nodes was randomly drawn between 2 and

2 (50 random draws, RandomizedSearchCV, scikit-learn, v0.23.1). The

aximum number of leave nodes that led to the lowest squared error

as subsequently used in the outer CV loop. 

After hyper-parameter tuning, an Extra Trees model was trained in

he main (outer) CV loop using the obtained hyper-parameter and 300

rees with no maximum features. Further, minimum samples split was

et to 2, minimum samples leaf to 1, and minimum weight fraction leaf

o 0.0. No maximum depth and no maximum samples were chosen, min-

mum impurity decrease was 0.0, ccp alpha was 0.0, and the class weight

as computed from training data. 

The obtained model was then tested on the respective hold-out set

f the main CV loop. The hold-out set (10% of the studies) was explic-

tly not used in the inner CV loop. In each repetition of the main CV

oop, model prediction accuracy was computed. To counter unbalanced

lasses (more samples in one class than in the other) weighted accuracy

as used ( Hastie et al., 2001 ). For that purpose an additional model was

rained and tested on a shuffled version of the data in each CV loop. 

After obtaining the results of the 100 repetitions of the outer CV

oop, we assessed whether the models performed statistically signifi-

antly better than chance level by applying a bootstrap test (100,000

ootstrap samples; Efron, 1979 ). For this test, the null-hypothesis was

hat the difference between accuracy and chance level is on average

maller or equal to zero ( Table 2 ). 

Further, we analyzed the importance of each factor for the overall

odel performance. In specific, the factor importance was estimated

y summing up contributions per factor, over the decision tree splits.

he total importance of a feature was then computed as the normal-

zed importance of that feature averaged over the trees in the ensem-

le ( Hastie et al., 2001 ). Correlation of features leads to a split of this

mportance measure among these features (see Figure S1 in Supple-

entary Material for correlation map). To determine whether a fea-

ure’s contribution was statistically significant, we tested that feature’s

mportance against the feature importance obtained by a model that

as trained with the same parameters, but shuffled data. The null-

ypothesis tested per feature was that the median difference in fea-

ure importance is smaller or equal to zero. The null-hypothesis was

ested with a bootstrap test (100,000 bootstrap samples per feature;

b  

5 
fron, 1979 ). Obtained p-values were Bonferroni-corrected for multiple

omparisons. 

The entire analysis (computing the models and the contributions of

actors) was carried out two times. First, to predict neurofeedback per-

ormance and a second time to predict neurofeedback improvement. 

. Results 

.1. Neurofeedback success 

When investigating neurofeedback performance, we observed that

9.41% of all participants were labelled as successful, meaning that for

hem, more than 50% of all neurofeedback training runs were successful.

nly 9.70% of participants were characterized by 25% or less successful

uns. On average, participants presented 72.36% successful neurofeed-

ack runs. For neurofeedback improvement over runs, we observed an

verage slope of 0.09 across all participants. Here, 59.70% of the par-

icipants showed a positive slope and, therefore, were able to improve

heir neurofeedback performance over time (see Fig. 1 ). 

.2. Prediction accuracy of neurofeedback performance and neurofeedback

mprovement 

The Extra Trees machine learning model was able to predict neu-

ofeedback performance from the investigated factors with an average

ccuracy of 60.3%, which is significantly better than the average accu-

acy at chance level with 51% ( p < 0.001). However, no prediction better

han chance was revealed for neurofeedback improvement ( Table 2 ). 

As only the neurofeedback performance measure could be predicted

ith a better than chance accuracy, only the influence of factors on

eurofeedback performance, but not neurofeedback improvement, are

alid to be interpreted. Consequently, normalized model-based feature

mportance was only calculated for the neurofeedback performance tar-

et, but not for the neurofeedback improvement target (see Fig. 2 ). Two

actors contributed significantly to the prediction result: whether a study

ncluded a pre-training no-feedback run (median relative importance

9.3%; Fig. 2 ) and whether a participant was a patient or a healthy par-

icipant (median relative importance 31.1%; Fig. 2 ). More specifically,

ncluding a pre-training no-feedback run, as well as performing a study

ith patients increases the chance for a successful neurofeedback run.

atients did not show a higher ratio of pre-training no-feedback runs

17.47%) than healthy individuals (23.22%). 

. Discussion 

In this exploratory study, we investigated the influence of 20 dif-

erent factors on neurofeedback performance and improvement, in-

luding three subject-specific factors, six ROI-based factors, and eleven

aradigm-specific factors. When targeting neurofeedback performance,

ur classification model achieved an accuracy of 60.3%, which was sig-

ificantly better than chance level. In contrast, classification for the neu-

ofeedback improvement target did not reach an accuracy level above

hance level. This difference in classification accuracy between neuro-

eedback performance and improvement is driven by the different types

f success which are captured by the two success measures: Neurofeed-

ack performance describes if an individual is able to regulate their

rain signals to a level above (or below if downregulation is performed)

aseline. In contrast, neurofeedback improvement describes whether an



A. Haugg, F.M. Renz, A.A. Nicholson et al. NeuroImage 237 (2021) 118207 

Fig. 1. Distribution of neurofeedback success. Left: More than half (51.48%) of all participants undergoing neurofeedback training performed 75% or more of 

successful runs. Only 9.70% of the participants performed 25% successful runs or fewer. Right: 59.70% of all participants undergoing neurofeedback training show 

positive slopes of their learning curves, indicating an improvement over time. 

Fig. 2. Distribution of feature importance for predicting neurofeedback performance. A 20 different features were investigated with respect to their importance 

for the prediction result. Significance was determined using a bootstrapping approach comparing each feature’s importance for the model against the feature’s 

importance for the same model with shuffled data. Significant normalized model-based feature importance was observed for the feature pre-training no-feedback 

run and for the feature patient versus healthy participant. B Participants who performed a pre-training no-feedback run were more successful during neurofeedback 

than participants without a pre-training no-feedback run. C Patients were more successful than healthy participants. 

6 
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ndividual is able to increase (or decrease in downregulation is per-

ormed) their neurofeedback signal over time. Consequently, some in-

ividuals might show high levels of performance, but low levels of im-

rovement, or vice versa. 

Overall, we observed considerably high neurofeedback success rates

cross all 28 studies, with around 60% of all participants showing posi-

ive slopes and around 70% of all participants showing more than 50%

uccessful neurofeedback runs. Our results revealed two factors that

howed high model importance for the neurofeedback performance clas-

ification, suggesting that they may significantly influence neurofeed-

ack performance. 

.1. Factors that influence neurofeedback performance 

The first significant factor influencing neurofeedback performance

s the presence or absence of a pre-training no-feedback run. Here, sig-

ificantly higher ratios of successful neurofeedback runs were found

or studies that included a pre-training no-feedback run in their study

esign. Pre-training no-feedback runs are functional runs prior to neu-

ofeedback training, where participants are already asked to modulate

heir brain signals, however, no feedback regarding regulation perfor-

ance is provided (e.g. see Kim et al., 2015 ; Kirschner et al., 2018 ;

acInnes et al., 2016 ; Young et al., 2017 ). These no-feedback runs

an serve several purposes, for instance, helping participants familiar-

ze themselves with the neurofeedback paradigm and scanning envi-

onment where the following runs will take place. Importantly, they

erve as a baseline run for comparisons with subsequent neurofeedback

raining runs and transfer no-feedback runs after neurofeedback training

 Auer et al., 2015 ; MacInnes et al., 2016 ). One reason for our finding

hat pre-training no-feedback runs can benefit neurofeedback perfor-

ance might be that prior familiarization with the neurofeedback setup

nd an additional run to practice one’s brain regulation strategies will

ake it easier for the participants to perform well. 

The second factor that demonstrated significant model importance

or neurofeedback performance classification was whether a healthy

articipant or a clinical patient was undergoing neurofeedback train-

ng. Specifically, we found that patients showed higher ratios of suc-

essful neurofeedback runs than healthy participants. Similar results

ave already been reported in an empirical neurofeedback study where

he authors observed significantly higher default mode network (DMN)

pregulation performance in a heterogeneous group of patients, com-

ared to healthy controls ( Skouras and Scharnowski, 2019 ). The au-

hors argued that this finding might be linked to higher observed scores

n DMN eigenvector centrality in the patient group than in the control

roup, i.e. in the patient group the DMN was more strongly connected

o the rest of the brain. This is in line with a recent suggestion by Bas-

ett and Khambhati who argue that areas which are strongly function-

lly connected within the brain (such as it is the case for the DMN)

ight be easier to be trained with neurofeedback ( Bassett and Khamb-

ati, 2017 ). Further, it is also possible that patients show better per-

ormance in neurofeedback regulation due to more dysfunctional brain

atterns as compared to healthy subjects, leaving more room for regula-

ion and making ceiling effects less likely. Here, it should be noted that

eurofeedback performance might still differ significantly between dif-

erent patient populations, due to differences in cognitive deficits which

ight attenuate attention in general and neurofeedback regulation per-

ormance in specific ( Heeren et al., 2014 ; Li et al., 2010 ; Lussier and

tip, 2001 ). Further, the observed differences in neurofeedback perfor-

ance between patients and healthy participants might also be driven

y differences in the experimental design. Neurofeedback paradigms

n clinical populations have oftentimes been piloted more thoroughly,

nd sometimes even follow a series of several neurofeedback studies

n healthy populations which serve as pilots or templates for imple-

enting the optimized final neurofeedback patient studies. For instance,

irschner et al., (2018) trained participants with cocaine use disorder to

egulate their dopaminergic midbrain using a paradigm that had been
7 
reviously successfully applied to healthy participants ( Sulzer et al.,

013 ). Consequently, high risk studies that are more likely to show a

igh percentage of unsuccessful neurofeedback runs, e.g. studies using

 novel analysis method or an ultra-high-field MRI scanner, might be

ess often performed with patient populations. Finally, also a difference

n the participants’ motivation might influence the better performance

f patients as compared to healthy participants. Many patients undergo

eurofeedback training in the hope to improve their clinical symptoms

hile healthy participants mainly participate out of generic interest or

n order to receive a monetary compensation. Therefore, it is likely that

atients put more effort into the neurofeedback regulation task than

ealthy participants. 

Taken together, our results indicate that it would be beneficial to in-

lude a pre-training no-feedback run in order to improve neurofeedback

erformance. Furthermore, our results demonstrate better neurofeed-

ack performance of patients as compared to healthy participants. While

he participant sample is primarily defined by the biological/clinical

uestion under investigation and, thus, does not constitute an open

arameter regarding design optimization, this finding nevertheless has

trong implications for the design of future neurofeedback studies. Fur-

her, our findings emphasize the clinical potential of neurofeedback in-

erventions: Even in cases where only small or moderate effects have

een observed in neurofeedback studies on healthy participants, effects

n patients might be nonetheless considerably stronger and clinically

elevant, based on the same neurofeedback paradigm. 

.2. Features that do not predict neurofeedback performance 

Most of the features included in the machine learning analysis did

ot play an important role with regards to the classification of partic-

pants, neither for neurofeedback performance nor neurofeedback im-

rovement analyses. One reason for this might be that the majority of

ur included features were based on parameters specific for each study’s

esign, such as information on the paradigm or chosen ROI(s), rather

han subject-specific features. These design-specific features were de-

iberately chosen for our analysis to identify parameters that could be

asily modified when designing future neurofeedback studies. However,

eurofeedback success also varied considerably within single neurofeed-

ack studies ( Bray et al., 2007 ; Chiew et al., 2012 ; deCharms et al.,

005 ; Haugg et al., 2020 ; Johnson et al., 2012 ; Ramot et al., 2016 ; F.

obineau et al., 2014 ; Scharnowski et al., 2012 ; Yoo et al., 2008 ), de-

pite all design-specific parameters being identical for the participants

f a study. This indicates that subject-specific factors such as biological

easures (e.g. heart rate, pulse, stress level), personality traits and cog-

itive measures, intelligence, the ability to perform mental imagery, or

he subject’s attention and motivation (see ( Cohen and Staunton, 2019 )

or a systematic review) might be important factors for successful neuro-

eedback training. Further, also individual brain-based measures, such

s functional connectivity ( Scheinost et al., 2014 ), eigenvector central-

ty ( Skouras and Scharnowski, 2019 ), gray matter volume ( Zhao et al.,

021 ), or the connectivity of the trained brain region to other higher-

rder cognitive areas ( Bassett and Khambhati, 2017 ) have been previ-

usly discussed as possible factors that might influence neurofeedback

uccess. Due to such information not being available for our data, we

ere not able to assess the effect that these parameters might have on

eurofeedback success. In the future, more harmonization efforts in as-

essing subject-specific data across different neurofeedback studies will

herefore be necessary. 

A complementary reason why many features included in our analysis

ere not predictive of neurofeedback success was the heterogeneity of

he dataset. As we aimed at finding generalizable factors that influence

eurofeedback success across a wide range of different neurofeedback

tudies, we purposely included diverse studies training different ROIs,

ifferent participant populations, and using a variety of experimental

esigns and methods, thus making predictions very difficult. It is pos-

ible that by investigating more homogeneous subsets of the data, cer-
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ain additional factors might become predictive even though they were

ot predictive when pooling all studies together. However, establish-

ng more homogeneous subsets for solid machine learning analyses will

equire more data than is currently available. For future investigations

n this topic, we therefore want to further encourage data sharing and

pen science practices and, in particular, emphasize the importance of

ommon practices for data sharing and the description of datasets. This

ncludes use of standardized data structures such as the Brain Imaging

ata Structure (BIDS) ( Gorgolewski et al., 2016 ) in general and the re-

orting of standardized neurofeedback design aspects, such as described

n CRED-NF ( Ros et al., 2020 ), in specific. 

Finally, it should be noted that the selection of papers who contribute

ata to mega-analyses and meta-analyses could be biased in a sense that

uccessful results might be more likely to be shared by authors than un-

uccessful results. In the future, the use of study registrations and prereg-

stered reports will be an important step to reducing bias in secondary

nalyses ( Allen and Mehler, 2019 ), not only in the field of neurofeed-

ack, but across all scientific disciplines. 

.3. Neurofeedback success target measures 

Our results were most likely not only driven by the included fea-

ures, but also by the chosen target measures for neurofeedback suc-

ess. To date, no commonly accepted measure for neurofeedback suc-

ess has been established and measures vary between different studies

 Haugg et al., 2020; Paret et al., 2019; Thibault et al., 2018 ). For in-

tance, neurofeedback feedback values during a single neurofeedback

egulation block or run can be assessed with a wide variety of different

ethods, such as percent signal change, beta values, or connectivity val-

es. The heterogeneity of feedback values complicates machine learn-

ng approaches that require a common target feature. Even if we had

ccess to the raw imaging data, post-hoc re-analyses with an identical

nalysis pipeline for all studies would not solve this problem, because

uch a measure would not reflect the feedback that was provided to the

articipants during training. Choosing neurofeedback performance and

eurofeedback improvement as targets for this mega-analysis allowed

or pooling this large set of heterogeneous studies, thus, increasing sta-

istical power and generalizability. In addition, by using a dichotomous

lassification approach (e.g. positive vs. negative slope), we could, fur-

her, account for some of the heterogeneity of our data. For instance,

hen the slope of a neurofeedback learning curve is computed based

n only two runs, the resulting values are more likely to be actual out-

iers, as compared to when the slope of a neurofeedback learning curve

ased on 20 runs is calculated ( Kwak and Kim, 2017 ). We avoided this

roblem by using a classification-based instead of a regression-based

achine learning approach. 

However, the chosen success measures still show limitations. For in-

tance, the neurofeedback performance measure does not control for

he fact that the performance of a cognitive task alone can already lead

o activation of a specific target region. Currently, only few studies in-

lude control groups which perform the exactly same cognitive tasks

nd undergo MRI scanning, so more data will be necessary to perform

achine learning analyses which are explicitly corrected for cognitive

ask activation. However, while we cannot exclude that neurofeedback

earning in studies without suitable control conditions might in fact be

ue to cognitive task activations, previous studies indicate that neuro-

eedback learning goes beyond cognitive task activation alone. For in-

tance, Haugg and colleagues observed that brain activity levels dur-

ng pre-training no-feedback runs did not correlate with neurofeedback

uccess, not even with neurofeedback success within the first neuro-

eedback run right after the no-feedback run ( Haugg et al., 2020 ). This

mplies that the provided feedback might have a stronger effect on neu-

ofeedback training success than the actual task which is performed in

he MR scanner. 

Furthermore improvement regarding the heterogeneity of the neu-

ofeedback success measures might be expected from developing and
8 
stablishing a commonly accepted model of neurofeedback learning. To

ate, the underlying mechanisms of neurofeedback have not been fully

etermined ( Cohen and Staunton, 2019 ; Sitaram et al., 2016 ), mak-

ng it difficult to identify the most important attributes of neurofeed-

ack learning, towards creating a comprehensive neurofeedback suc-

ess measure. With more neurofeedback data becoming publicly avail-

ble thanks to the open science movement, another solution might be

o only consider studies that used exactly the same feedback success

easure while still finding enough data to carry out similar analyses.

 larger amount of neurofeedback data will also allow future studies to

nvestigate target measures with particular clinical relevance, such as

linical improvement after neurofeedback training, behavioral and/or

ognitive changes, or specific neurophysiological responses. 

. Conclusion 

With 59.70% of all participants showing positive slopes and 69.41%

f all participants having more than 50% of successful neurofeedback

uns, our data indicate that neurofeedback training is overall success-

ul, although with large room for improvement. Using machine learn-

ng on the largest neurofeedback data set to date, we were able to iden-

ify two measures that might influence neurofeedback success and, thus,

ould lead to improvements in the efficacy of neurofeedback interven-

ions: Participants who performed a pre-training no-feedback run prior

o neurofeedback training and participants who were patients gener-

lly performed better. Nevertheless, the medium overall predictability

f our analyses indicates that further studies based on larger datasets

nd including more features are needed. In the future, our mega-analysis

achine learning approach combined with increased data availability

rom homogeneous studies might allow for identifying more crucial fac-

ors, designing more efficient neurofeedback studies, improving clini-

al neurofeedback-based interventions, and understanding better how

earning with neurofeedback is accomplished. 
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